DHBK Microwaves Slides 2012

61
Microwaves Chapter 1 Propagation on a transmission line ĐạiHc Bách Khoa Hà Ni/ 2012-2013

Transcript of DHBK Microwaves Slides 2012

Page 1: DHBK Microwaves Slides 2012

Microwaves

Chapter 1 ‐ Propagation on a transmission line

Đại Học Bách Khoa Hà Nội / 2012-2013

Page 2: DHBK Microwaves Slides 2012

Propagation of a wave

2

( ) ⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −×=−×=

λπω z

TtEkztEE 2coscos 00

Electromagnetic field 

( ) ( )zzkttkzt δδωω +−+=−

fTkt

zvP ×==== λλωδδ

fvP ×= λ

During propagation the phase remains constant 

Phase velocity 

Microwave electronics concerns high frequency or small wavelength signals

The size of circuits as the same order of magnitude as the wavelength

Page 3: DHBK Microwaves Slides 2012

Microwave domain

3

AM Radio 30 kHz – 30 MHz (LW, MW, SW)

FM Radio 88 – 105 MHz

DAB (Digital Audio Broadcasting) VHF III band: 174 – 240 MHzL band: 1452 – 1492 MHz

TV VHF 54 – 72 MHz / 76 – 88 MHz / 174 – 216 MHz

TV UHF 470 – 608 MHz / 614 – 890 MHz

Cellular phones GSM 900 MHz and 1.8 GHz

Bluetooth 2.4 GHz

WiFi (802.11 a/b/g) 2.4 – 2.4835 GHz / 5 GHz

Wimax 2.5 GHz / 3.5 GHz / 5.8 GHz

Hyperlan 5 GHz

Satellite5.925 – 6.425 GHz / 3.7 – 4.2 GHzIntelsat V 14 – 14.5 GHz / 10.95 – 11.2 GHz

/ 11.45 – 11.70 GHz

Radar FMCW 77 GHz

Page 4: DHBK Microwaves Slides 2012

Wavelength and frequency

4

Page 5: DHBK Microwaves Slides 2012

Examples of transmission lines

5

Circular waveguideRectangular waveguide

Twisted or untwisted pairs line Coaxial cable

Page 6: DHBK Microwaves Slides 2012

Transmission lines on a Printed Circuit Board (PCB)

6

Microstrip line Coplanar waveguide

Page 7: DHBK Microwaves Slides 2012

Materials

7

Conductors are characterized by their conductivity Copper (Cu): σ = 5.88 107 S.m‐1

Gold (Au): σ = 4.55 107 S.m‐1 

Aluminium (Al): σ = 3.65 107 S.m‐1

Silver (Ag): σ = 6.21 107 S.m‐1

Insulators, between the conductors, are of dielectric materials; they are characterized by their low conductivity, the dielectric constant and the permeability (usually µr =1).

Epoxy (FR4): εr ≈ 4Polyethylene: εr ≈ 2.25 Duroid: εr ≈ 6 or 10Alumina: εr ≈ 8.4Teflon: εr ≈ 2.1; σ = 3.3 10‐14 S.m‐1

Losses are expressed by tanδ (see later)

Page 8: DHBK Microwaves Slides 2012

Hypothesis for this lecture

8

• 2 wires conductors waveguide, quasi TEM mode

voltage and intensity are defined on the circuit

• The length of the transmission lines has the same magnitude order as the 

wavelength: the propagation effect has to be taken into account

• Components have a small size QSA is valid (surface mount devices)

‐ Passive elements: R, L, C; diodes

‐ Active elements: transistors (BJT, J‐FET, MOS‐FET)

‐Integrated circuits: MMIC (monolithic microwave integrated circuits)

• Small bandwidth signal (the signal is centered on the frequency carrier, 

case of a modulated signal, with a small occupied channel) 

Page 9: DHBK Microwaves Slides 2012

Coaxial cable

9

211

4dhRa

πσ=

( )eedhRg +

=22πσ

⎟⎟⎠

⎞⎜⎜⎝

⎛=

1

20 Ln

21

ddhL rμμ

π

( )12

0/Ln

2ddhC rεπε

=

( )12 /Ln2

ddhG iπσ

=

Resistance of the core

Resistance of the envelop

Inductance of the core placed inside the envelop

Capacitor made of the core and the envelop

Conductance of the insulator

Only in case of a coaxial cable the wave is really TEM!

Page 10: DHBK Microwaves Slides 2012

Distributed elements modelling

10

C1dzG1dz

z z+dz

i(z, t)

v(z, t)

i(z+dz, t)

v(z+dz, t)

R1dz L1dz

tiLiR

zv

∂∂

+=∂∂

− 11

tvCvG

zi

∂∂

+=∂∂

− 11

Kirchhoff laws:

Page 11: DHBK Microwaves Slides 2012

Telegraphers equation

11

Telegraphers Equations

( ) vGRtvGLCR

tvCL

zv

1111112

2112

2+

∂∂

++∂

∂=

( ) iGRtiGLCR

tiCL

zi

1111112

2112

2+

∂∂

++∂

∂=

Harmonic Solution

ωjt↔

∂∂

( ) )()()()(11111111

22

2zvGRzvGLCRjzvCL

zzv

+++−=∂

∂ ωω

( ) )()()()(11111111

22

2ziGRziGLCRjziCL

zzi

+++−=∂

∂ ωω

tjezvtzv ω)(),( =tjezitzi ω)(),( =

22

2ω−↔

t

Page 12: DHBK Microwaves Slides 2012

General harmonic solution

12

( )( )vjCGjLRz

v ωω 11112

2++=

( )( )ijCGjLRz

i ωω 11112

2++=

( )( )ωωγ 11112 jCGjLR ++= βαγ j+= 0and0 >> βα

Incident wave Reflected wave

VzV 22

2γ=

Iz

I 22

2γ=

)()()()( ztjzztjz eeVeeVv βωαβωα +−−−+ +=

)()()()( ztjzztjz eeIeeIi βωαβωα +−−−+ +=βω

=Pv

Propagation velocity

= Phase velocity

Page 13: DHBK Microwaves Slides 2012

Characteristic impedance of a transmission line

13

tiLiR

xv

∂∂

+=∂∂

− 11

ωω

11

11jCGjLRZ c +

+=

γω11

)(

)( jLRIV +

=+

+

cZIV

+=+

+

)(

)(

γω11

)(

)( jLRIV +

−=−

cZIV

−=−

)(

)(

Case of a lossless line1

1CLRZ cc ==

11

1CL

vp =01 =R01 =G

Zc is called the characteristic

impedance

Page 14: DHBK Microwaves Slides 2012

Example for a coaxial cable (RG‐58U)

14

-117 .m 1088.5 −Ω×=Cuσ

mm406.01 =d mm418.12 =d mm25.0=e

25.2r =ε 1=rμ-1114 .m 103.3 −− Ω×=iσ

180

0011m.s10211 −×====

rrP

cCL

vεεμε

Ω=⎟⎟⎠

⎞⎜⎜⎝

⎛== 50Ln

21

0

0

1

2

1

1

rc d

dCL

Rεεμ

π

,,

,

11 pF.m100 −=C 1

1 μH.m25.0 −=L

.

This is the same value as for a plane wave in the dielectric material.

Dielectric material polyethylene is such as:

Conductors: copper, conductivity

Geometrical characteristics

Page 15: DHBK Microwaves Slides 2012

Characteristic impedance of a microstrip line

15

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥

⎢⎢

⎡ ++⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛ +

++

++

= 222

02/11

'4

11/814

'4

11/814

'41Ln

122πεεε

επη rrr

rc w

hwh

whZ

Ω==≡ 377π1200

00 ε

μη is the characteristic impedance of free space

www Δ+='

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎠⎞

⎜⎝⎛

++⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛ +

=Δ22

1.1//1

4Ln2/11

twht

etw r

π

επ

Page 16: DHBK Microwaves Slides 2012

Reflection coefficient

16

)(

)(

+=

L

LL

V

L

LL Γ

Γz−+

=11

11

+−

=L

LL z

c

LL Z

Zz =Normalized impedance:

L

Lc

L

LL Γ

ΓZ

IV

Z−+

==11

cL

cLL ZZ

ZZΓ

+

−=

ΓL is called thereflection coefficient

Page 17: DHBK Microwaves Slides 2012

Important cases for the reflection coefficient

17

cL ZZ = 0=LΓ

=∝LZ 1+=LΓ

0=LZ 1−=LΓ

If a transmission line has a load equal to the characteristic impedance, there is no reflection.

In this case the load is said to be matched to the transmission line.

If a transmission line is terminated by an open circuit the reflection coefficient is equal to +1.

If a transmission line is terminated by a short circuit thereflection coefficient is equal to -1.

1=Lz

Page 18: DHBK Microwaves Slides 2012

Reflection coefficient at a distance d from a load

18

djdLdL eeΓΓ βα 22

,−−=

For a lossless transmission line: djLdL eΓΓ β2

,−=

LZ

dLΓ ,

0

d

zd−

Moving from the load toward generator = clockwise rotation on a constant reflection coefficient modulus circle

Page 19: DHBK Microwaves Slides 2012

Standing wave ratio

19

( )dLddd ΓVVVdV ,)()()( 1)( +=+= +−+

L

LΓΓ

VVSWR

−+

==11

min

max

-1 0

ΓL,d

1+ΓL,d

dLΓVdV ,)( 1)( += +

LZ

dLΓ ,

0

d

zd−

Page 20: DHBK Microwaves Slides 2012

Standing wave ratio

20

Standing waves in case of a reflection coefficient equal to 0,6 (λ = 1 cm)SWR = 4

Page 21: DHBK Microwaves Slides 2012

Smith Chart

21

jqpΓ +=

ϕjeΓΓ =

jxrz +=11

+−

=zzΓ

jxrjxrjqp

+++−

=+11

( )22

2

11

1 rq

rrp

+=+⎟

⎠⎞

⎜⎝⎛

+− ⎟

⎠⎞

⎜⎝⎛

+= 0,

1rrC

r+=

11R

( ) 2

22 111

xxqp =⎟

⎠⎞

⎜⎝⎛ −+− ⎟

⎠⎞

⎜⎝⎛=

x1,1C x

1=R

The Smith chart is a representation of the reflection coefficient  in polar coordinates

Page 22: DHBK Microwaves Slides 2012

Smith

 chart

22

Page 23: DHBK Microwaves Slides 2012

Microwaves

Chapter 2 – Impedance matching

Đại Học Bách Khoa Hà Nội / 2012-2013

Page 24: DHBK Microwaves Slides 2012

Power received by a load

24

*21

LLL IV=PZLVL

IL

( )LLP PRe=

( ) ⎟⎠⎞⎜

⎝⎛ −==

+2

2)(

121Re L

cLL Γ

R

VP P

v

i

v(t)i(t)p(t) =

)cos(21)( ϕLLIVtp >=<

( )( ) ( ) ( )**)()(*)()()()(* 1121

21

21

LLLLL ΓIΓVIIVVIV −+=++== ++−+−+P

)()( ++ = IRV c)()( −− −= IRV c ( )( )**)()( 11

21

LLL ΓΓIV −+= ++P

Page 25: DHBK Microwaves Slides 2012

Incident and reflected power

25

⎟⎠⎞

⎜⎝⎛= +++ *)()()(

21Re IVP 2)(

2)()(

21

21 +

++ == IR

R

VP c

c

⎟⎠⎞

⎜⎝⎛= −−− *)()()(

21Re IVP

2)(

2)()(

21

21 −

−− −=−= IR

R

VP c

c

ccL R

V

R

VP

2)(2)(

21

21

−+

−= )()( −+ −= PPPL

)()( ++ = IRV c The incident wave propagates seeing an impedance Rc

The incident wave propagates seeing an impedance ‐Rc)()( −− −= IRV c

incident power  

reflected power  

The power transmitted to the load is the sum of the incident power and of the reflected power   

Page 26: DHBK Microwaves Slides 2012

Normalized waves

26

21 )(+

=V

Ra

c 21 )(−

=V

Rb

c

abΓ L =

⎟⎠⎞⎜

⎝⎛ −=−= 2222 1 LL ΓabaP

ZLV (+) V (-)

ΓL

ZL

b

a

ΓL

Page 27: DHBK Microwaves Slides 2012

Unit of power

27

⎟⎟⎠

⎞⎜⎜⎝

⎛=

W1)W(log10dB

PP

⎟⎟⎠

⎞⎜⎜⎝

⎛=

mW1mW)(log10dBm

PP

30dBdBm += PP

in

outPP

G =

⎟⎟⎠

⎞⎜⎜⎝

⎛=

in

outPP

G log10dB

Decibel

Gain

Page 28: DHBK Microwaves Slides 2012

Power transfer from a source to a load

28

ZL

ΓL

a

b

ΓS

ZS

eS

*SL ΓΓ = 2

20

1

1

SSav

ΓaP

−=PL is maximum if: Available 

power

aΓΓabΓaa LSSSS +=+= 00

LS

SΓΓ

aa−

=1

0

Sc

cS

cS ZR

RE

Ra

+=

21

0

2

22

022

1

1

LS

LSL

ΓΓ

ΓabaP

−=−=

)cos(21

1

1

122

22

02)(

22

0LSLSLS

LS

jLS

LSL

ΓΓΓΓ

Γa

eΓΓ

ΓaP

LS ϕϕϕϕ +−+

−=

−=

+

Page 29: DHBK Microwaves Slides 2012

Impedance matching

29

ZL

ΓLΓin

(C)

a1

b1 a2

b2

ΓoutΓS

ZS

eS

Matching network (matching to the source and to the load)

*Lout ΓΓ =

*Sin ΓΓ =

For a given source and a given load:matching is obtained by a matching cell placed between source and load

Page 30: DHBK Microwaves Slides 2012

Matching with discrete reactive elements

30

ZL

ΓLΓS

jX

jBpRc

(a)

ZL

ΓLΓS

jXs

jBRc

(a)

)(1

)/(11

LLpLLpc jBGjB

jXjXRjB

jXR++

+=++

+=)(11

LsLc XXjRjB

Z +++=

Thanks to the Smith Chart it is possible to avoid calculation

Serial association on the Smith chart: the point is moving on a constant real part circle of the impedance

Parallel association on the Smith chart: the point is moving on a constant real part circle of the admittance

)(' sLL xxjrz ++=

)(' pLL bbjgy ++=

Page 31: DHBK Microwaves Slides 2012

Matching with a single stub placed in parallel

31

ZL

d

l

Rc

)tan()(1)tan(

)tan(11

djbgjdjjbg

lj LL

LLββ

β ++++

+=

)tan(1)tan(1

djydjy

zy

L

L

LdLd β

β++

==

Ldstub yy +=1

Two solutions for d then two solutions for the length l

)tan()(1)tan(

)tan(11

djbgjdjjbg

lj LL

LLββ

β ++++

=−

Thanks to the Smith Chart it is possible to avoid calculation

Page 32: DHBK Microwaves Slides 2012

Matching with two stubs

32

ZL

d1

l1

Rc

l2

d2

Two distances d1 and d2 are fixed, the length l1 and l2 have to be determined

Page 33: DHBK Microwaves Slides 2012

Matching with a quarter wavelength line

33

RL

d = λ/4

RxRc

Lcx RRR =

11

+

−= x

L

xLx

LrrΓ

x

LxL R

Rr =11

11

114,

+

=+

−=−=== −−

xL

xL

xL

xLx

Ljx

Ljx

Lx

dL

r

rrrΓeΓeΓΓ π

λβ

xx

dLdL RrR ,, = xL

xcdL R

RR

RR ==,

This method concerns only real loads

L

xxL

xdL R

R

rr ==

1,

Page 34: DHBK Microwaves Slides 2012

Microwaves

Chapter 3 – The S parameters

Đại Học Bách Khoa Hà Nội / 2012-2013

Page 35: DHBK Microwaves Slides 2012

System with n connections

35

"Connection" equal to "port"  (input or output)

Page 36: DHBK Microwaves Slides 2012

Scattering parameters

36

For a linear system with n ports (1, 2, … i, …j, …n)The normalized waves at the output can be expressed as a linear combination 

of the normalized waves at the input.

∑=j

jiji aSb ( ) [ ]( )aSb =

Reflection coefficient at port "i" when all the other ports are matched to their corresponding transmission line.

Transmission coefficient from port "j" to port "i" when ports "k≠j" are matched to their corresponding transmission line.

0=≠

=ijai

iii a

bS

0=≠

=

jkaj

iij a

bS

[ ]S Smatrix

ijS Scattering  or S parameters

Page 37: DHBK Microwaves Slides 2012

Case of a quadripole

37

2221212

2121111aSaSb

aSaSb+=+=

01

111

2=⎟⎟⎠

⎞⎜⎜⎝

⎛=

aabS

01

221

2=⎟⎟⎠

⎞⎜⎜⎝

⎛=

aabS

02

222

1=⎟⎟⎠

⎞⎜⎜⎝

⎛=

aabS

02

112

1=⎟⎟⎠

⎞⎜⎜⎝

⎛=

aabS

Q(1) (2)

a2a1

b1 b2

Page 38: DHBK Microwaves Slides 2012

S Parameters: 2 ports devices

38

Attenuator: ⎟⎟⎠

⎞⎜⎜⎝

⎛=

0'0

ββ

SR3

R2

R1

R3

R2

R1

Amplifier: ⎟⎟⎠

⎞⎜⎜⎝

⎛=

000

21SSPort-1 Port-2

Filter: low-pass, band-pass, high-pass or band-reject ⎟⎟⎠

⎞⎜⎜⎝

⎛=

0)()(0

21

12fS

fSS

0=iiSIdeal devices are matched at the different ports:

Page 39: DHBK Microwaves Slides 2012

Three ports devices

39

⎟⎟⎟

⎜⎜⎜

⎛=

333231

232221

131211

SSSSSSSSS

S

jiij SS =

0=iiS

A lossless reciprocal three ports device cannot have all ports simultaneously matched.

Reciprocal device, the S matrix is symmetric:

All ports matched:

Lossless device, conservation of energy:

∑∑==

=3

1

23

1

2

ii

ii ab

Page 40: DHBK Microwaves Slides 2012

Power splitters (dividers)

40

cR2

cR2

cR

cR

cR

Port 1

Port 2

cR2

Port 3

4/λ

4/λ

⎟⎟⎟

⎜⎜⎜

⎛=

011101110

21SPort 1

Port 2

Port 3

3/cR3/cR

3/cR

inout PP41

2 =

inout PP41

3 =

Resistive divider:

Wilkinson divider:

⎟⎟⎟

⎜⎜⎜

⎛−

=001001110

2jS

Page 41: DHBK Microwaves Slides 2012

Circulators

41

Circulator: Source 1       23

Matched  load⎟⎟⎟⎟

⎜⎜⎜⎜

=0000

00

θ

θ

θ

j

j

j

ee

eS

31 aeb jθ= 12 aeb jθ= 23 aeb jθ=

03 =a 01 =b

The power returned at Port‐2 is totally absorbed by the matched load at Port‐3.

The source placed at Port‐1 is protected against any kind of change at Port‐2.

Page 42: DHBK Microwaves Slides 2012

Directionnel couplers

42

(3)

(2)

(4)

(1)in

isolated coupled

trough

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

000000

00

αβαββα

βα

ϕ

θ

ϕ

θ

j

j

j

j

ee

ee

S

αlog20log20log10 212

1 −=−== SPPIL

βlog20log20log10 313

1 −=−== SPPC

4131

41

4

3 log20log20log10SS

SPPD β

=−==

414

1 log20log10 SPPI −==

Insertion loss: 

Coupling factor: 

Directivity: 

Isolation: 

(1) (2)

(3)

(4)

dBdBdB CDI +=

Port‐4 internally matched 

Page 43: DHBK Microwaves Slides 2012

Some examples of circuits: filters

43

Page 44: DHBK Microwaves Slides 2012

Bandpass filters

44

Page 45: DHBK Microwaves Slides 2012

Couplers

45

Page 46: DHBK Microwaves Slides 2012

Measurement planes

46

a1a’1 a’2a2

b’1 b1 b2 b’2

d1 d2

Q

(S)1 2

P’1 P1 P2 P’2

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛= −

2

1

2

1

00

00' dj

dj

dj

dj

eeS

eeS β

β

β

β

11 1' beb dγ−=

11 1' aea dγ=

22 2' beb dγ−=

22 2' aea dγ=

Page 47: DHBK Microwaves Slides 2012

Measurement of the S parameters

47

RBSij = R

AS jj =

Att

DUTAtt (i)(j)

S

A B

R

Rc

Phas

The measurement instrument is called a network analyzer

The inputs at A, B and R are matched

Page 48: DHBK Microwaves Slides 2012

Network analyzer: basic structure

48

(1)(2)

(3)

(1)(2)

(3)

DUT

(4)

(4)

PowerSplitter

RFSource

Att. Phas

R B

A

Rc

Rc

ForwardPort-2

Port-1

Att.

Calibration process = measurement with standard loadsopen circuit, short circuit and characteristic impedance load

Reverse

Page 49: DHBK Microwaves Slides 2012

Two ports measurement

49

Network analyzer

Page 50: DHBK Microwaves Slides 2012

Measuremen

t of the

 4 S param

eters

50

Page 51: DHBK Microwaves Slides 2012

Network analyzer structure with local oscillator

51

Heterodyne technique

Page 52: DHBK Microwaves Slides 2012

Examples of network analyzers

52Rhode & Schwarz (Germany)

Anritsu (Japan)Agilent Technologies (USA)

Page 53: DHBK Microwaves Slides 2012

Microwaves

Chapter 4 – Amplification

Đại Học Bách Khoa Hà Nội / 2012-2013

Page 54: DHBK Microwaves Slides 2012

Amplification basics

54

LO

IFA

Γ = ‐1Γ’ =1

λ/4

Γ = ‐1

λ/4

Γ’ =1

(DC)(DC & AC)

Decoupling for biasing the amplifier

Amplifier (LNA) in a receiver stage

Operating point

Page 55: DHBK Microwaves Slides 2012

Amplification is based on transistors

55

RD

λ/4

λ/4

In HF

-VGS

Out HF

+VDD

C1

C2

C1

C2

RC

λ/4

λ/4

In HF

Out HF

+VCC

C1

C2

C1

C2

R1

+VCC

R1

T1

T2

J‐FET transistors BJT transistors

Page 56: DHBK Microwaves Slides 2012

Reflection coefficients on a quadripole

56

22211211 1 SΓ

ΓSSSΓL

Lin −

+=11

122122 1 SΓΓSSSΓ

S

Sout −

+=

a1 b2

ZL

ΓLΓin

(S)b1

a2Q

ΓoutΓS

ZS

eS

Page 57: DHBK Microwaves Slides 2012

Insertion gain

57

av

Li P

PG ==sourcetheatpoweravailable

loadthetopower

( )( ) 221122211

222

2111

11

SSΓΓSΓSΓ

ΓΓSG

LSLS

LSi

−−−

⎟⎠⎞⎜

⎝⎛ −⎟⎠⎞⎜

⎝⎛ −

=

22

01

1

SSav

ΓaP

−=

⎟⎠⎞⎜

⎝⎛ −=−= 22

22

22

2 1 LL ΓbabP

SinS

L ΓΓa

SΓSb

−−=

11

1 022

212

22211211 1 SΓ

ΓSSSΓL

Lin −

+=

Page 58: DHBK Microwaves Slides 2012

Conjugate matching

58

ZL

ΓmL

Q

Γms

ZS

eS C1 C2

ΓLΓs Γin Γout

The problem is to find matching networks (C1) and (C2) to be placedsimultaneously at the input and at the output and leading to a maximumvalue of the insertion gain, remembering that the output has an influence onthe input and the input has an influence on the output.

Page 59: DHBK Microwaves Slides 2012

Unilateral quadripole

59

012 =SProperty of an unilateral quadripole

222

211

2221

2

11

11

SΓSΓ

ΓSΓGG

LS

LSiui

−−

⎟⎠⎞⎜

⎝⎛ −⎟

⎠⎞⎜

⎝⎛ −

==

*22SΓΓ mLL == *

11SΓΓ mSS ==

Conjugate matching is easy:

⎟⎠⎞⎜

⎝⎛ −⎟

⎠⎞⎜

⎝⎛ −

=2

22

2212

11max,

1

1

1

1

SS

SGiu

There is no feedback between the output (Port‐2) to theinput (Port‐1)

Page 60: DHBK Microwaves Slides 2012

Unilateral practical condition

60

⎟⎠⎞⎜

⎝⎛ −⎟⎠⎞⎜

⎝⎛ −

=2

222

11

22122111

11 SS

SSSSuUnilateral figure of merit

( ) ( )22 11 u

GG

u

G iui

iu

−≤≤

+

1<<u ( ) ( )uGGuG iuiiu 2121 +≤≤−

iui GG ≈12 <<u

Examples

‐ Transistor 2N3970 at f = 750 MHz

‐ Transistor FPD4000AF at f = 3 GHz

151.011 =S 38.621 =S 061.012 =S 63.022 =S 2106.122 −=u

8.011 =S 926.121 =S 062.012 =S 488.022 =S 210342 −=u

Page 61: DHBK Microwaves Slides 2012

Designing amplifiers

61

Stability

Noise figure

Gain

Bandwidth

Trade‐off: