Design of a Superconducting Quantum Computer: Surface Code...

23
John Martinis UC Santa Barbara Design of a Superconducting Quantum Computer: Surface Code & Fidelity 1. Why surface code design? 2. Surface code review 3. Cell design methodology 4. c matrix 5. Design comments

Transcript of Design of a Superconducting Quantum Computer: Surface Code...

Page 1: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

John Martinis

UC Santa Barbara

Design of a Superconducting

Quantum Computer:

Surface Code & Fidelity

1. Why surface code design?

2. Surface code review

3. Cell design methodology

4. c matrix

5. Design comments

Page 2: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Superconducting Qubits and Surface Code

3D transmons:

• T1,T2 ~ 60 ms

• tgate1 = 15 ns:

fidelity = 99.8%

• tgate2 = 200 ns:

fidelity = 99%

• Pmeas = 99.4%;

1000‟s meas./T1

• Scalable?

tgate ~ 25ns

tth ~ 2.5us

x100

quIC‟s, UCSB strategy:

• Interconnectivity

• Theory: tCZ = 25 ns,

intrinsic fidelity = 99.99%

• UCSB Xmon: T1 ~ 42 ms

Page 3: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Xmon

Bus

Readout

Multiplexed Measurement

Check Resonators

Broken “design rules”:• Transmon outside of

resonator• Direct mwave drive• Single ended:

galvanically connected(SQUID with high M)

(No IDC, 3um gap)(C not double-evap.)

Cbus

Creadout

Cmw

Flux bias

junctions (SQUID)

Ctransmon

UCSBXmons

200μm

Page 4: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

J F M A M J J A S O N D J

1

10

20

50

T1 (

ms)

1.6 ms„Xmon‟

design

dispersive RO,

simple fab

MBE Al wider

CSQ

2012

CSQ

2013

3.4 ms

9.6 ms

18 ms

2012 2013

42 ms

12 msimproved

mutual

Timeline of T1 coherence

IDC transmon

phase qubit RO

Xmon yield: 26/26

Qubit freq. to 100 MHz

For next run, expect:

70 ms best, 40 ms avg.

Page 5: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Phase of single-shot time traces

time [us]

ph

ase

[rad

]

Quantum jumps

Resonator

Xmon qubit, |0> or |1>

input signal dispersed signalParameter Value

g/2p 30 MHz

K 1/500 ns

Δ/2p 1 GHz

<n> 160

•Measurement time: Tmeas = 800 ns•High separation gives 100% intrinsic fidelity•Errors from T1 only: Tmeas/T1 = 0.05•Surface code: k=1/50 ns possible

UCSB single shot readout with in-house paramp

Page 6: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

X

X

X

Z

Z

Z

Z

ZaZbZcZd

Measurement Symbol Physical Logic Sequence

X

X

X

X

XaXbXcXd

H H

I I

2 3 4 5 6 7 8

a

b c

d

Z

Z

Z

X

X

X

X

Z

Z

Z

Z

+-

+-

X

X

X

Z Z

Z

Zabcd =

Xabcd =

|g

repeat

+1: |yz+

-1: |yz-

+1: |yx+

-1: |yx-

|g

1

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X

X

X

X

X

X

X

X

X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ZX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

a

b

c

d

a

b c

d

a

b

c

d

Surface Code Hardware

data qubits

measure qubits

4-bit parity

4-phase parity

Page 7: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

X

X

X

Z

Z

Z

X

X

X

X

Z

Z

Z

Z

X

X

X

Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X

X

X

X

X

X

X

X

X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ZX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Stabilized State and Identifying Qubit Errors

E E

E

E

E

All measurements X and Z commute:

Measurement outcomes unchanging

When errors:

Data qubit errors – pairs in space

Measure errors – pairs in time

E

E

Page 8: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

X

X

X

Z

Z

Z

X

X

X

X

Z

Z

Z

Z

X

X

X

Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X

X

X

X

X

X

X

X

X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

ZX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Stabilized State and Identifying Qubit Errors

E E

E

E

E

When large density -

Backing out errors not unique

E

EE

E

E

E

E

Page 9: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Error probability p

repeat

H H|g +-p

Model: total error p each step & qubit

Logical Error Probability

10-4

10-3

10-2

10-5

10-4

10-3

10-2

10-1

100

Error probability p

Z

Z

Z

Z

E

E

EZ

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

E

E

E EE

Simulation:de

2

3

4

5

ed

thL ppp / 05.0

01.0thp

measured error chain:

computed error of data qubits:

ed

ee

L pdd

ddp )8(

!)!1(

!

-

Simple statistics:

3)8(123

345pPL

E

logical error

improves with size

3p

2p

Lp

1: p/3 for X,Y, Z

2: p/15 for XX,

YY, IX, ZI …

ppppp

pp

pppp

pppp

pppp

pppp

p

p

p

p

p p

p

p

pp

p

p

Page 10: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

The Problem: Characterizing Errors

Quantum

Process Tomography Pauli Gate Errors Randomized Benchmark

Pauli error after every gate

One & two qubit errors

Need 3 to 15 probabilities

How to measure?

Scalable

One average fidelity

Overly simple

Complex

Not scalable

Sensitive to calibration

c matrix is overly complex

Page 11: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Designing for the Surface Code

1/f10tgate tcycle terr-detect tlogic

qubit & gate physics measure classical logic

“clock”x8 x30

surface code design:

quantum physics prob.‟s

pX, pY, pZ

error ident.

PL

p‟s are diagonal matrix elements of

computed or measured QPT

measure(Clifford)

Page 12: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Theory Example: T1,T2 errors

I, X

Y, Z=

pX, pY, pZ

3 possible

probability errors:

TTT

1

2

11

12

+

-

---

---

+

+

1

1

1

1

11

/

11

)/(2/*

01

)/(2/

01

/

111TtTtTt

TtTtTt

eee

eee

ZZpYYpXXp

ppp

ZYX

ZYX

+++

---

)1(

+

1

1

2

1

4

T

tp

T

tpp

step

Z

step

YX

is for correlated

phase errors0

tstep

Page 13: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Experiment Example: cerr of iswap1/2 gate

= ide

al

I, X

Y, Z

I, X

Y, Z

pXI, pYI, pZI

pIX, pIY, pIZ

pXX, pXY, pXZ

pYX, pYY, pYZ

pZX, pZY, pZZ

15 possible

probability errors:

cmeas = c+ideal cerr cideal

Recerr

Simple: Fidelity = cII,II

Modeling: Pauli errors = diagonal

Page 14: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Bialczak et al.

long arrows: pure dephasingshort arrows: energy relax.

S=20 MHzT1=90 ns

T2=60 ns

Correlated (k=0.5)

pure dephasing

arrows: correlation

k=0.5T=90 ns

Actual experiment(modified Pauli basis)

puredephasing

dephasingcorrelation(very small)

T extracted from QPT is closeto independently measured value

Kofman & Korotkov, arXiv:0903.0671

Local T1 & T2

energyrelaxation

Using cerr Matrix to Test for Errors

Page 15: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Designing for the Surface Code

1/f10tgate tcycle terr-detect tlogic

qubit & gate physics measure classical logic

“clock”x8 x30

surface code design:

quantum physics prob.‟s

pX, pY, pZ

error ident.

PL

P‟s are diagonal matrix elements of

computed or measured QPT

full model:

measure

QPT of all gates

Perr = pXXXXX…

error ident.

PL

prob.‟s

incoherent avg.

(twirling approx.)

(Clifford)

perr = pX1 + pX1Y2 + … (order 10-3)

+ a px1px2 + … (order 10-6)

need c to compute interferences, <a>=1

cerr expansion:

Page 16: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Surface Code Output

1/f10tgate tcycle terr-detect tlogic

measure

“clock”x8 x30

error ident. errors

length of error chain

err

or

pro

babili

ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151510

-15

10-10

10-5

100

(1) Statistics of errors

indicates where and

type of errors

pX, pXY, …

How identify

correlated errors? PL

d/2

(2) Higher probability

from correlated errors

Page 17: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Example: CZ gateNatural, fast, easy to characterize

-

1

1

1

1

CZ

00 01 10 11

00

01

10

11

Do not care about phases

of single and 2-qubit errors:

Just measure (small) prob‟s

to put in SC errors, e.g.

pIX, pYI, pXY, pYY …

Measure accurately phases &

coherences of diagonal elements

For accuracy & get around single qubit fidelity errors,

is it possible to measure reduced process tomography?

(Still do full QPT to ensure huge error not obscured)

Page 18: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Architecture Design: Surface Code Cells

1) Figure of merit: size ~ tcycle (tcycle/tcoh) fast is important

Page 19: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Quantum Hardware: Shor Algorithm

Size ~ (p/pth) tcycle

10ns

100ns

1d10m1s

1us

10us

100d20h2m

200M20B20T

physical qubitsgate

cycle100us

1ms

30y70d3h

run time

~ constant

Limited by modular exponentiation

Need ~40N3 Toffoli (qu-AND) gates

2048 bit number, for 0.1 of threshold:

2048 factoring size N

x3600 logical overhead

x30 A states for Toffoli

220M physical qubits (1day)

Interesting example – quantum memory :

100x coherence time, 10x cycle time

Relative size = 1

Error detection: once below threshold, want to extract information quickly

serial

parallel

algor. A gener.

15M37M31B

~ tcycle / tcoh2

Page 20: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Architecture Design: Surface Code Cells

1) Figure of merit: size ~ tcycle (tcycle/tcoh) fast is important

2) Global optimization: data qubit with NO decoherence, pth =99% → 97%

3) Performance does not add trivially: 1 qubit exp. + 2 qubit exp. NOT scalable

Need interconnectivity

4) Quantum bus:

The quantum bus is

the smart car

5) Use ideas from the

RezQu architecture

Page 21: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Conclusions

1) Compute cerr

2) Need error probabilities, diagonal elements of cerr

3) Full cerr matrix not very useful; maybe for diagnostics

4) Are there alternative forms to quantify useful fidelity

based on direct measure of error probabilities?

5) Ready to test good qubits

Page 22: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

Tsuyoshi Yamamoto

Ted White

Andrew Cleland

Aaron O‟Connell

Matthew Neeley

Peter O‟Malley

James Wenner

Jian Zhang

Michael Lenander

Erik Lucero

Martin Weides

Matteo Mariantoni

Haohua Wang

Yi Yin

Radek Bialczak

John Martinis

Julian Kelley

(Daniel Sank)

(Yu Chen) (Josh Mutus) (Shunobu Ohya) (Andrew Dunsworth)

(Rami Barends) (Evan Jeffrey) (Jimmy Chen) (Ben Chiaro)

(Charles Neill) (Anthony Megrant)

Page 23: Design of a Superconducting Quantum Computer: Surface Code …online.kitp.ucsb.edu/online/qcontrol-c13/martinis/pdf/... · 2013. 2. 26. · John Martinis UC Santa Barbara Design of

10-2

10-1

100

101

102

103

104

105

normalized physical error p/pth

num

ber

of

qubits

nq

PL = 10-20

10-10

10-5 5

10

20

40

d=

2

1

/ 05.0+

d

thL ppp

Size of Logical Qubits

p=99.9%, nq ~ 3000

p=99.99%, nq ~ 600

99.6%

physical qubits per logical qubit