Dasar Perancangan Mekanikal Bab 1

36
1 Jos Istiyanto, ST. MT. Departemen Teknik Mesin Fakultas Teknik– Universitas Indonesia DTM FTUI Mechanical Design Part I. Fundamental Mechanical Design Part I. Fundamental σ y σ x σ z τ yz τ yx τ zx τ zy τ xy 2 Departemen Teknik Mesin Fakultas Teknik– Universitas Indonesia DTM FTUI Introduction >>

description

Bab 1 DPM

Transcript of Dasar Perancangan Mekanikal Bab 1

  • 1Jos Istiyanto, ST. MT.

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Mechanical DesignPart I. Fundamental

    Mechanical DesignPart I. Fundamental

    y

    xz

    yzyx

    zxzy

    xy

    2Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Introduction>>

  • 23Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Definition

    What is Design?Design is the transformation of concepts and ideas into useful machinery.A machine is a combination of mechanism and other component that tranforms, transmits, or uses energy, load, or motion for specific purpose. (hamrock)Fundamental decisions regarding loading, kinematics and the choice of materials must be made during the design of a machine.

    4Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Definition

    What is Mechanics?Mechanics is the branch of physical science that deals with the response of bodies to the action of forces.

    Three areas of mechanics:1> The mechanics of rigid bodies

    - statics (equilibrium of bodies)- dynamics (accelerated motion of bodies)

    2> The mechanics of deformable bodies (Mechanics of Material)

    3> The mechanics of fluids

  • 35Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI The Mechanics of Rigid Bodies

    What is a rigid-body?A rigid-body is a solid which does not deform when force are applied (idealisation).

    Statics is concern with bodies that are acted on balanced force and hence are at rest or have uniform motions. equilibrium bodies

    Dynamics is concern with accelerated motion of bodies

    6Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Mechanics of deformable bodies

    Is the branch of mechanics that deals with internal force distribution and the deformations developed in actual engineering structure and machine components when they are subjected to systems of force.

    Mechanics of MaterialsStrength of Material

  • 47Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Fluid Mechanics

    Fluid mechanics is the branch of mechanics that deals with liquids and gases at rest or in motion.

    Fluid - Compressible- Incompressible

    8Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Example of Application

    ..

  • 59Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force System>>

    10Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Force System

    Forces and Their Characteristics

    The characteristics of a force are as follows:

    Its magnitudeThe amount or size of the force

    Its direction (orientation)

    Orientation of the line segment used to represent the forceIts point of application

    The point of contact between the two bodies. A straight line extending through the point of application in the direction of the force is called its line of action.

  • 611Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Principle of Transmissibility

    The external effect of a force on a rigid body is the same for all points of application of the force along its line of action.

    PUSH PULL

    Rigid Ring : Deformable Ring :

    12Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Classification of Forces

    With respect to the area over which they act :

    2. Concentrated force

    1. Distributed force

  • 713Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force system

    a. Concurrent forcesThe action lines of all forces intersect at common point

    b. Coplanar forcesAll forces lie in the same plane

    F1F2

    F3

    Any number of forces treated as a group constitute a force system.

    F1F2F3

    14Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force systemc. Parallel forcesThe action lines of the forces are parallel, but the orientation of the forces do not have to be same.

    d. CollinearThe forces of a system have a common line of action.

    F

    F

  • 815Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force system

    Graphical method

    The parallelogram law

    F2R

    F1O

    F2

    F1

    F2

    F1O

    RR

    The Triangle law

    16Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force system

    Basic of analytical method

    The cosine lawc2 = a2 + b2 - 2 ab cos

    The sine law

    a

    b

    c

    == sinc

    sinb

    sina

  • 917Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force system

    Analytical method

    Direction of Resultant

    F1

    F2

    R

    Magnitude of Resultant:

    ++= cosFF2FFR 212221 RsinFsin 2 =

    = RsinFsin 21

    18Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Force systemExample :

    F1=800 N

    F2=500 N

    450

    300

    Determine the magnitude of the resultant R and the angle between the horisontal axis and the line of action of Resultant

    5.1206R45cos500.800.2500800R

    cosFF2FFR022

    212

    22

    1

    =++=

    ++=

    0

    o121

    04.17

    5.120645sin500sin

    RsinFsin

    =

    =

    =

    = + 17.04o = 47.04oF1=800 N

    F2=500 N

    450

    300

    R

  • 10

    19Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Moment System>>

    20Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment System

    Moment and their characteristics

    The moment of a force about a point or axis is a measure of the tendency of the force to rotate a body about that point or axis.

    A moment has both magnitude and a direction vector quantityThe magnitude of moment M as defined as the product of the magnitude of a force and the perpendicular distance d from the line of action of the force to the axis.

    MO = MO= FdPoint O = the moment center.

  • 11

    21Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Principle of Moment : Varignon's Theorem

    The moment M of the resultant R of a system of force with respect to any axis or point is equal to the vector sum of the moment of the individual forces of the system with respect to the same axis or point.

    R = F1 + F2 + + FnMO = RdR = F1d1 + F2d2 + + Fndn

    22Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Application of Varignon's theorem

    MR = R.d = R(h cos )MA = A.a = A(h cos )MB = B.b = B(h cos )

    R cos = A cos + B cos

    MR = MA + MB

    h

    AR

    B cos A cos

    B

    b

    d

    a

    Ax

    y

    O

  • 12

    23Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Vector Representation of a moment

    MO = r x FMO = r x F = rFsin e(0 180o)

    rd F

    d Fr1

    23 1

    r2

    r3

    r1sin 1 = r2sin 2 = r3sin 3 = d

    24Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Position vector

    rA = xA i + yA j + zA krB = xB i + yB j + zB krA = rB + rA/B

    rA/B = rA - rB

    rA/BrA

    z

    yx

    F

    rB

  • 13

    25Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment of a force about a point

    If force F and r are expressed in Cartesian vector form: F = Fx i + Fy j + Fz kr = rx i + ry j + rz k

    So the moment Mo about the origin of coordinate O : MO = r x F

    = (rx i + ry j + rz k) x (Fx i + Fy j + Fz k)= (ry Fz - rz Fy )i + (rz Fx - rx Fz )j + (rx Fy - ry Fx ) k = Mx i + My j + Mz k

    26Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment of a force about a point

    >>

    yr

    z

    yx

    F

    MO

    x

    z

    O

    The moment Mo about the origin of coordinate O can also be expressed in determinant form as :

    MO = r x F = What is about two-dimensional case ?zFyFxFzryrxr

    kji

    222 zMyMxM ++=oM

  • 14

    27Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment of a force about a point

    Alternatively, Mo can be written as MO = MO e

    Where e = cos x i + cos y j + cos z k

    oxxcos M

    M=oy

    ycos MM=

    ozzcos M

    M=

    28Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment of a force about a line (axis)

    MOJ= M = (MO . en) en= [(r x F) . en] en= MOJ en

    zFyFxFzryrxr

    kji

    J

    r

    z

    yx

    F

    MO

    O

    en

    MOJ= MO . en = (r x F) . en = . en

  • 15

    29Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moment of a force about a line (axis)

    Or alternatively as :MOJ= MO . en = (r x F) . en =

    zFyFxFzryrxrnzenyenxe

    J

    r

    z

    yx

    F

    MO

    O

    en

    30Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI COUPLES

    A couple is a system force whose resultant force is zero but whose resultant moment about a point is not zero

    MA = F1d = F2dMA = rA/B x F1

    = F1d en

    The characteristics of couples1. The magnitude2. The sense (direction of rotation) 3. The orientation (axis about which rotation is induced)

    en

    rA

    z

    yx

    F1F2

    n

    d

  • 16

    31Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI COUPLES

    Several transformation of a couple can be made without changing any of external effect of the couple on the body

    dF

    F

    dF F

    2d0.5F 0.5F

    dF F

    M = Fd

    32Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI COUPLES

    Resolution of a force into a force and a couple

    F

    O

    p

    rd

    F

    FF O

    p

    FO

    p

    M = Fd

  • 17

    33Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Moment systemExample :

    A parcel is lifted by a fork lift truck. Determine the moment of the weight with respect to the point A at the two border positions!

    34Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Centroid & Center of Gravity>>

  • 18

    35Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Center of Gravity

    The center of gravity G is a point which locates the resultant weight of a system of particles.

    The weights of the particles is considered to be a parallel force system. The system of weights can be replaced by a single weight acting tat the Center of Gravity.

    36Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    =

    =n

    1iiR WWTotal Weight

    nn332211RR Wx~Wx~Wx~Wx~Wx K+++=x location:

    nn332211RR Wy~Wy~Wy~Wy~Wy K+++=y location:

    nn332211RR Wz~Wz~Wz~Wz~Wz K+++=z location:

  • 19

    37Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    =

    =

    =

    =

    =

    = === n1i

    i

    i

    n

    1ii

    n

    1ii

    i

    n

    1ii

    n

    1ii

    i

    n

    1ii

    W

    Wz~

    zW

    Wy~

    yW

    Wx~

    x

    particleitheofweightWparticleitheofscoordinatez~,y~,x~

    gravityofcentertheofscoordinatez,y,x

    thi

    thiii

    38Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    =

    =

    =

    =

    =

    = === n1i

    i

    i

    n

    1ii

    n

    1ii

    i

    n

    1ii

    n

    1ii

    i

    n

    1ii

    m

    mz~

    zm

    my~

    ym

    mx~

    x

    particleitheofmassWparticleitheofscoordinatez~,y~,x~

    massofcentertheofscoordinatez,y,x

    thi

    thiii

    Center of Mass

  • 20

    39Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Centroid for a Body

    Consider a body to be a system of an infinite number of particles

    40Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    =

    =

    =

    =

    =

    = ===1i

    i

    i1i

    i

    1ii

    i1i

    i

    1ii

    i1i

    i

    W

    Wz~

    zW

    Wy~

    yW

    Wx~

    x

    particleitheofweightWparticleitheofscoordinatez~,y~,x~

    gravityofcentertheofscoordinatez,y,x

    thi

    thiii

  • 21

    41Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    ===

    dW

    dWz~z

    dW

    dWy~y

    dW

    dWx~x

    ( )VdWd

    bodytheofweightspecific

    =

    volume unit per The weight

    =

    =

    =V

    V

    V

    V

    V

    V

    dV

    dVz~

    zdV

    dVy~

    ydV

    dVx~

    x

    42Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    CENTROID

    The centroid C is a point which defines the geometric center of an object. Its location can be determined by formulas similar to those used for center of gravity or center of mass.

  • 22

    43Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    ===V

    V

    V

    V

    V

    V

    dV

    dVz~

    zdV

    dVy~

    ydV

    dVx~

    x

    Centroid of a Volume

    For a homogeneous body, the center of gravity Gcoincides with the centroid C of the volume V of the body; the coordinates of C are defined by the relations

    44Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Centroid of an Area

    ===A

    A

    A

    A

    A

    A

    dA

    dAz~

    zdA

    dAy~

    ydA

    dAx~

    x

  • 23

    45Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Centroid of an Area

    ==A

    A

    A

    A

    dA

    dAy~

    ydA

    dAx~

    x

    For two dimensional body,

    These integrals are referred to as the first moments of area A with respect to the y and x axes, and are denoted by Qy and Qx , respectively

    46Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    ===L

    L

    L

    L

    L

    L

    dL

    dLz~

    zdL

    dLy~

    ydL

    dLx~

    x

    Centroid of a Line

  • 24

    47Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Composite Bodies

    If a body is made up of several simpler bodies then a special technique can be used.Procedure Divide body into several subparts. If the body has a hole or cutout, treat that as negative

    area. Centroid will lie on line of symmetry. Create Table and calculate centroid.

    y

    x

    20 mm 30 mm

    36 mm

    24 mm

    48Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    AreaBody xc yc xc A yc A

  • 25

    49Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    theorems of Pappus-Guldinus

    CL

    x

    2y

    y

    The theorems of Pappus-Guldinusrelate the determination of the area of a surface of revolution or the volume of a body of revolution to the determination of the centroid of the generating curve or area. The area A of the surface generated by rotating a curve of length L about a fixed axis is

    A = 2yLwhere y represents the distance from the centroid C of the curve to the fixed axis.

    50Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    theorems of Pappus-Guldinus

    x2y

    yA

    C

    The volume V of the body generated by rotating an area Aabout a fixed axis is

    V = 2yAwhere y represents the distance from the centroid C of the area to the fixed axis.

  • 26

    51Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Distributed load

    x

    w

    O B

    xdx

    L

    w

    dW

    x

    w

    O B

    x

    L

    W

    W = A

    P

    C

    The concept of centroid of an area can also be used to solveproblems other than those dealing with the weight of flat plates.For example, to determine the reactions at the supports of abeam, we replace a distributed load w by a concentrated load W equal in magnitude to the area A under the load curve and passing through the centroid C of that area.

    52Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    x

    y

    z

    P(x,y,z)

    xel

    yel

    zel

    z xel = xyel = yzel = z

    12

    dV = z dx dy

    dydx

    When a volume is bounded by analyticalsurfaces, the coordinatesof its centroid can bedetermined by integration.To avoid the computationof triple integrals, we canuse elements of volumein the shape of thinfilaments (as shown).

  • 27

    53Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Denoting by xel , yel , and zel the coordinates of the centroid ofthe element dV, we write

    xV = xel dV yV = yel dV zV = zel dVIf the volume possesses two planes of symmetry, its centroid C is located on their line of intersection.

    54Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    dx

    xz

    y xelxel = x

    dV = r 2 dx

    If the volume possesses two planes of symmetry, its centroid Cis located on their line of intersection. Choosing the x axis to lie along that line and dividing the volume into thin slabsparallel to the xz plane, the centroid C can be determined from

    xV = xel dVFor a body of revolution, these slabs are circular.

  • 28

    55Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    1 cm

    1 cm

    2 cm 3 cm

    3 cm

    Locate Centroid of the Composite Area

    Problem

    56Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    1 cm

    1 cm

    2 cm 3 cm

    3 cm

    123

  • 29

    57Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Segment A (cm2) x y xA yA1 4.5 1 1 4.5 4.52 6 -1 1.5 -6 93 1 -2.5 0.5 -2.5 0.5

    A = 11.5 xA = -4 xA = 14

    cm22.15.11

    14AAy~

    y

    cm348.05.114

    AAx~

    x

    ===

    ===

    58Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    1 cm

    1 cm 2 cm 3 cm

    3 cm

    12

    3

  • 30

    59Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Segment A (cm2) x y xA yA1 4.5 1 1 4.5 4.52 9 -1.5 1.5 -13.5 13.53 -2.5 -2.5 2 5 -4

    A = 11.5 xA = -4 xA = 14

    cm22.15.11

    14AAy~

    y

    cm348.05.114

    AAx~

    x

    ===

    ===

    60Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    y

    x

    20 mm 30 mm

    Problem

    36 mm

    24 mm

    Locate the centroid of the planearea shown.

  • 31

    61Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Moment of inertia>>

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moments of InertiaDefinition of Moments of Inertia for Areas: Used in formulas for Mechanics of Materials, Fluid Mechanics, Structural Mechanics.

    Consider area A in x-y plane.By definition:

    These expressions are referred to as Moments of Inertia about the x and y axes. They may also be called second-moments of inertia.

    dI = y dA and dI = x dAWe integrate to obtainI and I for area A.

    I = y dA and I = x dA

    X2

    Y2

    X Y

    X2

    Y2 X

    X

    Y

    Yr

    dA

    A

  • 32

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Definition of Moments of Inertia for Areas (Contd)

    The second moment about the origin (or z-axis) is defined as the polar moment of inertia.

    dJ = r dA ; J = I + I since r = x + yI , I and J > 0 , Units are ft in , m and mm

    O2

    O X Y2 2 2

    X Y O4 4 4 4, .

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Parallel-Axis Theorem for Area

    If MOI is known about the x-axis or y-axis through centroid (C) of area, it is possible to determine MOI about a parallel x-axis or y-axis using the parallel axis theorem.

    dI = (y + y) dA , I = (y ) dA + 2y y dA + (y dA

    But y dA = 0, so that:

    I = I A y ; I = I A x ; and J = J A ( x + y ) .

    X2

    X2

    X X'2

    Y Y'2

    O 02 2

    + + +

    ) 2

    Y

    X

    X

    Y

    Y

    X

    r

    C dA

  • 33

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Radius of Gyration

    Radius of Gyration has units of length.Often used in Column design.

    k =IA

    , k =IA

    , k =IAX

    XY

    YZ

    Z

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moments of Inertia for Area by Integration

    If area defined by mathematical function, integration gives MOI

    If differential area has differential size in two directions, double integration is used.

    If differential element has differential size in only one direction, single integration is used.

    X

    X

    Y

    Y

    dX

  • 34

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moments of Inertia for Area by Integration

    Procedure for AnalysisIf single integration is used to obtain MOI, specify dA with

    finite length and differential width.Case I - Length of element is parallel to axis, so all parts

    of element lie at at same distance x from axis-y. Case II - Length of element oriented perpendicular to axis,

    so moment arm varies along element. Determine dI of element.

    X

    X

    Y

    Y

    dX

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI

    Moments of Inertia for Composite Areas

    Composite area consists of group of connected simple shapes.

    If MOI of parts about common axis can be determined, then MOI of the composite is algebraic sum of parts.

    I = I , I = I , I = IX Xi

    Yi

    Yi

    Zi

    Zi

    i

  • 35

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Moments of Inertia for Composite Areas

    (Contd)Procedure for AnalysisComposite Area Moment of Inertia about reference axis.1. Composite Parts. Divide area into composite parts.

    Indicate perpendicular distance from centroid of parts to reference axis.

    2. Apply Parallel Axis Theorem. Determine MOI of each part about centroidal axis parallel to reference axis. Use parallel axis theorem to calculate MOI of parts about reference axis.

    3. Sum MOI of parts. Calculate MOI of component by summing MOI of parts. If any part is a hole, subtract the MOI of hole in making summation.

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Composite Area Moment of Inertia

    EXAMPLEGiven: Composite Area about x-axis as shown.Find: Moment of Inertia of area about x-axis.

    100mm

    75mm

    75mm

    25mm

    X X

  • 36

    Departemen Teknik MesinFakultas Teknik Universitas Indonesia

    DTM FTUI Composite Area Moment of Inertia

    Solution

    100mm

    75mm

    75mm

    25mm

    Approach Ay

    Part mm mm I

    ctCircle

    a bd r

    X

    : )

    ) ( ) ( )

    Re .

    )( ) ( ) ( )

    I = (I

    A(mm y(mm) Ay I Ay

    15,000 75 84.38E6 28.12E6 112.50E6- 1,963 75 - 11.04E6 - 0.31E6 - 11.35E6

    I = 101.15E6(mm I (b) I

    X X

    2 2X

    2

    a

    b

    X2

    X X

    +

    +

    = =

    2

    4 4

    3 412 4

    X X