Determining the anomalous dimension through the eigenmodes ...

22
1 Determining the anomalous dimension through the eigenmodes of Dirac operator Anqi Cheng (University of Colorado) ref: JHEP 1307 (2013) 061 Lattice 2013 with Anna Hasenfratz, Greg Petropoulos and David Schaich

Transcript of Determining the anomalous dimension through the eigenmodes ...

Page 1: Determining the anomalous dimension through the eigenmodes ...

1

Determining the anomalous dimension through the eigenmodes of Dirac operator

Anqi Cheng (University of Colorado)

ref: JHEP 1307 (2013) 061

Lattice 2013

with Anna Hasenfratz, Greg Petropoulos and David Schaich

Page 2: Determining the anomalous dimension through the eigenmodes ...

Outline

2

 Goal/results: Determining energy-dependent mass anomalous dimension

through Dirac eigenmodes

 Method

 Applications (nHYP smeared staggered fermion): 1) SU(3) 4-flavor: QCD-like, test case 2) SU(3) 12-flavor: conformal or SB ? new developments χ

Page 3: Determining the anomalous dimension through the eigenmodes ...

3

Goal and Results

Dirac eigenmodes can predict the scale dependent mass anomalous dimension in both chirally broken and IR conformal systems

chirally broken conformal γm

µ UVFP

γm

UVFP

γ�m

µ

strong coupling

weak coupling

IRFP

Page 4: Determining the anomalous dimension through the eigenmodes ...

4

Goal and Results

Dirac eigenmodes can predict the scale dependent mass anomalous dimension in both chirally broken and conformal systems

rescaled

Page 5: Determining the anomalous dimension through the eigenmodes ...

5

Dirac eigenvalue density:

Dirac eigenmode number:

Dirac eigenvalue density and mode number

Page 6: Determining the anomalous dimension through the eigenmodes ...

Dirac eigenvalue density and mode number

In conformal system we expect :

RG invariance of implies:

anomalous dimension

energy dependent

energy

Banks-Casher relation:

In chirally broken system we know :

6

(Del Debbio and Zwicky, Giusti and Luscher)

New:

ρ(0) = π�ψ̄ψ� �= 0

γm, αλdepends on

Page 7: Determining the anomalous dimension through the eigenmodes ...

7

Scaling of eigenvalue density in IR conformal systems

IR UV

conformal

IRFP

UVFP

γ�m

1 + γm =4

α+ 1

ν(λ) ∝ λ1+α(λ)

Fit:

γm ≤ 1

γm → 0

Page 8: Determining the anomalous dimension through the eigenmodes ...

8

Scaling of eigenvalue density in chirally broken systems

IR UV

UVFP

γm → 0

ρ(0) �= 0

1 + γm =4

α+ 1

ν(λ) ∝ λ1+α(λ)

Fit:

(in limited range)

(not physical)

γm → 3α → 0

Page 9: Determining the anomalous dimension through the eigenmodes ...

9

QCD like!

weaker coupling

stronger coupling

Scaling of mode number for Nf=4

βF ∼ 12/g2

JHEP 1307 (2013) 061

Page 10: Determining the anomalous dimension through the eigenmodes ...

10

QCD like

Rescaled to a common lattice spacing

WORKS!

Scaling of mode number for Nf=4

JHEP 1307 (2013) 061

Match to 1-loop pertb. theory at λ · a7.4 = 0.8

Page 11: Determining the anomalous dimension through the eigenmodes ...

Published New

Measurement Method Direct (eigenvalue) Stochastic (mode number)

Fermion mass <= 0.0025 0.0

Boundary Con. (spatial) Periodic Anti-periodic

Volumes

New developments for Nf=12 system

JHEP New

L. Giusti, M. Luscher, A. Patella, et al.

L4, L ≤ 48L3 × 2L,L ≤ 32

11

stronger coupling

weaker coupling

stronger coupling

weaker coupling

Page 12: Determining the anomalous dimension through the eigenmodes ...

12

Two methods: are consistent Direct measurement Stochastic estimator

Test 1: Direct vs. stochastic meas.

Page 13: Determining the anomalous dimension through the eigenmodes ...

13

Finite volumes effects go away as lambda increases:

Test 2: Finite volume effects

Page 14: Determining the anomalous dimension through the eigenmodes ...

14

Test 3: B.C. effects , m=0.0025, periodic b.c. , m=0.0, anti-periodic b.c 2 ensembles: are consistent

244243 × 48

No chiral condensate for these ensembles

Page 15: Determining the anomalous dimension through the eigenmodes ...

15

Test 3: Finite mass effects

Finite mass breaks chiral symmetry

Finite mass effects disappear above

“Backward flow”

λ ≈ 0.3

3 ensembles: are consistent , m=0.0 (chirally symmetric)

, m=0.02 (chirally broken) , m=0.025 (chirally broken)

324

323 × 64323 × 64

Page 16: Determining the anomalous dimension through the eigenmodes ...

All finite volume, mass, b.c. effects only affect small lambda transient

16

Again: SU(3) 12-flavor results

IRFP with

Investigating ranges of couplings & energy scales required Extrapolation to IR limit required

γ�m ∼ 0.2

Page 17: Determining the anomalous dimension through the eigenmodes ...

Conclusions

17

 Goal/results:

 Applications: 1) SU(3) 4-flavor system: QCD-like 2) SU(3) 12-flavor system: consistent IRFP with

 Unique probe to study systems from IR to UV

 Universal and applicable to any lattice model of interest, including both conformal and chirally broken systems.

γm(λ) ⇐= ν(λ)

Page 18: Determining the anomalous dimension through the eigenmodes ...

18

Thank you! Funding and computing resources

Page 19: Determining the anomalous dimension through the eigenmodes ...

4 flavor: QCD like

19

non-zero chiral condensate: shoots up: γm

Page 20: Determining the anomalous dimension through the eigenmodes ...

Old vs. New results

20

stronger coupling

weaker coupling

New results have better control over finite volume effects

Page 21: Determining the anomalous dimension through the eigenmodes ...

21

Scaling of mode number for Nf=16

known IR conformal:

Page 22: Determining the anomalous dimension through the eigenmodes ...

"walking" chirally-broken or strongly-coupled IR conformal ?

sensitive to gauge coupling

large over large scales

weaker coupling

stronger coupling

little dependence on

Scaling of mode number for Nf=8

22