Development of a standard joint fixity test

39
Development of a standard joint fixity test Prof. Ir.-arch. Dirk R.W. Martens Technische Universiteit Eindhoven CIB W023 meeting Prague 2005

Transcript of Development of a standard joint fixity test

Page 1: Development of a standard joint fixity test

Development of a standard joint fixity

test

Prof. Ir.-arch. Dirk R.W. MartensTechnische Universiteit Eindhoven

CIB W023 meeting Prague 2005

Page 2: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Contents

1.introduction2.classification of wall-floor-joints

3.standards in Europe4.new concepts

5.experimental research programme

Page 3: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

1.introduction

load bearing capacity of masonry walls:

width of the wall: tlength of the wall: beffective height: heff

design value of compressive strength: fdeccentricity of in-plane load: e

Page 4: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

compressive strength of unit compressive strength of mortarfb fm

characteristic value ofcompressive strength of masonry

fk

design valuefd = fk/γM

reduction for eccentricity reduction for 2nd order effect

design value of load bearing capacity of wall

NRd = φ b t fd

Page 5: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

NRd = φ b t fd

How to determine e0 ?(first order eccentricity)

theory of non-linearelasticity

simplifiedmethods

Page 6: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Non-linear theory of elasticity

Use of non-linear M-N-κ-diagram and takinginto account the second order effect

Page 7: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Simplified method according to Annex C of EC 6 simplified frame analysis

Page 8: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Simplifiedmethodaccording toAnnex C of EC 6

( ) ( )⎥⎦⎤

⎢⎣

⎡−

⋅−

−⋅

⋅⋅⋅

+⋅⋅

+⋅⋅

+⋅⋅

⋅⋅

=1414 4

244

3

233

4

443

3

333

2

222

1

111

1

111

1 nlw

nlw

lIEn

lIEn

hIEn

hIEn

hIEn

M

41 k

−=η 2

2

222

1

111

4

444

3

333

≤⋅

+⋅

⋅+

=

hIEn

hIEn

lIEn

lIEn

kJoint fixityreductionfactor

Page 9: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

The second order effect should bedetermined independently from e0 (at mid-height of wall)

Page 10: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Problems:

- the simplified method has not been evaluated extensively by experiments

-the theory is only valid for continuousfloors: in practice other floor types are used

- there are no recommendationsconcerning the wall-floor interface

- there is no standard test method forthe determination of the joint fixityreduction factor

Page 11: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

floor type Wall-floor-interface relative bearing length

No interface

(cold joint) bearing length = t

Continuous support

- Concrete slab: two-way span

- Semi-prefabricated floor element

- Prefabricated floor element

Mortar joint

Elastic interface layer (neoprene layer, …)

0,5 t < bearing length < t

Central concrete core

Discontinuous support

- Timber floor (joists)

- Beam and pot floor

- TT-floors

- Steel deck with concrete topping Steel bar in mortar joint

bearing length < 0,5 t

2. Classification of wall-floor-joints

Page 12: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

iesFloor type:

Discontinuous support with semi-prefabricated floor element

Page 13: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Discontinuous support with spaced beamelements (beam and pot floor system)

Page 14: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Wall-floor interface: mortar layer and rebar or rubber bearing strip or central concrete core

Page 15: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Relative bearing depth

Page 16: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

3. Standards in Europe

Dutch codeBelgian codeBritish code

Norwegian codeSwiss codePolish codeEurocode

ISO/DIS 9652-1

No uniform design code !

Page 17: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

1.Eccentricity relative to bearing depth

No interaction?

Page 18: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

2. Simplified frame analysis

Joint fixity factor?

Page 19: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

3. Design charts

Assumptions?

Page 20: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies4. New concepts

Theoretical modellingJäger and Baier

MatysekSahlinTU/e

Standard test set-up for joint fixitySahlinTU/e

Page 21: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Concept Jäger and

Baier

Rotationalspring

characteristics

Page 22: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Matysekfinite element calculations: influence

of wall-end cracking is negligibleif the precompression > 0,3 MPa

Sahlinexperimentally determined joint

rotation relationship

TU/eintegrated method: wall-floor

interaction and 2nd order effect

Page 23: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Standard test set-up according

to Sahlin

Page 24: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

iesStandard test

set-up according to

TU/e

- Curvature of the floor slab is more realistic- larger curvatures can be evaluated- larger loads can be transfered to the wall

Page 25: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

5. Experimental research programme

Page 26: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

iesWhich parameters have to be

evaluated?

1. joint type2. relative wall-floor stiffness ratio3. masonry material4. floor type5. interface type6. loading ratio7. relative bearing depth

Page 27: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies1. Joint type

1.1. joint type 11.2. joint type 21.3. joint type 31.4. joint type 41.5. joint type 5

Page 28: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies2. Relative wall-floor stiffness

ratio

2.1. 0<k≤1

2.2. 1<k ≤ 2

2

2

222

1

111

4

444

3

333

≤⋅

+⋅

⋅+

=

hIEn

hIEn

lIEn

lIEn

k

Page 29: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

3. Masonry material

3.1. grouping of masonry units:1, 2 or 3

3.2. type of mortar: general purpose mortarlight weight mortarthin layer mortar

3.3. material of the unitsclay brickcalcium silicateaggregate concreteautoclaved aerated concretenatural stone

Page 30: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies4. Floor type

4.1. continuous support

4.2. discontinuous support

Page 31: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies5. Interface type

5.1. no interface5.2. mortar joint5.3. elastic interface layer5.4. other interface

Page 32: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

6. Relative normal force

6.1. 0 < νd ≤ 0,40

6.2. 0,40 < νd ≤ 0,65

6.3. 0,65 < νd ≤ 1,00

d

dd ftb

N⋅⋅

00.10.20.30.40.50.60.70.80.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

μ

12

3

Page 33: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies7. Relative bearing depth

7.1. 0 < db ≤ 0,5

7.2. 0,5 < db < 1

7.3. db = 1

Page 34: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

iesWhich experimental research has

to be done?

- full scale tests: callibration of small scale tests

- small scale tests = standardjoint fixity test

Page 35: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Test set-up full scale test

Page 36: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

measurements

Page 37: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Joint fixity tests

Page 38: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

iesjoint 1 + 2 joint 3 + 4 + 5

parameter S1 S2 S3 S4 M1 M2 M3 M4

k 0,5 x x x x x x

1.0 x x x x x x x x

1,5 x x x x x x

2.0 x x x x x x

material group 1 calcium silicate x x x x x x

thin layer mortar

group 2 perforated clay block x x x x

general purpose mortar

support hollow core floor slab x x x x x x

semi-prefabricated floor slab x x

interface cold joint x x x x

mortar joint x x x x x x

νd 0,2 x x x x x x

0,4 x x x x x x x x

0,6 x x x x x x

db 0,5 x x

1.0 x x x x x x x x

Overview of research programmes

Page 39: Development of a standard joint fixity test

TU/e

–Le

erst

oel St

eenc

onst

ruct

ies

Acknowledgements

Dutch Masonry FoundationPieter van Musschenbroek Laboratory