cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure...

21
Jean-François Dufrêche Entropy and Temperature A fifth force in the nature ? E TS Rudolf Clausius (Koszalin, 1822 - Bonn, 1888) Entropy = η τροπη = the transformation

Transcript of cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure...

Page 1: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Jean-François Dufrêche!

Entropy and Temperature

A fifth force

in the nature ?

E ⬌ TS

Rudolf Clausius (Koszalin, 1822 - Bonn, 1888)

Entropy = η τροπη = the transformation

Page 2: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Thermodynamics

In mechanics

Equilibrium : E minimum

E = potential energy

In thermodynamics (T constant) : valid only at T = 0 K

Equilibrium : E - TS minimum

Interpretation

Sunivers maximum

Belleville roller coaster (1817) ! modern roller coaster!

Sunivers = Ssyst + Sext with Sext = Sext (Etot −E) ≈ Sext (Etot )+

∂Sext

∂E−E( ) = S0

ext −ET

Ssyst = S

$

%&

'&

External environment!Thermostat!system!

E ⤻ ! gives T!

Sunivers = S − ET

+S0ext( )

minimization of the energy = maximization of the entropy of the external environement

Page 3: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Competition between S and E

Equilibria : minimisation of F = E – TS (= -TSuniverse)!

Solid!U predominant!

atoms at fixed distance!Low T!

Gas!S predominant!

desorder!High T!

Liquid! U ≈ TS ? ? ?!Intermediate T !

r! distance between the molecules!

typically, V (r) = 4ε σr

!

"#

$

%&

12

−σr

!

"#

$

%&

6!

"##

$

%&&

repulsion !attraction !

!

V(r) = potential energy

between two molecules! ε: depth of the attraction!

σ : size of the molecules!ε!

σ!

V(r)!

Page 4: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Hard spheres and entropy

solid! liquid (or dense fluid)!

a (crystalline) solid phase can have a higher entropy than a liquid phase!

Page 5: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Hard spheres and entropy

solid! liquid (or dense fluid)!

a (crystalline) solid phase can have a higher entropy than a liquid phase!

Page 6: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Hard spheres and entropy

solid! liquid (or dense fluid)!

a (crystalline) solid phase can have a higher entropy than a liquid phase!

Page 7: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Hard spheres and entropy

solid! liquid (or dense fluid)!A high density, an organized phase (solid) gives more space for every molecules, because it can move in relatively large site!

a (crystalline) solid phase can have a higher entropy than a liquid phase!

Page 8: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Hard spheres and entropy

solid! liquid (or dense fluid)!A high density, an organized phase (solid) gives more space for every molecules, because it can move in relatively large site!

Hard spheres phase diagram

Φ (packing fraction)!

T!

S (fcc)!

S+F

F!

0.494! 0.545! 0.740!

Solid phases entropically favourable at high pressure

(exception: water)!

a (crystalline) solid phase can have a higher entropy than a liquid phase!

Page 9: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Liquid crystals

Liquid crystal:

long rigid molecules!Ex: MPPA!

Isotropic liquid phase!

Crystal solid phase!

top view!

Smectic

top view!

Nematic !

top view!

rot : L trans: L!

rot : S trans: L!

rot : S trans: 1/3S+2/3L!

rot : S trans: S!

Competition of translational and rotational entropy

Page 10: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Liquid crystals

Liquid crystal:

long rigid molecules!Ex: MPPA!

Isotropic liquid phase!

Crystal solid phase!

top view!

Smectic

top view!

Nematic !

top view!

rot : L trans: L!

rot : S trans: L!

rot : S trans: 1/3S+2/3L!

rot : S trans: S!

Competition of translational and rotational entropy

2

1

40! 80!T / oC!

P / kbar! So!

L!

N!

Sm!

Octylcyanobiphényl (8CB)!Shashidhar et Venkatesh!J. Phys. Coll. (1979)!

Page 11: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Micelles theory for dummies

Amphiphilic molecule

hydrophobic tail / hydrophilic head Law of attraction : like attracks like

Page 12: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Micelles theory for dummies

Amphiphilic molecule

hydrophobic tail / hydrophilic head Law of attraction : like attracks like

-!-!

-!-!-!-!-!-!-!-!-!

-!-! -!-!-!-!Completly wrong with electrostaic forces ! one interaction is missing… Entropy

! chains ! solvent (solvation)…

Page 13: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Born model for solvation Corresponding solvation entropy For water at 25oC Solvation : decrease of the solvent entropy (less rotation and less translation of solvent molecules)

Entropy of the solvent for solvation

Note technique DRCP/SCPS/2008/21

Page 37/50

Ce document est la propriété du CEA.

Il ne peut être ni copié, ni communiqué à des tiers sans autorisation écrite du CEA

0,5 molal

1 molal

2 molal

3 molal

Figure 19 : Vues instantanées représentant les deux premières sphères de coordination des chlorures d’uranyle.

Les TMR des molécules d’eau et des chlorures dans la première et la deuxième sphère de coordina-

tion ont été calculés pour chaque concentration (Tableau 23).

Tableau 23 : Propriétés dynamiques des molécules d’eau et des ions Cl- en solution aqueuse à 300 K pour les simulations de UO2Cl2. a Temps moyen de résidence (TMR) des molécules d’eau dans la première sphère (TMR(1)

WAT) et la deuxième sphère (TMR(2)

WAT) de coordination de UO22+ (en ps).

b Temps moyen de résidence (TMR) des Cl- dans la première sphère (TMR(1)Cl-) et la deuxième sphère

(TMR(2)Cl-) de coordination de UO2

2+ (en ps).

TMR(1)

WATa TMR

(2)WAT

a TMR

(1)Cl-

b TMR

(2)Cl-

b

Sim(D1) > 2000 11 - -

Sim(D2)nd > 2000 9 > 2000 -

Sim(D2)d > 2000 11 - -

Sim(0,5) > 2000 11 - 31

Sim(1) > 2000 12 - 30

Sim(2) > 2000 13 - 31

Sim(3) > 2000 20 - 53

Aucun échange n'a été observé entre les molécules de la première et de la deuxième sphère de coor-

dination de l’uranyle, quelques soient la concentration et les points de départ simulés. Cette observa-

tion rejoint celle faite pour l’hydratation de l’uranyle dans l’eau pure. Dans ces conditions, il semble

difficile d’observer les ions chlorure passer de la deuxième à la première sphère de coordination.

Concernant les molécules d’eau de la deuxième sphère, les TMR sont du même ordre de grandeur

jusqu’à 2 molal (d’une dizaine de picosecondes) et augmentent à 3 molal (20 ps). Cette variation des

TMR est également observée pour les chlorures en deuxième sphère de coordination de l’uranyle.

Notons tout de même que les TMR des chlorures dans cette sphère de coordination sont supérieurs à

ceux calculés pour les molécules d’eau, comme cela a été observé pour les sels de lanthanides.

4.2.2. Sels d’uranyle avec les ions nitrate (UO2(NO3)2)

Les propriétés structurales d’hydratation des nitrates d’uranyle sont déduites des fonctions de distribu-

tion radiale U-OW et U-N (Tableau 24).

2RBorn!

εr!

� ! Ze!ΔsolvG

0 =Z 2e2

8πε0RBorn1εr−1

#

$%

&

'(

≤ 0

TΔsolvS = −T∂ΔsolvG∂T

=Z 2e2

8πε0εrRBorn×Tεr

∂εr∂T

%

&'

(

)*

Tεr

∂εr∂T

= −1.36 ⇒ ΔsolvS < 0

Page 14: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Micelles theory and solvent entropy

-!-!

-!-!-!-!-!-!-!-!-!

-!-! -!-!-!-!

Dissociated molecules A lot of solvating solvent molecules Low solvent entropy

-!

-!Associated molecules

Less solvating solvent molecules Higher solvent entropy

For the solute entropy, it is the contrary (see lesson 1)!

Page 15: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Van der Waals forces with rotation

Keesom!Dipole mobile / Dipole mobile

V (r) = − p12p2

2

3(4πε0 )2kBTr

6

< kT (weak) but water

Debye!Dipole mobile /

Ion

V (r) = f (r)T

< kT (weak) but water

p!

p1! p2!

Q!

V (r) = − p2Q2

6(4πε0 )2kBTr

4

Potential : free energy of the pair of particles The entropic contribution is unfavourable (lost rotation)

and is it is half of the energetic one!

TS = T ∂F∂T

= −F ⇒ F = E −TS = E −F = E2

Page 16: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Depletion

Mixture of big and small hard spheres Purely repulsive system… but an attraction is measured ! Possible explanation

0"

""

"" """"

""

""""""

""

"" "

"""

""""

""

""

""

"" "

"

"""

"""

"" "

"""

""

"""

" ""

-  Big hard spheres (ex: colloid)

- Small hard spheres (ex: polymer)

0"

""

""""

""

""

""

""

""

""

""

""

""

""""

""

""""

"" "

"

"""

"""

"" "

"""

""

"""

" ""

P! P!

depletion domain!

Page 17: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Entropic interpretation

-  excluded volume of the small spheres

Asakura et Oosawa

When the colloids come together

-  overlapping of the excluded volumes

-  more volume for the small spheres

-  more important entropy

-  favourable configuration "attraction

Depletion

Page 18: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Entropic interpretation

Z = drNe−βV∫= (V −Vexclu )

N

Hence

F(x )=−kT ln Z=F id +Veff (r)

Veff (r )

attraction

Effective potential

potential averaged over the

solvent configurations

r!

Veff (r) /kT = ρπD3

61− 3r2D

+r3

2D3

%

& '

(

) * 2R < r < 2R +σ = D

Asakura et Oosawa

Depletion

Page 19: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Phase separations

Nature, 416, 801 (2002)!

Direct measurement

Phys. Rev. Lett., 81, 4004 (1998)!

Depletion

Page 20: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Big solutes are attracted to an interface just because they are big

Entropy of the solvant Similar to Asakura et Oosawa

Interfacial depletion

Forbidden domain for the solvent!

Smaller forbidden domain if the particle is at the surface ! Bigger entropy !  stability!

Brazilian Nuts effect!

Page 21: cours3 entropy temperature · External environment! Thermostat! ... favourable at high pressure (exception water)! a (crystalline) solid phase can have a higher entropy than a liquid

Conclusion

Entropy = a force in the nature

Important parameter: temperature Driving phenomenon: excluded volumes + … !