D-Σ Digital Control. Wu.pdf · Elegant Power Electronics Applied Research Laboratory (EPEARL) 10...

72
Elegant Power Electronics Applied Research Laboratory (EPEARL) D-Σ Digital Control Nov. 2, 2015 Tsai-Fu Wu National Tsing Hua University, Taiwan Elegant Power Electronics Applied Research Laboratory (EPEARL)

Transcript of D-Σ Digital Control. Wu.pdf · Elegant Power Electronics Applied Research Laboratory (EPEARL) 10...

Elegant Power Electronics Applied Research Laboratory (EPEARL)

D-Σ Digital Control

Nov. 2, 2015

Tsai-Fu Wu

National Tsing Hua University, Taiwan

Elegant Power Electronics Applied Research Laboratory

(EPEARL)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 2

Outline I. Review of Conventional Approaches

1) abc-to-dq Frame Transformation

2) Predictive Control

3) Deadbeat Control

4) Fuzzy Control

II. Operating Principle of D-Σ Digital Control 1) Division (D)

2) Summation (Σ)

3) D-Σ Transformation

Elegant Power Electronics Applied Research Laboratory (EPEARL) 3

Outline III. Features of D-Σ Digital Control

1) Direct digital control - link error to control

directly (no need of abc-dq frame transformation)

2) Current source – achieve high stability

margin

3) GCGP=I – cancel parameter variation effects

4) Wide bandwidth – up to switching frequency

IV. Application Examples 1) 3Φ3W, 3Φ4W inverters

2) 1Φ2W, 1Φ3W inverters

3) DC/DC converters

4) Modular Multi-level Converters (MMC)

V. Conclusions

Elegant Power Electronics Applied Research Laboratory (EPEARL) 4

I. Review of Conventional Approaches 1) abc-to-dq frame transformation

c

b

a

q

d

x

x

x

x

x

3

2sin

3

2sinsin

3

2cos

3

2coscos

•State Equations

TN

SN

RN

TN

SN

RN

T

S

R

v

v

v

Lu

u

u

Li

i

i

dt

d 11

oq

od

q

d

q

d

q

d

v

v

L

L

u

u

L

L

i

i

i

i

dt

d

/10

0/1

/10

0/1

0

0

LLLL TSR

A. Converter Configuration

Elegant Power Electronics Applied Research Laboratory (EPEARL) 5

• SVPWM-based inverter system with abc-dq frame transformation

• Synthesizing a desired voltage vector

q

d

oq

od

q

d

q

d

i

iL

v

v

i

i

dt

dL

u

u

0

0

oq

od

q

d

q

d

q

d

v

v

L

L

u

u

L

L

i

i

i

i

dt

d

/10

0/1

/10

0/1

0

0

Elegant Power Electronics Applied Research Laboratory (EPEARL) 6

id*

Σ

Σiq*

Voltage Vector Controller

id,e

iq,edq → abc

vd

vqSVPWM

3-PhaseInverter

θ

PWM

VDC

d,q ← a,b,cid

iq

iaib

ic

d,q ← a,b,cvgd

vgq

vaNvbN

vcN

L Lg Girda

b

c

Grid Angle θ

• Block diagram of SVPWM-based inverter systems

PI, predictive, fuzzy,

hysteresis, etc.

Inductance variation

Grid harmonics

Limitations:

Voltage Predictor

TN

SN

RN

T

S

R

S

S

R

v

v

v

Lu

u

u

Li

i

i

dt

d 11

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26 31 36

Inductance L(uH)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 7

2) Predictive Control A. Define a quality function

B. Build a model of the converter and its possible

switching states

C. Build a model of the load for prediction

• Predictive current control block diagram [1] [1] Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U., “Predictive Current Control of a Voltage Source Inverter,“ IEEE

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol. 54, No. 1, Feb 2007.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 8

3) Deadbeat Control A. Develop a deadbeat tuning algorithm for control signals

according to converter parameters

B. Determine steps for achieving zero steady-state error

Iref

if

GC

d iL

H

△iΣ GP Σ

Z-1

ie

Elegant Power Electronics Applied Research Laboratory (EPEARL) 9

4) Fuzzy Control A. Fuzzification

B. Inference

C. Defuzzification

Iref

if

Fuzzification

dPWM

Power

Stage

iL

H

e(n)

e(n)

e(n-1)

ė(n)

Inference Defuzzification

Σ

Σ

Elegant Power Electronics Applied Research Laboratory (EPEARL) 10

II. Operational Principles of D-Σ Digital Control

1) No need of abc-dq frame transformation, the D-Σ digital

control determining control laws directly.

2) Unlike predictive control, the D-Σ digital control using all of the

information known a priori and no need of quality function.

3) Similar to deadbeat control, the D-Σ digital control determining

control law directly without frame transformation.

4) Unlike deadbeat control, the D-Σ digital control having a

controller to cover wide filter inductance, dc-bus voltage and

switching frequency variations.

5) Like fuzzy control, the D-Σ digital control being named based

on the processes of control-law derivation.

• Relationships to Conventional Approaches

Elegant Power Electronics Applied Research Laboratory (EPEARL) 11

• Circuit diagram of a three phase bi-directional inverter.

0 TSR iii

0d t

d i

d t

d i

d t

d i TSR

S1

S2

S3 S5

S4 S6

R

S T

vRS

vST

vTR

LR

LS

LT

Vdc

uR

uS

uT

iR

iS

iT

d t

d iL

d t

d iL

d t

d iL T

TS

SR

R 0 ≠ =

•By KCL TSR LLL

ST

RS

S

R

TST

SR

ST

RS

v

v

dt

didt

di

LLL

LL

u

u SRR S uuu

TSS T uuu

where

and

•By KVL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 6 11 16 21 26 31 36

Inductance L(uH)

• Derivation of Control Laws with Division (D) and Summation (Σ)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 12

R

S

TT0/2

t

t

t

1

0

1

0

1

0

T

T2/2T1/2T0/4 T2/2 T1/2 T0/4

00

2

00 0

1v( R ),RS , RS

S

v( S ),ST , ST

iu vL

iu vT

S T

R S

yySv

yRv

S

yS T

yR S

v

v

Ti

iL

u

u 1

),(

),(

2

,

,

Interval T0: V0, V7

Interval Tx: V5

Interval Ty: V6

where

T0 = T-Tx-Ty

ST

RS

S

R

S

ST

RS

v

v

dt

didt

di

Lu

u2

•KVL Equations

• SVPWM-Based D-Σ Control

•Division (D):

TST

SR

SLLL

LLL2

where L2S is the inductance scaling matrix:

2

1v( R ),xRS ,x RS

S

v( S ),xST ,x STx

iu vL

iu vT

Elegant Power Electronics Applied Research Laboratory (EPEARL) 13

•Summation (Σ):

0

0,

0,1

20

1

2

0),(

0),(T

u

uLT

v

vL

i

i

S T

R S

S

S T

R S

S

Sv

Rv

x

xS T

xR S

Sx

S T

R S

S

xSv

xRvT

u

uLT

v

vL

i

i

,

,1

2

1

2

),(

),(

y

yS T

yR S

Sy

S T

R S

S

ySv

yRvT

u

uLT

v

vL

i

i

,

,1

2

1

2

),(

),(

Interval T0:

Interval Tx:

Interval Ty:

y

x

ySTxST

yRSxRS

S

ST

RS

S

Sv

Rv

T

T

uu

uuLT

v

vL

i

i

,,

,,1

2

1

2

)(

)(

+ __________________________________________________

22

221

2

D

R

D

T

D

S

D

TS

S

L

L

L

L

L

L

L

LL

L

where matrix is the inverse of L2S: 1

2

SL

Elegant Power Electronics Applied Research Laboratory (EPEARL) 14

Σ

Σ

i*w

i*x

iwf

ixf

-

-

+

+

Σ

Σ Σ Σ

Σ Σ GP(ww)

Hw

GP(xw)

Hx

e-sT

S

Δiw, e

Δix, e

iLw

iLx

e-sT

S

GP(wx)

GP(xx)

+

++

+++

+ ++

+

GC(ww)

GC(wx)

GC(xw)

GC(xx)

+

+

dw^

dx^

Δiw^

Δix^

• Control Laws for Each Time Interval

.2

1

,,

,,

Tv

v

i

iL

uu

uu

T

T

ST

RS

S

R

S

ySTxST

yRSxRS

y

x

The control law (duty ratio) based on SVM can be then determined as:

,1

2

1

,,

,,

ST

RS

S

R

S

ySTxST

yRSxRS

y

x

v

v

i

iL

Tuu

uu

D

D

T

TD x

x .T

TD

y

y where and

Control block diagram of 3 3W inverter.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 15

• Control Law and Parameter Table

,1

2

1

,,

,,

ST

RS

S

R

S

ySTxST

yRSxRS

y

x

v

v

i

iL

Tuu

uu

D

D0

I II III IV V VI60°0° 120° 180° 300°240° 360°

vTRvRS vST

parameters

Region

uRS,x uST,x uRS,y uST,y x y Vx Vy

Duty Ratio

DRH DRL DSH DSL DTH DTL

I: 0°~60° vDC 0 0 vDC 1 2 V1 V2 Dx+Dy+

D0 1- DRH Dy+D0 1- DSH D0 1- DTH

II: 60°~120° 0 vDC -vDC vDC 2 3 V2 V3 Dy+D0 1- DRH Dx+Dy+

D0 1- DSH D0 1- DTH

III: 120°~180° -vDC vDC -vDC 0 3 4 V3 V4 D0 1- DRH Dx+Dy+

D0 1- DSH Dy+D0 1- DTH

IV: 180°~240° -vDC 0 0 -vDC 4 5 V4 V5 D0 1- DRH Dy+D0 1- DSH Dx+Dy+

D0 1- DTH

V: 240°~300° 0 -vDC vDC -vDC 5 6 V5 V6 Dy+D0 1- DRH D0 1- DSH Dx+Dy+

D0 1- DTH

VI: 300°~360° vDC -vDC vDC 0 6 1 V6 V1 Dx+Dy+

D0 1- DRH D0 1- DSH Dy+D0 1- DTH

Elegant Power Electronics Applied Research Laboratory (EPEARL) 16

• D-Σ Transformation Equation

Mesh Equation based on KVL

ST

RS

S

R

TST

SR

ST

RS

v

v

dt

didt

di

LLL

LL

u

u

S

S T

R S

S

R

TST

SR

S

S T

R ST

v

v

i

i

LLL

LLT

u

u

S

ST

RS

S

R

TST

SR

y

x

ySTxST

yRSxRST

v

v

i

i

LLL

LL

T

T

uu

uu

,,

,,

Control Laws

S

ST

RS

S

R

TST

SR

ySTxST

yRSxRS

y

xT

v

v

i

i

LLL

LL

uu

uu

T

T1

,,

,,

y

x

ySTxST

yRSxRS

y

x

yST

yRS

xST

xRS

ST

RS

S

ST

RS

T

T

uu

uu

T

T

T

u

u

u

u

u

uT

u

u

,,

,,

0

,

,

,

,

0,

0,

ST

RS

S

R

S

ySTxST

yRSxRS

y

x

v

v

i

iL

Tuu

uu

D

D2

1

,,

,, 1

D-Σ Transformation Equation

D-Σ Transformation Matrix

Elegant Power Electronics Applied Research Laboratory (EPEARL) 17

1Φ2W Inverter with LCL Filter

Circuit diagram of a single-phase bi-directional inverter

with LCL filter and its control blocks.

Ls

il

SA+ SB+

SA- SB-

DA+

DA-

DB+

DB-

vdc cdc cs vg

vdc vp

Driving Circuit

Renesas RX62T

Voltage Sensing

Circuit

Current Sensing

circuit

sA+ sA- sB+ sB- il

Lg

vC

iC

Bi-directional InverterLCL-Filter

ig

vC

Zl

vp

pcc

III. Features of D-Σ Digital Control

Elegant Power Electronics Applied Research Laboratory (EPEARL) 18

T1

Z/1GH

v

iG cilc

0Ip

g

iv

gr

-140

-120

-100

-80

-60

-40

-20

0

20

Magn

itu

de (

dB

)

-45

0

45

90

Ph

ase

(d

eg)

101 102 103 104 105

Frequency (Hz)

-40-20

0

20

40

60

80

100

120

140

Ma

gn

itu

de (

dB

)

101

102 103 104 10545

90

135

180

225

Ph

ase

(d

eg

)

Frequency (Hz)

-40

-20

0

20

40

60

80

100

120

140

Ma

gn

itu

de (

dB

)

-90

-45

0

45

90

Ph

ase

(d

eg)

101 102 103 104 105

Frequency (Hz)

Zo1: Ls = 1.5 mH, Lg = 500µH

Zo2: Ls = 1.5 mH, Lg = 420µH

Zo3: Ls = 600 µH, Lg = 500µH

Zo4: Ls = 600 µH, Lg = 420µH

Zl

++

-

++

+-

++

Σ Σ ΣGc Gp

H1

i*lrIgr ile

ilf

d

1/Zc

il

vc Σ

Σ ig

vp

Δil

vc-vp

+

e-sTs

icZg

D- ControlΣ

ic~

Cs /Ts

-e-sTs

Σ+

s

s

sdcl

L

Tv2

d

i

d

ilGp

sdc

s

p Tv2

L

G

1Gc

ssT

1pc

pc

ileHGG1

GGG

T1

G

I

iG il

0vgr

g

ig

p

++Σ

i*lrIgr il

Hc

vp

ig

Zg

Σ

Σ

ic

+-

+

+

Gil

1/ZC

ic~

equivalent transformation

Note: e-sT is approximated as (1-sTs)

vg

Zl

vpZo

ip

ig

is

T

)T1(ZZ

g

o

ilgc

c

gGZH

Z

ZT

s

sT

sc

T

)e1(CH

s

control block diagram of the proposed filter-capacitor

current compensation and based on D-Σ digital control

Equivalent circuit of the controlled current-source

inverter connected to the grid with grid impedance Zl.

0P

g

VZ

i

• s-domain model

Elegant Power Electronics Applied Research Laboratory (EPEARL) 19

1) Direct digital control - link error to control directly (no

need of abc-dq frame transformation).

2) Current source – achieve high stability margin.

3) GCGP=I – cancel parameter variation effects.

4) Wide bandwidth – up to switching frequency.

• Summary of the Features for D-Σ Digital Control

Elegant Power Electronics Applied Research Laboratory (EPEARL) 20

IV. Application Examples

1) 3Φ3W Inverter with Different Modulation Schemes

A. Converter Configuration

Elegant Power Electronics Applied Research Laboratory (EPEARL) 21

• Two-Phase Modulation (TPM) or (DPWM1) and SVPWM

iR iTiS

ITHD = 6.18%

vRS

ST

RS

S

R

S

ySTxST

yRSxRS

y

x

v

v

i

iL

Tuu

uu

D

D2

1

,,

,, 1

iTiR iS

vRS

ITHD = 2.78%

With SVPWM With TPM (DPWM1)

B. Experimental Results

Elegant Power Electronics Applied Research Laboratory (EPEARL) 22

• Test with Different Inductor Sizes

iLR iLTiLS

vRN

iLR iLTiLS

vRN

(a) with (b) without

considering wide inductance variation in grid-connection mode

at 10 kW. CM1340060*2

CM778060*3

without considering wide inductance

variation in grid-connection mode at 10 kW.

5

Core size reduction by 5 times with

D-Σ Digital Control

1

Elegant Power Electronics Applied Research Laboratory (EPEARL) 23

• Universal Function Test

90° Lagging 90° Leading

PF = 1 Rectification with PFC

(SVPWM at 8 kW)

VRN

iR iS iT

VRN

iR iS iT

VRN

iR iS iT

Elegant Power Electronics Applied Research Laboratory (EPEARL) 24

•Test with Dynamic Response: PART I

with SVPWM

(Grid-Connection Mode)

(iR, iS and iT: 10A/div; time: 5ms/div)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 25

• Test with Dynamic Response: PART II

90° Lagging ←→ Unity PF 90° Leading ←→ Unity PF

90° Leading ←→ 90° Lagging

iT iR iS

Unity PFPF=0

leading

vRN

Unity PF

iTiR iS

PF=0

lagging

vRN

Unity PF Unity PF

iT iR iS

PF=0

leading

vRN

PF=0

lagging

PF=0

lagging

Elegant Power Electronics Applied Research Laboratory (EPEARL) 26

•Inverter with LCL Filter and Capacitor Current Compensation

-20

-15

-10

-5

0

5

10

15

20

vRS

iR iTiS

-20

-15

-10

-5

0

5

10

15

20

vRS

iR iTiS

(a) (b)

Simulated waveforms of the three-grid currents and line voltage (vRS) at 1 kW:

(a) without and (b) with the proposed filter-capacitor current compensation.

LR

LS

LT

iR

CO

vgT

CO CO

iS

iT

LgR

LgS

LgT

vCT

igR

iCR

iCS

iCT

igS

igT vgS

vgR

vCSvCR

LCL filter network at the inverter output side.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 27

SRH

vT

LR

LS

LTvDC

uR

uS

uT

iLR

LN

uN

vS

vR

SRL

SSH STH SNH

SNLSTLSSL

CS

vRN

vSN

vTN

CS CS

vN

iLS

iLT

iLN

2) 3Φ4W Inverter (4 Legs)

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

(μH

)

(A)

0iiii NTSR

0dt

di

dt

di

dt

di

dt

di NTSR

≠ dt

diL

dt

diL

dt

diL

dt

diL N

NT

TS

SR

R 0= NTSR LLLL LR ≠ LS ≠ LT ≠ LN 2000 μH → 250 μH

0A → 37A

8 times (10kW)

250 μH

2000 μH From KCL:

Plot of inductor current (A) versus inductor (uH)

A. for Current Tracking

Elegant Power Electronics Applied Research Laboratory (EPEARL) 28

TN

SN

RN

T

S

R

NTNN

NNSN

NNNR

TN

SN

RN

v

v

v

dt

di

dt

didt

di

LLLL

LLLL

LLLL

u

u

u

SRH

vT

LR

LS

LTvDC

uR

uS

uT

iLR

LN

uN

vS

vR

SRL

SSH STH SNH

SNLSTLSSL

CS

vRN

vSN

vTN

CS CS

vN

iLS

iLT

iLN

0udt

diLv

dt

diLu N

NNTN

TTT

0udt

diLv

dt

diLu N

NNRN

RRR

0udt

diLv

dt

diLu N

NNSN

SSS

From KVL, the following equations can be derived:

Inductance Scaling Matrix L3S

Elegant Power Electronics Applied Research Laboratory (EPEARL) 29

v

v

v

i

i

i

dt

d

u

u

u

TN

SN

RN

T

S

R

TN

SN

RN

3SL

One switching sequence in region 0°~60°.

Interval T1:

Interval T0:

Interval T3:

Interval T2: Fig. 4. Six regions over one line period .

•Division (D) of Switching Period :

TN

SN

RN

22),T(v

2),S(v

2),R(v

3S

2,TN

2,SN

2,RN

v

v

v

T

1

i

i

i

L

u

u

u

TN

SN

RN

33),T(v

3),S(v

3),R(v

3S

3,TN

3,SN

3,RN

v

v

v

T

1

i

i

i

L

u

u

u

t

t

t

t

1

1

1

1

0

0

0

0

T

T0/2 T0/2T1/2 T1/2T2/2 T2/2T3

R

S

T

N

TN

SN

RN

11),T(v

1),S(v

1),R(v

3S

1,TN

1,SN

1,RN

v

v

v

T

1

i

i

i

L

u

u

u

RH

RL

SH TH

SL TL

vT

LR

LS

LTvDC

uR uS

uT

iR

iS

iT

NH

NL

LNuN

iNZRT

vS

vRN

N

ZSZ vSNv

TN

vR

C C C

where L3S is the inductance scaling matrix:

NTNN

NNSN

NNNR

LLLL

LLLL

LLLL

3SL

TN

SN

RN

00),T(v

0),S(v

0),R(v

3S

0,TN

0,SN

0,RN

v

v

v

T

1

i

i

i

L

u

u

u

0

iLSiLR

60°0° 120° 180° 300°240° 360°

iLT

B. Derivation of Control Law

Elegant Power Electronics Applied Research Laboratory (EPEARL) 30

Interval T1:

Interval T0:

Interval T3:

Interval T2:

s

TN

SN

RN

)T(v

)S(v

)R(v

1

3,TN2,TN1,TN

3,SN2,SN1,SN

3,RN2,RN1,RN

3

2

1

T

v

v

v

i

i

i

uuu

uuu

uuu

T

T

T

3SL

321S0 TTTTT

NSNRSRRNS

RNNTNRTRTN

SNTNNSNTTS

LLLLLLLLLL

LLLLLLLLLL

LLLLLLLLLL1

3S

13S

LL

0

0

0

u

u

u

0,TN

0,SN

0,RN

0

0,TN

0,SN

0,RN1-

0

TN

SN

RN1-

0),T(v

0),S(v

0),R(v

T

u

u

u

T

v

v

v

i

i

i

3S3S LL

1

1,TN

1,SN

1,RN1-

1

TN

SN

RN1-

1),T(v

1),S(v

1),R(v

T

u

u

u

T

v

v

v

i

i

i

3S3S LL

2

2,TN

2,SN

2,RN1-

2

TN

SN

RN1-

2),T(v

2),S(v

2),R(v

T

u

u

u

T

v

v

v

i

i

i

3S3S LL

3

2

1

3,RN2,TN1,TN

3,RN2,SN1,SN

3,RN2,RN1,RN1-

TN

SN

RN1-

)T(v

)S(v

)R(v

T

T

T

uuu

uuu

uuu

T

v

v

v

i

i

i

3S3S LL

3

3,TN

3,SN

3,RN1-

3

TN

SN

RN1-

3),T(v

3),S(v

3),R(v

T

u

u

u

T

v

v

v

i

i

i

3S3S LL

Summation (∑)

of

Current Variations:

Elegant Power Electronics Applied Research Laboratory (EPEARL) 31

s

321RH

T

TTTd

s

32TH

T

TTd

s

3NH

T

Td

s

TN

SN

RN

)T(v

)S(v

)R(v

1

3,TN2,TN1,TN

3,SN2,SN1,SN

3,RN2,RN1,RN

3

2

1

T

v

v

v

i

i

i

uuu

uuu

uuu

T

T

T

3SL

t

t

t

t

1

1

1

1

0

0

0

0

T

T0/2 T0/2T1/2 T1/2T2/2 T2/2T3

R

S

T

N

T

v

v

v

v1

v

v

Tv

iΔLiΔ)LL(iΔL

Tv

iΔLiΔL0

Tv

iΔLiΔL

d

d

d

d

DC

SN

DC

ST

DC

RS

DC

)T(vN)S(vNS)R(vN

DC

)T(vT)S(vS

DC

)S(vS)R(vR

NH

TH

SL

RH

Elegant Power Electronics Applied Research Laboratory (EPEARL) 32

• Grid-Connection Mode

• Rectification Mode

DC

1r

FN

FNxN

FNwN

DC

1r

)F(e)F(v

)x(e)x(v

)w(e)w(v

FNNN

Fx

Fw

SDC

1r

F

N

x

w

v1

v

vv

vv

v

1

0

ii

ii

ii

000

LLLL

LL0

L0L

Tv

1

d

d

d

d

DC

1r

FN

FNxN

FNwN

DC

1r

)F(e)F(v

)x(e)x(v

)w(e)w(v

FNNN

Fx

Fw

SDC

1r

F

N

x

w

v1

v

vv

vv

v

1

0

ii

ii

ii

000

)LL(LL

LL0

L0L

Tv

1

d

d

d

d

Table. Parameters in the general expression for grid-connection and rectification.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 33

TN

SN

RN

LT

LS

LR

S

s

TNTNTN

SNSNSN

RNRNRN

v

v

v

i

i

i

LT

uuu

uuu

uuu

d 3

1

3,2,1,

3,2,1,

3,2,1,

3

2

11

d

d

s

TN

SN

RN

LT

LS

LR

SS

TN

SN

RN

T

v

v

v

i

i

i

LT

u

u

u

3

s

TN

SN

RN

LT

LS

LR

S

TNTNTNTN

SNSNSNSN

RNRNRNRN

T

v

v

v

i

i

i

L

uuuu

uuuu

uuuu

3

3

2

1

0

3,2,1,0,

3,2,1,0,

3,2,1,0,

T

T

T

T

s

TN

SN

RN

LT

LS

LR

S

TNTNTN

SNSNSN

RNRNRN

T

v

v

v

i

i

i

L

uuu

uuu

uuu

3

3

2

1

3,2,1,

3,2,1,

3,2,1,

T

T

T

Interval T0 ~T4 :

• Original Mesh Equation:

t

t

t

t

1

1

1

1

0

0

0

0

TS

T0/2 T0/2T1/2 T1/2T2/2 T2/2T3

R

S

T

N

D-Σ Transformation Matrix

0

0

0

u

u

u

0,TN

0,SN

0,RN

C. Through D-Σ Transformation Matrix

Elegant Power Electronics Applied Research Laboratory (EPEARL) 34

R' L' C'C

LR

(a)

C1 R1C'L'R'

R"=R'//R1 C"=C'//C1Rectified load

R" L' C"

(b)

)C()L()R()v( ΔiΔiΔi Δi

RH

RL

SH TH

SL TL

vT

LR

LS

LTvDC

uR uS

uT

iR

iS

iT

NH

NL

LNuN

iNZTZR ZS

vS

vR

N

TN

SN

RN

LT

LS

LR

M3s

1

3,TN2,TN1,TN

3,SN2,SN1,SN

3,RN2,RN1,RN

3

2

1

v

v

v

i

i

i

LT

1

uuu

uuu

uuu

d

d

d

D. for Voltage Tracking ∆iv(˙)

∆iR(˙) ∆iL(˙) ∆iC(˙)

R L C

Elegant Power Electronics Applied Research Laboratory (EPEARL) 35

Ts 2L

2)-(nv+1)-(nv+

2Ts

3)]}-(nv-2)-(n[v-1)]-(n v-(n) C{[v+

R

2)-(nv-1)-(nv 1)-(nΔi

fbfb

fbfbfbfb

fbfb

)v(

Ts 2L

3)-(nv+2)-(nv+

2Ts

4)]}-(nv-3)-(n[v-2)]-(n v-1)-(n C{[v+

R

3)-(nv-2)-(nv 2)-(nΔi

fbfb

fbfbfbfb

fbfb

)v(

Ts 2L

4)-(nv+3)-(nv+

2Ts

5)]}-(nv-4)-(n[v-3)]-(n v-2)-(n C{[v+

R

4)-(nv-3)-(nv 3)-(nΔi

fbfb

fbfbfbfb

fbfb

)v(

Elegant Power Electronics Applied Research Laboratory (EPEARL) 36

L2

Ts 1)-(nΔv+

Ts2

1)-(nΔvC+

R

1)-(nΔv 1)-(nΔi LCR

)v(

L2

Ts2)-(nΔv+

Ts2

2)-(nΔvC+

R

2)-(nΔv 2)-(nΔi LCR

)v(

L2

Ts3)-(nΔv+

Ts2

3)-(nΔvC+

R

3)-(nΔv 3)-(nΔi LCR

)v(

pL

pC

pR

LCR

LCR

LCR

)(v

)(v

)(v

k

k

k

)3n(v)3n(v)3n(v

)2n(v)2n(v)2n(v

)1n(v)1n(v)1n(v

)3n(i

)2n(i

)1n(i

)3n(i

)2n(i

)1n(i

)3n(v)3n(v)3n(v

)2n(v)2n(v)2n(v

)1n(v)1n(v)1n(v

k

k

k

)(v

)(v

)(v

1

LCR

LCR

LCR

pL

pC

pR

L2

Tsk

Ts2

Ck

R

1k

pL

pC

pR

Elegant Power Electronics Applied Research Laboratory (EPEARL) 37

3)]-(n v+2)-(n v-1)-(n v-(n) [vk+]2)-(n v-1)-(n v[k=1)-(nΔi )fb()fb()fb()fb(pC)fb()fb(pR)v(

]4)-(n v+3)-(n v-2)-(n v-1)-(n v[k+]3)-(n v-2)-(n v[k= 2)(nΔi )fb()fb()fb()fb(pC)fb()fb(pR)v(

• Excel Calculation (R = 25 Ω, C = 72.2μF)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 38

1)-(ni-(n)i

1)-(nv-(n)v Z

fbfb

fbfb

x

x

fbref

vZ

(n)v-1)(nv )1n(i

RH

RL

SH TH

SL TL

vT

LR

LS

LTvDC

uR uS

uT

iR

iS

iT

NH

NL

LNuN

iNZTZR ZS

vS

vR

N

Elegant Power Electronics Applied Research Laboratory (EPEARL) 39

vRN vTNvSN

iLR iLR

vRN vTNvSN

• Wide Inductance Variation Test

(a) with (8 kW) (b) without (8 kW)

Considering wide inductance variation

(Resistive Load)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 40

•Resistive Load:

vSN vTN vRN

(vRN, vSN and vTN: 100V/div; time: 5ms/div )

(a)

(vRN, vSN and vTN: 100V/div; iLR: 5A/div; )

(b)

(a) 5 kW

ZR ZS ZT

+

vRN

-

+

vSN

-

+

vTN

-

iLR

(b) 10 kW

vSN vTN vRN

iLR

VTHD ≤ 1.2%. VTHD ≤ 1.3%.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 41

(vRN, vSN and vTN: 100V/div; iLR: 2A/div; time: 5ms/div )

Unbalanced Load:

ZR and ZS = 20Ω, ZT = ∞ Ω. ZR ZT

+

vRN

-

+

vSN

-

+

vTN

-

ZS

VTHD ≤ 1.4%.

iLN

vRN vTNvSN

Elegant Power Electronics Applied Research Laboratory (EPEARL) 42

Capacitive load:

PF 0.64 leading, 2.5 kVAR.

(vRN, vSN and vTN: 100V/div; iLR: 10A/div; time: 5ms/div )

Inductive load:

PF 0.6 lagging, 2.5 kVAR.

ZR ZS ZT

+

vRN

-

+

vSN

-

+

vTN

- ZR ZS ZT

+

vRN

-

+

vSN

-

+

vTN

-

vSN vTN vRN

iLR

vSN vTN vRN

iLR

VTHD ≤ 1.9%. VTHD ≤ 2.1%.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 43

T(n): )]1n('v)1n(v[)1n(''k)1n('k fbrefpnpn

k’’p1

k’’p2

k’’p3

K’’p4

k’’p5

k’’p6

k’’p7

k’’p8

K’’p9

0-200

-150

-100

-50

0

50

100

150

200

T(n-1) T(n) T(n+1)

Phase R voltage over three line periods from T(n-1) to T(n+1)

k’p1

k’p2

k’p3

k’p4

k’p5

k’p6

k’p7

k’p8

k’p9

kp1

kp2

kp3

kp4

kp5

kp6

kp7

kp8

kp9

)1n(''k pn

‧ Steady state error

‧ Harmonic distortion

)]}1n(v)1n(v[L

L{)1n(k)1n(d fbref

max

pni

T(n-1):

)]1n(v)1n(v[)1n('k)1n(k fbrefpnpn T(n+1):

F. Repetitive Control (RC)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 44

Rectified Load:

C = 100 μF, R = 100Ω.

(vRN, vSN and vTN: 100V/div; iLR: 2A/div; time: 5ms/div ) (vRN, vSN and vTN: 100V/div; iLR: 5A/div; time: 5ms/div )

(a) Without RC: (b) with

RC:

C R

+

vRN

-

C C

+

vSN

-

+

vTN

-

R R

ZR ZS ZT

VTHD ≤ 4.8%. VTHD ≤ 2.9%.

iLN

vRN vTNvSN vRN vTNvSN

iLN

Elegant Power Electronics Applied Research Laboratory (EPEARL) 45

iLR

Load transients

RC Steady-state

No Load RCD Load

RC Initial-statevRN vTNvSN

(b) (c) (d)

iLR

vRN vTNvSN

• Test with Step Load Change

Load transients

iLR

vRN vTNvSN

6 line cycles

Elegant Power Electronics Applied Research Laboratory (EPEARL) 46

2) 3Φ4W Inverter (split capacitors)

•Similar to 3x1Φ2W inverters.

S1

S4

S7

S10

S2

S5

S8

S11

S3

S6

S9

S12

T

AC AC AC

R

S

2

D CV

2

DCV

The Neutral-point clamped (NPC) inverter

The 3Φ4W half-bridge inverter

Elegant Power Electronics Applied Research Laboratory (EPEARL) 47

3) 1Φ2W Inverter

Circuit diagram of a single-phase bi-directional inverter

with LCL filter and its control blocks.

Ls

il

SA+ SB+

SA- SB-

DA+

DA-

DB+

DB-

vdc cdc cs vg

vdc vp

Driving Circuit

Renesas RX62T

Voltage Sensing

Circuit

Current Sensing

circuit

sA+ sA- sB+ sB- il

Lg

vC

iC

Bi-directional InverterLCL-Filter

ig

vC

Zl

vp

pcc

A. Converter Configuration

Elegant Power Electronics Applied Research Laboratory (EPEARL) 48

sdc

LsL

dc

cGC

Tv2

)i(Li

v2

v

2

1d

sdc

LsL

dc

ccRe

Tv2

)i(Li

v2

v

2

1d

Division (D) of Switching Period:

s

Lss

cdcmagnetize,Ls dT

)i(L

vvi

s

Ls

cdcedemagnetiz,Ls T)d1(

)i(L

vvi

and

s

Ls

cdcs

Ls

cdcL T)d1(

)i(L

vvdT

)i(L

vvi

Control law for grid-connection mode:

Control law for rectification mode:

B. Derivation of Control Law

Summation: Σ

Elegant Power Electronics Applied Research Laboratory (EPEARL) 49

Parameters Symbols Values

DC-bus voltage vDC 360 ~ 400 V

AC output voltage vN 220 Vrms

Maximum rated power Pmax 5 kW

Line frequency fl 60 Hz

Inverter inductors Ls 3 mH ~ 650 μH

Filter capacitor Cs 5 μF

Power switch IGBT IRG4PC50SPbF

VCE(on) typ. = 1.28 V, VCES

= 600V, and

IC(TC =25°C ) = 70 A

Power diode

(silicon carbide) CREE C3D20060D

VF(TJ=25°C) typ. = 1.5 V

Zero-Recovery Time

Switching frequency fs 20 kHz

SYSTEM PARAMETERS OF THE EXPERIMENT SET-UP.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 50

(iL and ig: 20A/div; vg and vdc: 100v/div; time: 10ms/div)

Rectification mode (5 kW) GC mode (5 kW)

Cdcvdc

SA+ ½ LsSB+

SA- SB-

Cs

ig

DA+

DA-

DB+

DB- ½ Ls

vg

+

_ vc

+

_

+

_

iL

Rectification mode GC mode

C. Experimental Results (Test with D-Σ control)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 51

4) 1Φ3W Inverter

A. Converter Configuration

Elegant Power Electronics Applied Research Laboratory (EPEARL) 52

•Current Tracking Mode: Power Injection

'

1

1

"

1

1

2

1 2

DCL

ACG

S

DCL

ACG

S

ViL V

DT

ViL V

D T

"

12

DC

L ACG

VV V

'

12

DC

L ACG

VV V

Division (D):

Summation (Σ):

' "

1 1 1L L Li i i

1 11( 1)

2

ref fbACG

DC DC S

L I n I nVD n

V V T

1 1 11

( 1)2

LACG

DC DC S

L i nVD n

V V T

B. Operational Principle

Elegant Power Electronics Applied Research Laboratory (EPEARL) 53

'

1

1

"

1

1

+1 2

2

DCL

ACG

S

DCL

ACG

S

ViL V

D T

ViL V

DT

"

12

DC

L ACG

VV V

'

1 +2

DC

L ACG

VV V

Division (D):

Summation (Σ):

' "

1 1 1L L Li i i

1 11( 1)

2

ref fbACG

DC DC S

L I n I nVD n

V V T

1 1 11

( 1)2

LACG

DC DC S

L i nVD n

V V T

1 11

( 1)2

ref fbACG

DC DC S

L I n I nVD n

V V T

• Current Tracking Mode: Rectification

Elegant Power Electronics Applied Research Laboratory (EPEARL) 54

3 kW,THDiL = 1.126%

C. Experimental Results •Current Tracking Mode : Power Injection

Elegant Power Electronics Applied Research Laboratory (EPEARL) 55

3 kW,THDiL = 1.068%

•Current Tracking Mode: Rectification

Elegant Power Electronics Applied Research Laboratory (EPEARL) 56

1 kW,THDV = 1.982%

3 kW,THDV = 1.663%

•Voltage Tracking Mode: Resistive Load

Elegant Power Electronics Applied Research Laboratory (EPEARL) 57

760 W,THDV = 3.453%

1.6 kW,THDV = 3.425%

•Voltage Tracking Mode : Rectified Load

Elegant Power Electronics Applied Research Laboratory (EPEARL) 58

Load 1: Resistive load: 1.5 kW

Load 2: no load

Load 1: Inductive load

1.1 kVA, PF = 0.769 Lagging

Load 2: Capacitive load 1.1 kVA, PF = 0.772 Leading

•Voltage Tracking Mode : Unbalanced Load

Elegant Power Electronics Applied Research Laboratory (EPEARL) 59

5) DC/DC converter

A. peak current-mode control

Lp1S

D1Vin

2Z

1ZvEA

refV

1R

2RPWM

SR

dcv

iLv

fC Vo

Inner Current Loop Outer Voltage Loop

Output Voltage 26 V

Output Power 2.6 kW

Switching freg. 50 kHz

Elegant Power Electronics Applied Research Laboratory (EPEARL) 60

B. average current-mode control

PWM

SR

d

mv

Lp1S

D1Vin

2Z

1ZvEA

refV

1R

2Rcv

fC Vo

Outer Voltage Loop

4Z

3ZcEA

Inner Current Loop

Output Voltage 26 V

Output Power 2.6 kW

Switching freg. 50 kHz

Elegant Power Electronics Applied Research Laboratory (EPEARL) 61

C. D-Σ Digital Control

PWM

d

mv

Lp1S

D1Vin

2Z

1ZvEA

refV

1R

2Rcv

fC Vo

Outer Voltage Loop

Inner Current Loop

D-Σ Digital Control

Output Voltage 26 V

Output Power 2.6 kW

Switching freg. 50 kHz

Elegant Power Electronics Applied Research Laboratory (EPEARL) 62

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20

Current(A)

Inductance Percentage VDC

iL

iO

Considering Inductance Variation

DC

i

e

Si

vV

iTV

Ld

1DC

i

e

Si

L vV

iTV

iLd

1)(

VDC

iL

iO

D. Experimental Results

With Constant Inductance

Elegant Power Electronics Applied Research Laboratory (EPEARL) 63

•DCM

CCM

b

ref

DCM di

id

o

S

Li

ref

b vT

iLnV

i

id

1

1

)1

( 1O

i

e

Sib

refv

nVi

TnV

L

i

id

Elegant Power Electronics Applied Research Laboratory (EPEARL) 64

DCM CCM CCM DCM

Vi 600 V

Vo 200 V

iavg 450 mA

fs 50 kHz

1S

fC1DiV

pL

iL

Vo

•DCM

Elegant Power Electronics Applied Research Laboratory (EPEARL) 65

•DCM

VDC

VO

iL

iO

iL average value: 415 mA

Output Power 85 W

Theoretical iL 425 mA

Inductance 500 μH

Switching Frequency 50 kHz

Elegant Power Electronics Applied Research Laboratory (EPEARL) 66

6) Modular Multi-level Converters (MMC)

Elegant Power Electronics Applied Research Laboratory (EPEARL) 67

)k(i)1k(ii

)k(i)1k(ii

)k(i)1k(ii

ccrefc

bbrefb

aarefa

cncp

cncp

c

bnbp

bnbp

b

anap

anap

a

LL

LLL

LL

LLL

LL

LLL

)120tsin(Ii

)120tsin(Ii

)tsin(Ii

Mcref

Mbref

Maref

•Control-law Parameters

Elegant Power Electronics Applied Research Laboratory (EPEARL) 68

2 (2 ) ( )( ) /

2 3 3 3

( ) (2 )( ) /

2 3 3 3

2 ( 2 ) ( 2 )( ) /

2 3 3 3

ab bc a c a b c bap ap

c c cT

ab bc a c a b c bbp bp

c c cT

ab bc a c a b c bcp cp

c c cT

u u L L i L L iNN N t dt T

U U T U T

u u L L i L L iNN N t dt T

U U T U T

u u L L i L L iNN N t dt T

U U T U T

an ap

bn bp

cn cp

N N N

N N N

N N N

•Number of Modules in Conduction

Elegant Power Electronics Applied Research Laboratory (EPEARL) 69

(a) Without Considering inductance variation

(b) Considering inductance variation

Simulated grid voltage and current waveforms

•Simulated Results

Elegant Power Electronics Applied Research Laboratory (EPEARL) 70

V. Conclusions D-Σ digital control is a kind of deadbeat control or

direct digital control which determines control laws

directly without frame transformation.

D-Σ digital control with a controller, which is the

inverse of plant, can accommodate the variation

effects of input voltage, switching period and filter

inductance.

With D-Σ digital control, the inverter and filter

inductor are controlled as a current source which can

achieve high stability margin even under high line

impedance.

D-Σ digital control has been successfully applied to

3Φ3W, 3Φ4W, 1Φ2W, 1Φ3W, DC/DC, and MMC

converters.

Elegant Power Electronics Applied Research Laboratory (EPEARL) 71

V. Conclusions

Future Study

1. Adopt variable switching frequency to control

ripple current or voltage under wide inductance

variation.

2. Analyze estimation error and sensitivity to

parameter changes.

Elegant Power Electronics Applied Research Laboratory (EPEARL)