CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The...

35
CS415 Compilers LR Parsing & Error Recovery These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

Transcript of CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The...

Page 1: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

CS415 Compilers

LR Parsing & Error Recovery

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice

University

Page 2: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 13 2

Review: LR(k) items

The LR(1) table construction algorithm uses LR(1) items to represent valid configurations of an LR(1) parser

An LR(k) item is a pair [P, δ], where P is a production A→β with a • at some position in the rhs δ is a lookahead string of length ≤ k (words or EOF)

The • in an item indicates the position of the top of the stack LR(1): [A→•βγ,a] means that the input seen so far is consistent with the use

of A →βγ immediately after the symbol on top of the stack [A →β•γ,a] means that the input seen so far is consistent with the use

of A →βγ at this point in the parse, and that the parser has already recognized β.

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead symbol of a is consistent with reducing to A.

Page 3: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 3

Review - Computing Closures

Closure(s) adds all the items implied by items already in s •  Any item [A→β•Bδ,a] implies [B→•τ,x] for each production

with B on the lhs, and each x ∈ FIRST(δa) – for LR(1) item

The algorithm

Closure( s ) while ( s is still changing ) ∀ items [A → β •Bδ,a] ∈ s ∀ productions B → τ ∈ P ∀ b ∈ FIRST(δa) // δ might be ε if [B → • τ,b] ∉ s then add [B→ • τ,b] to s

Ø  Classic fixed-point method Ø  Halts because s ⊂ ITEMS

Closure “fills out” a state

Page 4: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 4

Review - Computing Gotos

Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s •  Goto( { [A→β•Xδ,a] }, X ) produces [A→βX•δ,a] (easy part) •  Should also includes closure( [A→βX•δ,a] ) (fill out the state)

The algorithm

Goto( s, X ) new ←Ø ∀ items [A→β•Xδ,a] ∈ s new ← new ∪ [A→βX•δ,a] return closure(new)

Ø  Not a fixed-point method! Ø  Straightforward computation Ø  Uses closure ( )

Goto() moves forward

Page 5: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 5

Review - Building the Canonical Collection

Start from s0 = closure( [S’→S,EOF ] ) Repeatedly construct new states, until all are found

The algorithm cc0 ← closure ( [S’→ •S, EOF] ) CC ← { cc0 } while ( new sets are still being added to CC) for each unmarked set ccj ∈ CC mark ccj as processed for each x following a • in an item in ccj temp ← goto(ccj, x) if temp ∉ CC then CC ← CC ∪ { temp } record transitions from ccj to temp on x

Ø  Fixed-point computation (worklist version) Ø  Loop adds to CC Ø  CC ⊆ 2ITEMS, so CC is finite

Page 6: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 6

High-level overview 1  Build the canonical collection of sets of LR(1) Items, I

a  Begin in an appropriate state, s0 ♦ Assume: S’ →S, and S’ is unique start symbol that does

not occur on any RHS of a production (extended CFG - ECFG)

♦  [S’ →•S,EOF], along with any equivalent items ♦ Derive equivalent items as closure( s0 )

b  Repeatedly compute, for each sk, and each X, goto(sk,X) ♦  If the set is not already in the collection, add it ♦  Record all the transitions created by goto( )

This eventually reaches a fixed point

2  Fill in the table from the collection of sets of LR(1) items The canonical collection completely encodes the

transition diagram for the handle-finding DFA

Review – LR(1) Table Construction

Page 7: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 7

Review: Example (building the collection)

Initialization Step

s0 ← closure( { [Goal → •Expr , EOF] } ) = {[Goal → •Expr , EOF], [Expr à • Term – Expr, EOF], [Expr à •

Term, EOF], [Term à • Factor * Term, -], [Term à • Factor, -], [Term à •

Factor * Term, EOF], [Term à • Factor, EOF], [Factor à •ident, *], [Factor à •ident, -], [Factor à •ident, EOF]}

S ← { S0 }

1: Goal → Expr 2: Expr → Term – Expr 3: Expr → Term 4: Term → Factor * Term 5: Term → Factor 6: Factor → ident

Symbol FIRSTGoal { ident }Expr { ident }Term { ident }

Factor { ident }– { – }* { * }

ident { ident }

Page 8: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 8

Example (building the collection)

Iteration 1 s1 ← goto(s0 , Expr) s2 ← goto(s0 , Term) s3 ← goto(s0 , Factor) s4 ← goto(s0 , ident )

s0 ← closure( { [Goal → •Expr , EOF] } ) { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

Page 9: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 9

Example (building the collection)

Iteration 1 s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

s4 ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],

[Factor → ident •, *] }

s0 ← closure( { [Goal → •Expr , EOF] } ) { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

Page 10: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 10

Iteration 1 s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

s4 ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],

[Factor → ident •, *] }

Iteration 2 s5 ← goto(s2 , – ) s6 ← goto(s3 , * )

Example (building the collection)

Page 11: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 11

Iteration 1 s1 ← goto(s0 , Expr) = { [Goal → Expr •, EOF] } s2 ← goto(s0 , Term) = { [Expr → Term • – Expr , EOF], [Expr → Term •,

EOF] }

s3 ← goto(s0 , Factor) = { [Term → Factor • * Term , EOF],[Term →

Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

s4 ← goto(s0 , ident ) = { [Factor → ident •, EOF],[Factor → ident •, –],

[Factor → ident •, *] }

Iteration 2

s5 ← goto(s2 , – ) = { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , –], [Term → • Factor * Term , EOF], [Term → • Factor , EOF], [Factor → • ident , *], [Factor → • ident , –], [Factor → • ident , EOF] }

s6 ← goto(s3 , * ) = … see next page

Example (building the collection)

Page 12: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 12

Iteration 2

s6 ← goto(s3 , * ) = { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

Example (building the collection)

s5 ← goto(s2 , – ) = { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term → • Factor * Term , EOF], [Term → • Factor , –], [Term → • Factor , EOF], [Factor → • ident , *], [Factor → • ident , –], [Factor → • ident , EOF] }

Iteration 3 s7 ← goto(s5 , Expr ) = { ? } s8 ← goto(s6 , Term ) = { ? } s2 ← goto(s5, Term), s3 ← goto(s5, factor) , s4 ← goto(S5,

ident), s3 ← goto(s6, Factor), s4 ← goto(S6, ident)

Page 13: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 13

Iteration 2

s6 ← goto(s3 , * ) = { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

Example (building the collection)

s5 ← goto(s2 , – ) = { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term → • Factor * Term , EOF], [Term → • Factor , –], [Term → • Factor , EOF], [Factor → • ident , *], [Factor → • ident , –], [Factor → • ident , EOF] }

Iteration 3 s7 ← goto(s5 , Expr ) = { [Expr → Term – Expr •, EOF] } s8 ← goto(s6 , Term ) = { [Term → Factor * Term •, EOF], [Term →

Factor * Term •, –] }

Page 14: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 14

Example (Summary)

S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor→ • ident, *] } S1 : { [Goal → Expr •, EOF] } S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF],[Term → Factor • * Term , –], [Term → Factor •, EOF], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF],[Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF], [Expr → • Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , –], [Term → • Factor * Term , EOF], [Term → • Factor , EOF], [Factor → • ident , *], [Factor → • ident , –], [Factor → • ident , EOF] }

Page 15: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 15

Example (Summary)

S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],  [Term → • Factor * Term , EOF], [Term → • Factor * Term , –], [Term → • Factor , EOF], [Term → • Factor , –], [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

Page 16: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 16

Example (DFA)

s0 s4 s5

s1 s2 s7

s6 s3

s8

ident

term

factor

-

term

expr ident

factor

expr

*

factor term

ident State Ident - * Expr Term Factor

0 4 1 2 3

1

2 5

3 6 4

5 4 7 2 3

6 4 8 3

7 8

The State Transition Table

Page 17: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 17

Example (DFA)

s0 s4 s5

s1 s2 s7

s6 s3

s8

ident

term

factor

-

term

expr ident

factor

expr

*

factor term

ident State Ident - * Expr Term Factor

0 4 1 2 3

1

2 5

3 6 4

5 4 7 2 3

6 4 8 3

7 8

The State Transition Table

Page 18: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 18

Filling in the ACTION and GOTO Tables

The algorithm

∀ set sx ∈ S ∀ item i ∈ sx if i is [A→β •ad,b] and goto(sx,a) = sk, a ∈ T then ACTION[x,a] ← “shift k” else if i is [S’→S •,EOF] then ACTION[x , EOF] ← “accept” else if i is [A→β •,a] then ACTION[x,a] ← “reduce A→β” ∀ n ∈ NT if goto(sx ,n) = sk then GOTO[x,n] ← k

Many items generate no table entry

Page 19: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 19

Example (Filling in the tables) The algorithm produces LR(1) parse table

ACTION GOTO

Ident - * EOF Expr Term Factor0 s 4 1 2 31 acc2 s 5 r 33 r 5 s 6 r 54 r 6 r 6 r 65 s 4 7 2 36 s 4 8 37 r 28 r 4 r 4

Plugs into the skeleton LR(1) parser

State Ident - * Expr Term Factor

0 4 1 2 3

1

2 5

3 6 4

5 4 7 2 3

6 4 8 3

7 8

Remember the state transition table?

Page 20: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14

An Example for Table Filling Practice

Lecture 15 20

A Parse Table Filling Example

For pdf lecture notes readers, see attached LR(1) parse table example file

Page 21: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 21

What can go wrong?

What if set s contains [A→β•aγ,b] and [B→β•,a] ? •  First item generates “shift”, second generates “reduce” •  Both define ACTION[s,a] — cannot do both actions •  This is a fundamental ambiguity, called a shift/reduce error •  Modify the grammar to eliminate it (if-then-else)

What if set s contains [A→γ•, a] and [B→γ•, a] ? •  Each generates “reduce”, but with a different production •  Both define ACTION[s,a] — cannot do both reductions •  This fundamental ambiguity is called a reduce/reduce error •  Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

EaC includes a worked example

Page 22: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 22

Shrinking the Tables

Three options: •  Combine terminals such as number & identifier, + & -, * & /

→  Directly removes a column, may remove a row →  For expression grammar, 198 (vs. 384) table entries

•  Combine rows or columns (table compression) →  Implement identical rows once & remap states →  Requires extra indirection on each lookup →  Use separate mapping for ACTION & for GOTO

•  Use another construction algorithm →  Both LALR(1) and SLR(1) produce smaller tables →  Implementations are readily available

Page 23: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 23

LR(0) versus SLR(1) versus LR(1)

LR(0) ? -- set of LR(0) items as states LR(1) ? -- set of LR(1) items as states, different states

compared to LR(0) SLR(1) ? -- LR(0) items and canonical sets, same as LR(0) SLR(1): add FOLLOW(A) to each LR(0) item [A→γ•] as its

second component: [A→γ•, a], ∀a ∈FOLLOW(A)

Page 24: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 24

LR(0) versus SLR(1) versus LR(1)

Example: LR(0) ? LR(1) ? SLR(1) ?

S’ → S S → S ; a | a

Page 25: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 25

LR(0) versus LR(1) versus SLR(1)

s0 = Closure({[S’ → .S]}) = {[S’ -> .S], [S -> .S; a], [S -> .a] } s1 = Closure( GoTo (s0, S)) = {[S’ → S. ], [S → S.; a] } s3 = Closure( GoTo (s1, ;)) = {[S → S; . a]}

s2 = Closure( GoTo (s0, a)) = {[S → a.]} s4 = Closure( GoTo (s3, a)) = {[S → S;a .] }

Grammar is not LR(0), but LR(1) and SLR(1)

s0 = Closure({[S’ → .S,eof]}) = {[S’ -> .S,eof], [S -> .S; a,eof], [S -> .a,;] } s1 = Closure( GoTo (s0, S)) = {[S’ → S. eof], [S → S.; a,eof] } s3 = Closure( GoTo (s1, ;)) = {[S → S; . a,eof]}

LR(0) States

s2 = Closure( GoTo (s0, a)) = {[S → a.,;]} s4 = Closure( GoTo (s3, a)) = {[S → S;a ., eof] }

LR(1) States

Page 26: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 14 26

LALR(1) versus LR(1)

LALR(1) ? LR(1) items, State -> Grouped LR(1) states LALR(1): Merge two sets of LR(1) items (states), if they have the same core. core of set of LR(1) items: set of LR(0) items derived by ignoring the lookahead symbols

FACT: collapsing LR(1) states into LALR(1) states cannot introduce shift/reduce conflicts

Page 27: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 27

LALR(1) versus LR(1)

s0 = Closure({[S’ → .S, eof]}) s1 = Closure( GoTo (s0, a)) = {[S → a . Ad, eof], [S → a . Be, eof], [A → .c, d], [ B → .c, e]} s2 = Closure( GoTo (s0, b)) = {[S → b . Ae, eof], [S → b . Bd, eof], [A → .c, e], [B → .c, d]} There are other states that are not listed here!

s3 = Closure( GoTo (s1, c)) = {[A → c. , d], [B → c. , e]} s4 = Closure( GoTo (s2, c)) = {[A → c. , e], [B → c. , d]}

Grammar is LR(1), but not LALR(1), since collapsing s3 and s4 (same core) will introduce reduce-reduce conflict.

Page 28: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 16 28

Hierarchy of Context-Free Grammars

The inclusion hierarchy for context-free grammars

•  Operator precedence includes some ambiguous grammars

•  LL(1) is a subset of SLR(1)

Context-free grammars

Unambiguous CFGs

Operator Precedence

Floyd-Evans Parsable

LR(k)

LR(1)

LALR(1)

SLR(1)

LR(0)

LL(k)

LL(1)

Ref Book: Michael Sipser, “Introduction to the Theory of Computation”, 3rd Edition

Page 29: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 29

Error Recovery in Shift-Reduce Parsers

The problem: parser encounters an invalid token Goal: Want to parse the rest of the file Basic idea (panic mode):

→  Assume something went wrong while trying to find handle for nonterminal A

→  Pretend handle for A has been found; pop “handle”, skip over input to find terminal that can follow A

Restarting the parser (panic mode): →  find a restartable state on the stack (has transition for

nonterminal A) →  move to a consistent place in the input (token that can follow A) →  perform (error) reduction (for nonterminal A) →  print an informative message

Page 30: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 30

Error Recovery in YACC

Yacc’s (bison’s) error mechanism (note: version dependent!) •  designated token error •  used in error productions of the form A → error α // basic case •  α specifies synchronization points When error is discovered •  pops stack until it finds state where it can shift the error token •  resumes parsing to match α special cases:

→  α = w, where w is string of terminals: skip input until w has been read →  α = ε : skip input until state transition on input token is defined

•  error productions can have actions

Page 31: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 31

Error Recovery in YACC

cmpdstmt: BEG stmt_list END stmt_list : stmt | stmt_list ‘;’ stmt | error { yyerror(“\n***Error: illegal statement\n”);} This should •  throw out the erroneous statement •  synchronize at “;” or “end” (implicit: α = ε) •  writes message “***Error: illegal statement” to stderr Example: begin a & 5 | hello ; a := 3 end ↑ ↑ resume parsing ***Error: illegal statement

Page 32: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 16 32

Project #2 (see “lex & yacc”, Levine et al., O’Reilly)

→  You do have to (slightly) change the scanner (scan.l)

→  How to specify and use attributes in YACC?

§  Define attributes as types in attr.h

typedef struct info_node {int a; int b} infonode; §  Include type attribute name in %union in parse.y

%union {tokentype token; infonode myinfo; … } §  Assign attributes in parse.y to

–  Terminals: %token <token> ID ICONST –  Non-terminals: %type <myinfo> block variables procdecls cmpdstmt

§  Accessing attribute values in parse.y –  use $$, $1, $2 … etc. notation: block : variables procdecls {$2.b = $1.b + 1;} cmpdstmt { $$.a = $1.a + $2.a + $3.b;}

Page 33: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 16 33

YACC : parse.y %{ #include <stdio.h> #include "attr.h" int yylex(); void yyerror(char * s); #include "symtab.h" %} %union {tokentype token; } %token PROG PERIOD PROC VAR ARRAY RANGE OF %token INT REAL DOUBLE WRITELN THEN ELSE IF %token BEG END ASG NOT %token EQ NEQ LT LEQ GEQ GT OR EXOR AND DIV NOT %token <token> ID CCONST ICONST RCONST %start program %% program : PROG ID ';' block PERIOD { }

; block : BEG ID ASG ICONST END { }

; %% void yyerror(char* s) { fprintf(stderr,"%s\n",s); } int main() { printf("1\t"); yyparse(); return 1; }

parse.y : Will be included verbatim in parse.tab.c

Rules with semantic actions

Main program and “helper” functions; may contain initialization code of global structures. Will be included verbatim in parse.tab.c

List and assign attributes

Page 34: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 16 34

Project #2 : Things to do

•  Learn/Review the C programming language

•  Add error productions (syntax errors)

•  Define and assign attributes to non-terminals

•  Implement single-level symbol table

•  Perform type checking and produce required error messages; note: actions may occur at “any” location on right-hand side (implicit use of marker productions)

Page 35: CS415 Compilers LR Parsing & Error Recoveryzz124/cs415_spring2014/... · Review: LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations

cs415, spring 14 Lecture 15 35

Ad-hoc, syntax directed translation schemes,type checking

Read EaC: Chapters 4.1- 4.4

Next two classes