cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... ·...

46
34 Transferts thermiques JAMES J OULE (1818—1889) 34.1 Rappels de Thermodynamique 34.1.1 Le premier principe Énergie mécanique Le théorème de l’énergie cinétique pour un système matériel Σ affirme la conservation de l’énergie mécanique totale d’un système soumis à des efforts conservatifs ; cette énergie totale s’écrit : E = E c + E p E c = 1 2 m Σ ~ v 2 G + E * c E p = E i p + E e p (34.1) où on a distingué l’énergie cinétique barycentrique E * c , ainsi que les composantes intérieure E i p et extérieure E i p de l’énergie potentielle dont dérivent les forces exercées sur le système. Compte tenu de l’absence de forces non conservatives au niveau microscopique, le caractère isolé d’un système matériel impose E = 0. Énergie interne Nous ne nous intéresserons dans la suite qu’à la seule partie de l’énergie mécanique totale qui ne dépend que du système seul, étudié dans un référentiel où son centre de masse G est, à un instant donné, au repos. Cette partie de E porte le nom d’énergie interne U 1 : 1 Dans la suite, sauf mention expresse, nous négligerons l’énergie cinétique de translation et les interactions potentielles avec l’extérieur, ce qui permet de confondre 2 E et U.

Transcript of cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... ·...

Page 1: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

34Transferts thermiques

JAMES JOULE (1818—1889)

34.1 Rappels de Thermodynamique

34.1.1 Le premier principe

Énergie mécanique

Le théorème de l’énergie cinétique pour un système matériel Σ affirme la conservation de l’énergie mécanique totale d’unsystème soumis à des efforts conservatifs ; cette énergie totale s’écrit :

E = Ec +Ep Ec =12

mΣ~v2G +E∗c Ep = E i

p +Eep (34.1)

où on a distingué l’énergie cinétique barycentrique E∗c , ainsi que les composantes intérieure E ip et extérieure E i

p de l’énergiepotentielle dont dérivent les forces exercées sur le système. Compte tenu de l’absence de forces non conservatives au niveaumicroscopique, le caractère isolé d’un système matériel impose ∆E = 0.

Énergie interne

Nous ne nous intéresserons dans la suite qu’à la seule partie de l’énergie mécanique totale qui ne dépend que du systèmeseul, étudié dans un référentiel où son centre de masse G est, à un instant donné, au repos. Cette partie de E porte le nomd’énergie interne U1 :

1Dans la suite, sauf mention expresse, nous négligerons l’énergie cinétique de translation et les interactions potentielles avec l’extérieur, ce qui permetde confondre2 E et U .

Page 2: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

258 Manuel de Physique

U = E∗c +E ip E = U +

12

mΣ~v2G +Ee

p (34.2)

Le premier principe

Le premier principe de la Thermodynamique indique que l’énergie interne U du système est une fonction d’état. Dans le casoù le système n’est pas isolé, on s’attend a priori à une variation de cette énergie interne du système, du fait des interactionsénergétiques avec l’extérieur.

34.1.2 Travail, Chaleur

Transfert de travail

La partie des échanges énergétiques qui correspond nécessairement à la variation d’un paramètre extensif macroscopiqueporte le nom de transfert de travail.Ainsi, on pourra observer, pour le travail des forces de pression exercées sur un fluide, pour les forces de traction ou encorepour les forces électriques, les expressions :

δW =−pextdV δW = Fext dL δW =−eextdq

Transfert thermique

On appelle ainsi la partie non macroscopique des échanges énergétiques, soit dU−δW , soit :

dU = δW +δQ ou encore ∆U = W +Q (34.3)

L’expression « transfert thermique » a récemment été introduite pour remplacer le terme « chaleur », source de possiblesconfusions entre les notions de transfert thermique (extensif, lié à une transformation) et de température (intensif, lié à unétat).La confusion a été levée de façon explicite pour la première fois vers 1760 par le physicien britannique JOSEPH BLACK

(1728-1799) ; il nommait alors intensity of heat la température et quantity of heat le transfert thermique.

34.2 Description des transferts thermiques

34.2.1 Généralités

Historique

La controverse concernant la nature de la “chaleur” durèrent jusqu’au milieu du XIX ième siècle. Cependant, vers 1805,le physicien et mathématicien français JOSEPH FOURIER (1768-1830), reprenant des travaux antérieurs, décida de fairecomplètement abstraction de la nature de la chaleur, pour se concentrer que l’étude de sa transmission.Fourier supposa que la chaleur se transmet des zones chaudes vers les zones froides perpendiculairement aux surfacesisothermes et proportionnellement aux écarts de température existants. Il aboutit ainsi à la première étude quantitative d’unmode de transfert thermique, la conduction ; c’est aussi le premier que nous étudierons en détail. La résolution de l’équationaux dérivées partielles obtenue amena Fourier à développer les notions de séries et intégrales de Fourier.

Transferts thermiques

Nous étudions ici un ensemble de systèmes thermodynamiques qui ne se trouve pas à l’équilibre thermique, c’est-à-direlorsque la température d’un système particulier Σ n’est pas partout égale à la température du ou des autres systèmes aveclesquels Σ est en contact, ou en relation par rayonnement électromagnétique.La description que nous ferons des transferts thermiques sera phénoménologique, c’est-à-dire d’origine expérimentale,même su une analyse microscopique simplifiée permettra de justifier certaines de ces lois.

Page 3: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Transferts thermiques 259

Température

Le système thermodynamique étudié Σ sera bien sûr macroscopique, ce qui ne l’empêchera pas d’être de faible dimen-sion à notre échelle. En particulier, nous ne nous priverons pas de considérer le cas de systèmes inhomogènes sur le planthermique ; le système thermodynamique de base sera donc l’élément de volume dτ, infinitésimal à notre échelle, et ce-pendant macroscopique, c’est-à-dire contenant un nombre dN de particules très élevé, même si la quantité de matière dncorrespondante est très faible. La température d’un tel élément de volume sera notée T (~r, t). L’échelle de dimensions cor-respondante porte le nom d’échelle mésoscopique ; elle occupe une position intermédiaire entre les échelle microscopiqueet macroscopique :

microscopique mésoscopique macroscopique

mais l’ordre de grandeur des dimensions mésoscopiques peut être très variable, compris entre quelques micromètres etquelques kilomètres, selon les dimensions caractéristiques du système étudié.Nous rencontrerons des situations normales où la température T est une fonction continue de l’espace, mais aussi desmodélisations extrêmes où cette température subit des variations très rapides sur de faibles dimensions, que l’on considéreradonc parfois comme des zones de discontinuité de la température (au niveau d’une paroi par exemple).

34.2.2 Les modes de transfert

Les transferts thermiques au sein de systèmes hors d’équilibre thermique se font principalement par trois modes et par leurscombinaisons.

Conduction

Le mode de transfert qui apparaît toujours au sein d’un milieu continu (solide ou fluide) thermiquement inhomogène estla conduction thermique, consistant en des transferts thermiques de proche en proche, par chocs microscopiques entreparticules d’énergie cinétique moyenne différente.La conduction thermique sera associée à un courant local d’échanges thermiques causés par l’existence d’un gradient de latempérature dans le milieu continu étudié.

Convection

La convection désigne, en général, le transport d’une quantité physique lié à un transfert de masse observable à l’échellemacroscopique. Nous l’étudierons donc dans un fluide relativement à un certain système de référence R, relativement auquelles particules passant au point P du fluide ont, à un certain instant t, la vitesse~v(P, t).Si l’étude détaillée de la convection n’est pas au programme, nous étudierons de façon assez complète l’existence de fluxthermiques conductifs liés aux phénomènes de convection, qui apparaissent aux frontières (parois, canalisations) des sys-tèmes thermodynamiques ; on parlera de transfert pariétal.

Rayonnement

Le rayonnement constitue le troisième mode de transfert thermique ; il ne nécessite pas de support matériel car il constitueun transport énergétique par une onde électromagnétique qui, comme on le verra par la suite, se propage dans le vide oubien dans certains milieux matériels ; nous nous limiterons au cas des milieux transparents, qui se comportent, du point devue du rayonnement, pratiquement comme le vide.

34.3 Transports énergétiques dans les systèmes ouverts

34.3.1 Systèmes ouverts

Définitions

Les systèmes ouverts sont des systèmes comportant un nombre de particules élevé (systèmes thermodynamiques) et nonnécessairement constant, du fait d’un apport continu de matière en entrée et d’une évacuation de matière en sortie.Les différentes grandeurs extensives (notamment les grandeurs énergétiques) associées à ce système peuvent aussi varier dufait, par exemple, de transformations chimiques ou de changements d’état.

Page 4: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

260 Manuel de Physique

Nous appellerons donc système ouvert (Σ) l’ensemble de la matière comprise, à un instant quelconque, à l’intérieur d’unesurface fermée (A), dite surface de contrôle, fixe dans le référentiel d’étude.

Bilans de grandeurs extensives

Considérons une grandeur physique extensive X pour un milieu continu (fluide ou solide) ; elle peut être de nature thermo-dynamique (fonctions d’état U , H, S, ...) ou non (masse, impulsion). Son caractère extensif permet de la décrire par uneintégrale de volume, la grandeur X contenue dans le volume (τ) intérieur à la surface de contrôle (A) ayant les expressions :

X =

τxµdτ

en fonction de la densité massique x de la grandeur X et de la masse volumique µ du milieu continu.Au cours d’un intervalle de temps δt, la grandeur X contenue dans le volume invariable (τ) limité par la surface de contrôlefixe (A) varie pour deux raisons : d’abord, localement en chaque point P de (τ), le densité x dépend du temps ; ensuite, auxfrontières de (τ), de la matière entre ou sort de (τ), entraînant avec elle un certain flux de X .Nous noterons dérivée totale ou dérivée particulaire de X la grandeur :

DXdt

= limδt→0

X(t +δt)−X(t)δt

où X(t + δt) est la valeur de X dans le volume (τ′) occupé, à l’instant t + δt, par les mêmes particules qui occupaient àl’instant t le volume (τ).Cette dérivée, calculée en suivant individuellement les particules en mouvement dans le milieu continu, n’est pas égale à ladérivée locale de X , qu’on définira par :

∂X∂t

=

τ

(∂∂t

(µx)

)

et qui ne tient compte que des variations locales de X , mais pas de la convection de X , c’est-à-dire du transport de la grandeurX associé au déplacement de matière entrant ou sortant de (τ).On doit donc ajouter à cette variation les termes de flux sortants (cf. démonstration dans le cours de Thermodynamique),d’où :

DXdt

=∂X∂t

+

Aµx~v ·~ndS

Ce débit s’identifie à un flux du vecteur densité locale de courant de X noté ~jX = µx~v. On notera la forme synthétique, quiporte le nom de formule de Reynolds :

DXdt

=∂X∂t

+D(X) (34.4)

Premier principe de la Thermodynamique

Le théorème de l’énergie cinétique peut être écrit pour un système ouvert, sous la forme, fonction de l’énergie mécaniquemassique em :

DEdt

=∂E∂t

+∮

Aµem~v ·~ndS = Pm +Pt

faisant intervenir les puissances mécanique Pm et thermique Pt reçues par le système.La puissance mécanique se décompose en puissance utile Pu et puissance des forces pressantes P′, avec :

Page 5: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Transferts thermiques 261

P′ =−∮

ApdS~n ·~v

On remarque donc enfin que :

∂E∂t

+

(

em +pµ

)

~v ·~ndS = Pu +Pt

Enthalpie

On peut aussi noter que em = u+ 12~v

2 +ep et que u+ pµ = h, en fonction des grandeurs massiques enthalpie h, énergie interne

u, énergie potentielle ep ; on a donc finalement pour expression du premier principe pour un système ouvert :

τ

∂∂t

(

u+12~v2 + ep

)

dτ+∮

(

h+12~v2 + ep

)

~v ·~ndS = Pu +Pt

Notamment, le cas des régimes permanents se traite simplement sous la forme :

(

h+12~v2 + ep

)

~v ·~ndS = Pu +Pt

qui prend la forme utilisée dans l’étude des bilans thermiques, D(

H +12

m~v2G +Ep

)

= Pu +Pt .

34.3.2 Bilans thermiques

Enthalpie et énergie interne

La relation H = U + pV montre que H 'U pour les phases condensées, de volume faible.Si, pour les milieux continus peu compressibles (solides, liquides), la distinction entre enthalpie massique h et énergieinterne massique u est anecdotique, il n’en va pas de même des gaz ; remplacer h par u reviendrait à oublier l’existenceinévitable de forces de pression, qui travaillent lors de la convection.Rappelons encore les expressions des capacités thermiques massiques :

cp =

(∂h∂T

)

pcv =

(∂u∂T

)

v

Compte tenu de la remarque qui précède, on considérera souvent ces deux valeurs comme voisines pour des phases conden-sées : cp' cv' c, où la capacité thermique massique c est pratiquement indépendante de la nature de la transformation subie

par le système. Au contraire, pour les gaz, cp− cv 'RM

= r et γ =cp

cvpermettent de déterminer cv =

rγ−1

et cp =γr

γ−1.

Dans de nombreux autres cas, on notera de manière indifférente :

c =

(∂u∂T

)

(34.5)

définissant ainsi la capacité thermique massique dans les conditions de la transformation, sans préciser celle-ci a priori.Ces conditions ne modifient pas de façon significative la valeur de c si le système est dans une phase condensée.

Page 6: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

262 Manuel de Physique

Bilan thermique pour un système fermé

Le premier principe appliqué à un système fermé de volume (V ), limité par la surface extérieure (S) impose :

∂U∂t

+D(H) = Pt

si on suppose l’absence de toute puissance mécanique utile (autre que des forces de pression de transvasement) et si onnéglige les variations d’énergie cinétique et d’énergie potentielle lors de l’écoulement.D’autre part, on distinguera dans la puissance thermique Pt les flux thermiques reçus par conduction, par transfert pariétalconvecto-conductif et par rayonnement, qui seront notés :

Pt = Φc +Φp +Φr

enfin, le débit d’enthalpie et la variation locale de l’énergie interne s’écrivent :

D(H) =

(S)µh~v ·~ndS

∂U∂t

=

(V)

∂∂t

(µcT )dτ

On écrira donc ce bilan thermique :

(V)

∂∂t

(µcvT )dτ = Φc +Φp +Φr +Φa Φa =

(S)jhdS

où on a choisi de noter jh = µh~v · (−~n), qui est le flux d’enthalpie advecté entrant dans le volume (V ) étudié.On remarquera que l’ensemble des termes du second membre sont maintenant présentés dans le cadre de l’algébrisationclassique de la Thermodynamique : ces grandeurs sont positives si elles décrivent une entrée d’énergie dans le système. Ilarrive qu’on doive modifier l’équation ci-dessus pour tenir compte, par exemple, de sources thermiques réparties en volumedans le système (V ) étudié ; on ajoutera alors au second membre la puissance Pl localement dégagée à l’intérieur de cesystème. On aura alors la version généralisée du bilan thermique :

(V)

∂∂t

(µcT )dτ = Pl +Φc +Φp +Φr +Φa (34.6)

BILANS THERMIQUES

La variation locale de l’énergie interne d’un système thermodynamique (si on néglige les variationsd’énergie cinétique globale et les variations d’énergie potentielle externe, est la somme de la puissancelocalement créée, et des flux thermiques de conduction, de transfert pariétal, de rayonnement et d’ad-vection.

Expressions intégrales des flux thermiques

La puissance thermique localement cédée à la matière peut souvent se mettre sous forme d’une intégrale de volume :

Pl =∫

(V)pldτ

Par contre, les flux thermiques associés à la conduction, aux transferts pariétaux et au rayonnement peuvent en général semettre sous la forme de flux entrants, décrivant les échanges d’énergie entre le système et son extérieur à travers sa surface.Ces flux seront recherchés, par analogie avec le flux thermique advecté, sous la forme :

Φc =

(S)jc dS Φp =

(S)jp dS Φr =

(S)jr dS

en fonction des densités surfaciques de puissance thermique reçue par conduction, transfert pariétal et rayonnement.Les chapitres qui suivent développent les expressions de ces divers flux surfaciques.

Page 7: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

35Conduction et transferts pariétaux

JAMES WATT (1736—1819)

35.1 La conduction thermique

35.1.1 Flux thermique

Transferts thermiques en volume

Dans un milieu où existent des inhomogénéités locales de température, les chocs microscopiques entre particules animéesd’un mouvement d’agitation thermique important (provenant des zones chaudes) et particules animées d’une agitationthermique moindre (provenant des zones froides) se traduisent par des transferts thermiques en volume, au sein du matériau.Considérons une surface infinitésimale orientée d~S = dS~n ; nous admettrons que le flux thermique (c’est-à-dire, la quantitéd’énergie transitant sous cette forme, à travers dS, par unité de temps, dans le sens de ~n) de conduction dΦc à travers dSpeut se mettre sous la forme :

dΦc = ~jc ·~ndS

On fait ainsi apparaître un vecteur densité volumique de courant thermique de conduction ~jc, champ fonction à la fois dupoint P et du temps1.Notons que dΦc s’exprime en watt, et donc que l’unité de mesure de ~jc est le W ·m−3.

Transfert thermique par conduction

Le flux thermique total Φc à travers une surface S orientée et le transfert thermique dQc à travers cette surface pendant letemps dt, reçu par le système situé après S, fourni par celui situé avant S, se mettent donc sous la forme :

1Il existe ici une ambiguïté de vocabulaire puisque cette densité volumique de courant thermique est aussi un flux surfacique exprimé en W ·m −2 ;c’est la même difficulté que celle que l’on rencontre en électricité à propos de la densité volumique de courant~j, qui s’exprime en A ·m−2.

Page 8: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

264 Manuel de Physique

dQc = Φcdt Φc =

S~jc ·~ndS

Notons que dans le cas particulier où la surface S est fermée, le transfert thermique reçu par le système intérieur à S s’écriten fonction de :

Φc =−∮

S~jc ·~ndS =

SjcdS (35.1)

puisqu’on a choisi pour le flux scalaire une orientation vers l’intérieur de la surface (S), conformément à la conventionusuelle de la Thermodynamique :

FLUX THERMIQUE CONDUCTIF

Le flux thermique reçu par conduction par un système thermodynamique (Σ) de surface extérieure (S)s’écrit :

Φc =

(S)jc dS

où le flux thermique conductif par unité de surface s’écrit :

jc =−~jc ·~n

si~n est la normale à (S) orientée vers l’extérieur de (Σ).

Expression locale

Compte tenu du théorème d’Ostrogradski, et si le vecteur densité volumique de courant thermique de conduction ~jc estdéfini de façon continûment dérivable en tout point du système étudié, on pourra aussi écrire, pour le système intérieur àune surface fermée S :

Φc =−∫

Vdiv~jc dτ

35.1.2 Bilans thermiques

Le système étudié

Considérons un volume simplement connexe (V ). Nous supposerons ici que ce milieu continu est le siège de transfertsthermiques par conduction ou de création locale de puissance thermique, mais nous négligerons les autres phénomènes detransfert thermique :– pas de transport d’enthalpie par convection, par exemple parce que le système est fermé ;– pas de transferts pariétaux, par exemple parce que les parois qui entourent le système sont adiabatiques ;– pas de transfert par rayonnement. Les conditions d’application éventuelle de cette application seront discutées plus loin.Dans ces conditions, le bilan thermique général prend la forme simplifiée :

(V)µc

∂T∂t

dτ = Pl +Φc (35.2)

Page 9: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Conduction et transferts pariétaux 265

Bilan thermique

Les deux termes qui figurent au second membre de l’équation ci-dessus peuvent s’écrire comme des intégrales de volume ;en effet, on a d’une part :

Pl =∫

(V)pldτ

et d’autre part, comme on l’a vu ci-dessus :

Φc =−∫

Vdiv~jcdτ

On en déduit l’équation de bilan thermique local :

div~jc +

(

µc∂T∂t

)

= pl (35.3)

où on écrit souvent aussi µc' cte donc :

div~jc +µc∂T∂t

= pl

On remarquera bien sûr l’analogie de cette forme avec les équations de conservation :

– Équation de conservation de la charge électrique div~j +∂ρ∂t

= 0 ;

– Équation de conservation de la masse div(µ~v)+∂µ∂t

= 0 ;

– Identité de Poynting div~R+∂wem

∂t=−~j ·~E.

La présence d’un terme pl non nul en général au second membre montre qu’il n’y a pas de conservation d’une grandeur« chaleur », ce qu’on sait déjà en thermodynamique classique puisqu’il n’existe pas de fonction d’état décrivant la chaleuremmagasinée dans un corps macroscopique.

35.2 Loi de Fourier

35.2.1 Énoncé de la loi de Fourier

Présentation

L’ensemble des relations présentées ci-dessus constitue le cadre mathématique de description des bilans thermiques deconduction, et non pas un modèle phénoménologique de la conduction.Celui-ci a été proposé par Fourier et porte donc son nom ; on peut le présenter par analogie à la loi d’Ohm, autre modèlephénoménologique décrivant, lui, la conduction électrique sous la forme :

~j = ρ~v = γ~E =−γ−−→gradV

en fonction d’une grandeur γ caractéristique du milieu conducteur, et qui porte le nom de conductivité électrique.L’hypothèse de Fourier est la suivante : comme les lignes de courant électrique sont alignées avec les directions de dé-croissance du potentiel électrique, les lignes de transport thermique sont alignées avec les directions de décroissance de latempérature.

Conductivité thermique

Ainsi, la loi de Fourier, bien vérifiée dans de très nombreux milieux, et qui présente l’avantage d’être une loi linéaire,s’exprime selon :

~jc =−λ−−→gradT (35.4)

La constante λ, dite conductivité thermique du milieu continu2, est caractéristique de la nature du matériau utilisé. Comme2On rencontre aussi le symbole K pour la conductivité thermique.

Page 10: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

266 Manuel de Physique

on le voit ci-dessus, λ s’exprime en W ·m−1 ·K−1.Les valeurs de λ varient très largement d’un matériau à l’autre, depuis par exemple λ = 20× 10−3 W ·m−1 ·K−1 pour ungaz comme N2 dans les conditions normales de température et de pression, λ = 400 W ·m−1 ·K−1 pour un bon conducteurthermique comme le cuivre métallique.

35.2.2 Équation de la chaleur

Énoncé

Dans le cadre de la loi de Fourier, les bilans thermiques de conduction forment une équation différentielle vérifiée par lafonction température T (~r, t), considérée comme la fonction inconnue, et la densité volumique de puissance thermique crééepl(~r, t), considérée alors comme une donnée :

−λ∆T +µc

(∂T∂t

)

= pl (35.5)

Cette équation, dite équation de diffusion thermique, porte le nom historique d’équation de la chaleur.

Régime permanent

Dans l’étude des régimes permanents de conduction thermique, l’équation de diffusion prend la forme :

∆T (~r) =−1λ

pl(~r)

analogue de l’équation de Poisson de l’électrostatique :

∆V (~r) =− 1ε0

ρ(~r)

Il y a donc analogie complète des méthodes de résolution de ces deux équations. Les méthodes correspondantes (méthodesde Laplace) seront développées au chapitre suivant. Lors de l’étude de l’équilibre électrostatique, on verra d’autres méthodesde résolution de problèmes analogues.

35.3 Transfert thermique pariétal

35.3.1 Description générale

Flux pariétaux

Au sein d’un fluide en mouvement, la présence simultanée de la convection (liée aux mouvements du fluide) et de la conduc-tion (qui apparaît automatiquement dès lors que le fluide n’est pas isotherme) peut faire l’objet d’une étude simplifiée : c’estcelle du flux conductif pariétal, à la limite du fluide et d’une paroi qui le limite.

Hypothèses d’étude

Dans la géométrie simplifiée ci-dessus, que nous supposerons décrire un écoulement permanent le long d’une paroi, lephénomène de conduction apparaît dans le sens de −−−→gradT , c’est-à-dire essentiellement le long de l’axe z (normal à laparoi) si la différence entre les températures dans le fluide TF et dans le solide TS sont nettement plus importantes que lesinhomogénéités de température dans le fluide et dans le solide, ce que nous supposerons dans la suite.L’étude détaillée de ce type de situation peut être envisagée à partir des équations de base que sont les relations de continuitéde la température et de flux thermique normal, qui est bien sûr exclusivement conductif :

TS(z = 0+) = TF(z = 0−) −λS

(∂T∂z

)

z=0+

=−λF

(∂T∂z

)

z=0−

Page 11: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Conduction et transferts pariétaux 267

O x

z

~v

fluide en mouvement

paroi solide

FIG. 35.1 – Flux pariétal

en notant λS et λF les conductivités thermiques du solide et du fluide.Cependant, cette étude exige celle des lignes de courant~v(~r) dans le fluide, qui sont bien sûr liées à la variation TF(~r) de latempérature dans celui-ci ; on parle de couplage entre la conduction normale ou transverse et la convection longitudinale.Seules des solutions numériques ont en général pu être proposées pour ce problème complet.

Couche limite

On peut cependant donner une expression approchée des flux thermiques pariétaux en considérant l’existence de coucheslimites, dans les fluides au voisinage des parois, le long desquels la température varie très rapidement, passant, sur une faibleépaisseur (notée η) de la valeur pratiquement uniforme TF0 dans le fluide, pour z <−η à la valeur pratiquement uniformeTS0 dans le solide, pour z > 0.C’est précisément l’existence de cette zone où la variation de température est rapide et transversale qui permet de neconsidérer que le seul flux conductif transverse.Ainsi, même si on ne peut pas, par cette méthode, étudier les variations (lentes) de température longitudinales, on obtientune expression du flux thermique pariétal (mesuré de long de l’axe z, du fluide vers la paroi solide) selon :

~jp =−λF

(−−→gradTF

)

−η<z<0'−λF

η(TS0−TF0)~ez

Nature de l’écoulement

L’étude complète des écoulements (dynamique des fluides) exige la prise en compte des forces exercées de l’extérieur dufluide (pesanteur, etc...) et à l’intérieur de celui-ci (pression, viscosité) ; elle mène à des équations non linéaires dont larésolution mathématique se révèle généralement assez lourde et, pour cette raison, elle est exclue du programme.Signalons seulement l’existence, pour un écoulement dans une canalisation, de deux cas limites : les écoulements laminaires,dans lesquels les lignes de courant glissent les unes sur les autres tout en restant parallèles, et les écoulements turbulents,dans lesquels la vitesse du fluide dans la canalisation varient d’un point à l’autre de façon quasiment aléatoire. Le passaged’un régime à l’autre se fait exclusivement en fonction d’un paramètre sans dimension appelé nombre de Reynolds R qui,

dans une canalisation cylindrique de diamètre d, vaut R =vdν

, où v est la vitesse moyenne du fluide et ν le coefficient de

viscosité cinématique3. L’écoulement devient potentiellement turbulent pour R dépassant une valeur critique de l’ordre de2 300 environ.

35.3.2 Coefficient de transfert pariétal

Définition

Généralisant l’expression précédente, le transfert thermique de surface à l’interface entre le solide et le fluide, comptépositivement du fluide vers la paroi solide, peut se mettre sous la forme | jp| = h|TF0−TS0|, où le coefficient de transfert

3Les forces volumiques de viscosité sont proportionnelles à ce coefficient.

Page 12: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

268 Manuel de Physique

thermique de surface h est d’autant plus important que le fluide est bon conducteur de la chaleur et que l’épaisseur de lacouche limite est plus faible, favorisant par exemple les transferts thermiques de surface lorsque l’écoulement est turbulent.

L’algébrisation a été développée plus haut ; le flux pariétal est évidemment positif (reçu par le système Σ) si la températurede celui-ci est inférieure à celle du milieu extérieur.

FLUX THERMIQUE PARIÉTAL (CONVECTO-CONDUCTIF)Le flux thermique pariétal reçu par un système (Σ) de la part d’un fluide extérieur (F) s’écrit sous

la forme de la loi de Newton Φp =

(S)jp dS où le flux thermique pariétal par unité de surface s’écrit

jp = h(TF −TΣ)

Ordres de grandeur

Les flux de transfert thermique de surface jp se mesurant en W ·m−2, les coefficients de transfert thermique de surface hs’expriment en W ·m−2 ·K−1 ; ils dépendent de la nature du fluide mais aussi de l’épaisseur de la couche limite (ordinaire-ment de l’ordre d’une fraction de millimètre) donc du type de régime de convection dans le fluide.Dans un régime de convection naturelle, l’écoulement du fluide s’établit spontanément du fait des écarts de températuredans le fluide.Dans un régime de convection forcée, un dispositif (pompe, ventilateur) impose les conditions de circulation du fluide, engénéral à une vitesse supérieure à celle observée dans le cas de la convection naturelle.De plus, dans chaque cas, on peut rencontrer des gradations dans les valeurs de h, selon par exemple les valeurs du nombrede Reynolds.Notons seulement les ordres de grandeur de h présentées dans le tableau 35.2.

Nature du transfert Nature du fluide hConvection Gaz 5 à 30 W ·m−2 ·K−1

naturelle Eau 100 à 1000 W ·m−2 ·K−1

Gaz 10 à 300 W ·m−2 ·K−1

Convection Eau 300 à 1,2×104 W ·m−2 ·K−1

forcée Huile 50 à 1,7×103 W ·m−2 ·K−1

Métal liquide 6×103 à 1,1×105 W ·m−2 ·K−1

FIG. 35.2 – Ordres de grandeur pour le coefficient h

Bilans thermiques

La prise en compte des phénomènes de transfert thermique pariétaux ne permet plus, comme dans le seul cas de la conduc-tion, d’écrire une équation locale de diffusion thermique.Par contre, ces phénomènes sont absents à l’intérieur du système, et une résolution locale est possible ; les phénomènespariétaux jouent alors le rôle de conditions aux limites pour la résolution des problèmes de conduction, en écrivant parexemple la continuité des flux thermiques.Il est bien sûr aussi possible de traiter des problèmes de bilan thermique global, incluant les phénomènes de conduction etde transfert pariétal.

Page 13: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

36Méthodes de Laplace

WILHELM WIEN (1864—1928)

36.1 Régimes permanents

36.1.1 Équation de diffusion en régime permanent

Équation de diffusion thermique

L’équation de la diffusion thermique prend, en régime permanent, la forme d’une équation différentielle dont la températureT est solution :

∆T (~r) =−1λ

pl(~r) (36.1)

en fonction de la puissance volumique créée localement pl et de la conductivité thermique λ du milieu :La résolution de cette équation (dite de Poisson) pour un second membre pl donné, se fait par utilisation de méthodes ditesde Laplace, que nous présenterons ici.Dans le cas particulier d’un milieu conservatif (pas de création en volume), l’équation de Poisson prend la forme d’uneéquation de Laplace :

∆T (~r) = 0

Problèmes unidimensionnels

Les méthodes de résolution que nous développerons plus loin ne sont nécessaires que si la température T (on plus généra-lement la solution d’une équation de Poisson) est une fonction de plusieurs variables spatiales, T (x,y,z) ou bien T (ρ,ϕ,z)ou encore T (r,θ,ϕ).

Page 14: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

270 Manuel de Physique

Dans le cas unidimensionnel, la résolution est toujours facilitée par la transformation de l’équation aux dérivées partielles(EDP) en équation différentielle (ED).En particulier, dans le cas d’une équation de Laplace (sans terme du second membre), les solutions ci-après sont évidentes,respectivement en coordonnées cartésiennes :

∆T (x) = 0⇒ T = T0 +T1xa⇒ ~jc =−λ

T1

a~ex

pour un problème radial cylindro-polaire :

∆T (ρ) = 0⇒ T = T0 +T1 lnρρ0⇒ ~jc =−λ

T1

ρ~eρ

et pour un problème radial sphérique :

∆T (r) = 0⇒ T = T0 +T1r0

r⇒ ~jc = λT1

r0

r2~er

Conditions aux limites

L’écriture de l’équation de la diffusion (36.1) ci-dessus suppose qu’on peut négliger, dans le volume où on détermine T (~r),tous les phénomènes de transfert thermique autres que la conduction, donnée par la loi de Fourier.Toutefois, les phénomènes pariétaux (transfert convecto-conductif caractérisé par un coefficient de transfert h, mais aussiphénomènes de rayonnement) ne peuvent être exclus à la surface extérieure du volume étudié.Ils serviront à écrire les conditions aux limites pour la résolution d’une équation de Laplace. Considérons en effet unélément de surface dS et de normale extérieure~ez de la paroi qui limite le volume (V ) à l’intérieur duquel on détermine latempérature.Nous supposerons que le milieu z < 0 est le volume (V ), dans lequel les transferts thermiques sont uniquement conductifs,et le milieu z > 0 est le milieu extérieur, siège de phénomènes pariétaux.On peut alors écrire la continuité des flux thermiques sous la forme :

jcn =−~jc ·~ez = jp (36.2)

où la composante normale jcn de la densité volumique de courant thermique de conduction, tout comme le flux surfaciquepariétal jp sont orientés, conformément à la convention thermodynamique générale, vers l’intérieur de (V ).

z

Système Σ Fluide F extérieur

jc jp

FIG. 36.1 – Continuité des flux thermiques

On écrira encore :

λ∂T∂z

∣∣∣∣z=0−

= jp(z = 0+)

Continuité de la température

Considérons le cas où le transfert pariétal est entièrement de nature convecto-conductive, la température au-delà de la couchelimite pour z > 0 étant notée T0. On a alors :

λ∂T∂z

∣∣∣∣z=0−

= h(T0−T (z = 0−)

)

Page 15: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Méthodes de Laplace 271

On en conclut que, si la paroi assure un excellent contact thermique entre les deux systèmes disposés de part et d’autrede celle-ci, on peut faire h→ ∞ ce qui impose, pour conserver des flux conductifs finis (donc une température fonctiondérivable des coordonnées d’espace) :

T (z = 0−) = T (z = 0+)

On retiendra cependant que la continuité de la température de part et d’autre d’une surface de séparation n’est qu’un casparticulier, vérifié seulement dans certains exercices simplifiés.

Problèmes analogues

Rappelons que les problèmes thermiques en régime permanent (sans terme de création locale) sont les analogues des pro-blèmes électriques dans les milieux conducteurs ohmiques en régime permanent :

~j = γ~E et div ~j = 0⇒ ∆V = 0

puisque ~E = −−−→gradV ; de même, l’étude de l’électrocinétique dans le vide se fait dans le cadre de l’équation de Poisson,qui prend en l’absence de charge électrique la forme particulière :

∆V = 0

L’écriture des conditions aux limites pour ces problèmes peut se présenter sous deux formes :– Si le potentiel électrique est fixé sur la surface limitant le volume étudié1, on se trouve dans le cas d’une résolution d’EDP

avec continuité du potentiel à la surface du volume (V ).– Si la charge électrique surfacique est fixée sur la surface limitant le volume étudié, l’écriture des équations de passage

pour le champ électrique impose la valeur de la composante normale du champ électrique ou, ce qui revient au même, dela dérivée normale du potentiel cherché.

36.1.2 Résistance thermique

Conductance électrique

Dans le cas des calculs de conductance et résistance électriques, on indique les valeurs du potentiel électrique sur deuxsurfaces particulières, et on détermine le courant électrique qui parcourt l’espace compris entre ces surfaces :

I =

S

γ~E ·~ndS

où la surface S peut être choisie arbitrairement2 entre les deux surfaces limites (1) et (2).De même, la différence de potentiel entre ces deux surfaces est donnée par l’intégrale de circulation :

V1−V2 =

2∫

1

~E ·d~r

et on définit la conductance électrique par le rapport :

G =I

V1−V2=

Sγ~E ·~ndS

2∫

1

~E ·d~r(36.3)

ainsi que la résistance électrique R = 1/G correspondante. Les unités de mesure courantes de G et R sont respectivement lesiemens (S) et l’ohm (Ω).

1Par exemple, présence de surfaces équipotentielles aux limites, potentiel nul à l’infini, etc.2C’est une conséquence de la conservation du flux du vecteur densité de courant électrique ~j, selon la loi div ~j = 0

Page 16: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

272 Manuel de Physique

Conductance thermique

Dans un régime de conduction thermique sans terme de création, on définit de même la puissance thermique circulant entredeux surfaces (1) et (2) par :

Pc =∫

S

−λ ~gradT ·~ndS

et cette grandeur est l’analogue du courant électrique I. Là encore, la surface S peut être choisie arbitrairement entre lesdeux zones (1) et (2), dont la température fixée, à cause de la conservation du flux thermique assurée par l’absence de toutterme de création.De même, on peut expliciter la différence de température T1−T2 sous la forme :

T1−T2 =

2∫

1

− ~gradT ·d~r

pour assurer l’analogie avec la différence de potentiel V1−V2.Finalement, on définira logiquement la conductance thermique par la relation :

Gth =Pc

T1−T2=

S−λ ~gradT ·~ndS

2∫

1− ~gradT ·d~r

(36.4)

Pour fixer une température uniforme sur (1) et (2), on peut choisir un milieu tel que | ~gradT | est négligeable, c’est-à-dire telque λ est très élevé : on parle de conducteur thermique parfait.On peut bien sûr aussi définir la résistance thermique par Rth = 1

Gth. L’unité de mesure courante de Gth est le W ·K−1.

Analogie entre conductances

Pour des géométries analogues, les conductances électrique et thermique se calculent par la résolution d’équations ana-logues, avec des conditions aux limites analogues.On obtiendra donc des résultats identiques, à savoir la relation :

Gth

λ=

(36.5)

Par exemple, un élément cylindrique de section s et de longueur l aura pour conductances électrique et thermique G = γsl

et

Gth = λsl. On définit bien sûr encore la résistance thermique par Rth = 1/Gth ; dans le cas cylindrique déjà cité, Rth =

ls

.

36.1.3 Ailettes

Définition

Une ailette de refroidissement est un système, formé d’un bon conducteur thermique, destiné à évacuer une puissancethermique significative par transfert thermique pariétal convecto-conductif le long de la paroi séparant l’ailette du fluide quienvironne l’ailette.La base de l’ailette (x < 0, cf. figure 36.2) est maintenue à une température T1 > T0 ; l’ailette a pour but d’évacuer lapuissance thermique la plus élevée possible de la base vers le fluide environnant.Nous effectuerons l’étude de l’ailette en régime permanent ; nous lui attribuerons une longueur L et une forme cylindrique,de rayon r.L’ailette est formée d’un matériau conducteur thermique, de conductivité λ ; le coefficient de transfert thermique pariétal àla surface latérale de l’ailette sera noté h.

Page 17: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Méthodes de Laplace 273

x x+dx

x

T0

O

FIG. 36.2 – Ailette de refroidissement

Température le long de l’ailette

Effectuons le bilan thermique, en régime permanent, de la portion d’ailette comprise entre les sections d’abscisses x etx+dx. On l’écrira Φc +Φp = 0, soit encore ici :

jc(x)πr2− jc(x+dx)πr2 +h(T0−T (x))2πrdx = 0

qui peut s’écrire encore :

2hθ(x) =−rd jcdx

= rλd2θdx2

en fonction de la variable θ(x) = T (x)−T0. On en déduit immédiatement :

T (x) = T0 +αexp(

− xd

)

+βexp( x

d

)

d =

rλ2h

La détermination des constantes d’intégration α et β se fait en considérant les conditions aux limites ; d’une part, on a :

T (0) = T1 = α+β

et d’autre part, le flux thermique en bout d’ailette vérifie la relation de continuité :

−λdTdx

∣∣∣∣x=L

= h (T (L)−T0)

Toutefois, on fait souvent l’approximation dite d’« ailette infinie » (β = 0) pour déterminer la température dans l’ailette

T (x) = T0 +(T1−T0)exp(

− xd

)

.

Puissance thermique évacuée

La puissance thermique totale évacuée par l’ailette, dans l’approximation de l’ailette infinie, prend la valeur :

Φe =−λdTdx

∣∣∣∣x=0

πr2 = λπr2

d(T1−T0)

On peut donc faire apparaître un coefficient pariétal effectif h′ défini par :

Φe = h′πr2 (T1−T0) h′ =λd

=

2hλr

On améliore bien sûr le transfert thermique si h′ h⇔ λ hd.

Page 18: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

274 Manuel de Physique

36.2 Régimes variables

36.2.1 Régimes harmoniques

Oscillations thermiques

La température T dans un milieu conducteur thermique peut varier au cours du temps de manière sinusoïdale si une excita-tion extérieure impose cette variation sinusoïdale, et si on néglige les régimes transitoires.La présence de l’oscillation sinusoïdale se manifeste par exemple par l’existence de conditions aux limites sinusoïdales.Celles-ci trouvent par exemple leur origine dans les cycles astronomiques.Les variations de période 24 heures (alternance jour/nuit) portent le nom d’oscillations nycthémérales.Les variations de période égale à une année (alternance été/hiver) portent le nom d’oscillations annuelles.

Ondes thermiques

Dans le cas d’un régime d’oscillation sinusoïdale de température, et en l’absence de tout terme pl de création, on pourraposer T (~r, t) = Tm +ℜ(Θ(~r)exp [iωt]), ce qui mène à la forme particulière de l’équation de diffusion thermique :

−λ∆Θ+ iωµcΘ = 0 (36.6)

On reconnaît ici l’équation de l’effet Kelvin ou effet de peau, établie pour l’étude des régimes sinusoïdaux de conductiondans les conducteurs électriques :

−∆~E + iωµ0γ~E =~0

En particulier, des ondes thermiques peuvent se propager, avec atténuation, dans un tel milieu ; la profondeur de pénétrationde ces ondes est donnée par la résolution en onde plane :

Θ(~r) = Θ0 exp[

−i~k ·~r]

= Θ0 exp [−ikx]

k2 =−iωµc

λk =±1− i

δδ =

λ2ωµc

(36.7)

En particulier, la distance caractéristique δ d’atténuation de l’amplitude des oscillations thermiques varie comme1√ω

;

cette distance est√

365' 20 fois plus courte pour les variations nycthémérales que pour les variations annuelles ; ainsi, lesvariations périodiques annuelles de température en profondeur dans le sol restent ressenties en profondeur (avec un retardde phase) alors que les variations nycthémérales ne le sont plus.

36.2.2 Régimes transitoires et diffusivité thermique

Diffusivité thermique

En l’absence de terme de création (pl = 0), l’équation de la diffusion thermique peut s’écrire :

D∆T =∂T∂t

D =λµc

(36.8)

où la diffusivité thermique du milieu est définie par le coefficient D. Cette diffusivité se mesure en m2 · s−1. Dans unproblème dont les dimensions caractéristiques sont de l’ordre de grandeur de L, on s’attend donc à trouver des duréescaractéristiques (constante de temps τ par exemple) données par :

τ∼ L2

D(36.9)

Cette relation appelle deux commentaires généraux :

Page 19: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Méthodes de Laplace 275

– Dans l’équation d’ondes de d’Alembert, la grandeur caractéristique est une célérité c est les durées caractéristiques varient

proportionnellement aux distances caractéristiques (τ∼ Lc

).

Ici on observera des variations proportionnelles au carré L2 de ces dimensions, ce qui signifie une durée de transportdes variations de température qui augmente rapidement avec la dimension des systèmes étudiés. On dira que la diffusionthermique ralentit lorsque la taille du système augmente.

– La durée des phénomènes de diffusion est d’autant plus brève que la diffusivité est plus importante (pour une dimensiondonnée du système), ce qui justifie le terme de diffusivité. En particulier, on obtient une diffusion efficace (c’est-à-direrapide) pour un milieu de conductivité élevée (bons conducteurs thermiques), on de capacité thermique faible (mauvaispouvoir d’accumulation de l’énergie thermique.

Diffusion et irréversibilité

L’équation de d’Alembert est invariante par renversement du sens du temps, du fait de l’intervention d’une dérivée seconde∂2

∂t2 ; ce fait se manifeste par l’existence à égalité de solutions (OP) du type f (x− ct) et f (x+ ct).

Au contraire, l’équation de diffusion fait intervenir une dérivée première, et l’inversion du sens du temps n’est plus indiffé-rente ; on retrouve le fait que l’irréversibilité des transferts thermiques impose le sens d’évolution des systèmes en cours dediffusion.En particulier, on peut rechercher des solutions élémentaires de l’équation de diffusion sous la forme de régimes transitoiresdu premier ordre :

T (~r, t) = T0 +T1(~r)exp(

− tτ

)

où on imposera bien sûr τ > 0 ; une telle solution vérifie l’équation de la diffusion thermique seulement si T1(~r) est solutiond’une équation aux valeurs propres de l’opérateur de Laplace :

∆T1(~r) =− 1d2 T1(~r) d2 =

En particulier, dans le cas où on recherche une solution unidimensionnelle cartésiennes :

d2T1(x)dx2 =− 1

d2 T1(x)⇒ T1(x) = Ta cos( x

d+ϕ)

et la température peut se mettre sous la forme :

T (x, t) = T0 +Ta cos( x

d+ϕ)

exp

(

−d2tD

)

Conditions aux limites périodiques

Si la température T (x) ou le courant thermique jc = −λdTdx

présente, dans le cas unidimensionnel, des conditions aux

limites périodiques3, la solution présentée ci-dessus ne peut en général pas satisfaire à ces conditions aux limites.Considérons par exemple une barre de longueur L calorifugée sur toutes ses extrémités ; on doit donc imposer la continuitédes flux thermiques sous la forme :

dTdx

∣∣∣∣x=0

=dTdx

∣∣∣∣x=L

= 0

ce qui impose ϕ = 0 et sinLd

= 0 donc nécessairement l’existence d’au moins un entier n tel que d =Lnπ

. On pourra alors

chercher, du fait de la linéarité de l’équation de la diffusion, sa solution sous la forme :

3Par exemple, si les valeurs de T ou de sa dérivée jc sont fixées en deux points représentant les deux extrémités du milieu unidimensionnel étudié.

Page 20: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

276 Manuel de Physique

T (x, t) = T0 +∞

∑n=1

Tn cos(

nπxL

)

exp

(

− L2tnπ2D

)

où les coefficients Tn peuvent être reliés aux conditions initiales :

T (x, t = 0) = T0 +∞

∑n=1

Tn cos(

nπxL

)

c’est-à-dire qu’ils forment les coefficients impairs de la série de Fourier d’une fonction de période 2L, obtenue par prolon-gement pair sur [−L;L] de la condition initiale T (x, t = 0).

Diffusion illimitée

La solution unidimensionnelle ci-dessus a été présentée dans le cadre de la résolution d’une EDP par décomposition de lasolution en série de Fourier. Pour rechercher une solution de l’équation de diffusion en l’absence de conditions aux limites(diffusion dans un milieu illimité), il est logique de proposer une méthode basée sur la décomposition en intégrales deFourier.Toutefois, une telle résolution sortant du cadre mathématique de notre programme, nous nous contenterons d’exhiber unesolution particulière, qu’on peut s’attendre à retrouver fréquemment dans tout problème de diffusion thermique illimité.

Du fait du comportement déjà cité de la diffusivité (τ ∼ L2

D), nous chercherons une solution unidimensionnelle sous la

forme :

T (x, t) = T0 + f

(x2

Dt

)

g(t) = f (u)g(t)

où la variable u =x2

Dtest sans dimension. Pour la simplicité de la résolution, nous chercherons de plus f sous forme d’une

fonction exponentielle, soit f (u) = f0 exp(−pu). Il vient alors :

∂T∂t

= f (u)[

put

g(t)+g′(t)]

et, après calculs∂2T∂x2 =

2g(t)Dt

f (u)(−p+2up2)

et l’identification avec l’équation de la diffusion impose−2p+ pu(4p−1)= tg′

g; on en déduit immédiatement p =

14

donc

tg′

g=−1

2; la solution correspondante est une distribution gaussienne de température, d’amplitude décroissante comme

1√t

et d’écart-type croissant comme√

t, qui décrit l’affaiblissement par diffusion d’un pic de température :

T (x, t) = T0 +Θ√

texp

(

− x2

4Dt

)

Page 21: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

37Rayonnement thermique

MAX PLANCK (1858—1947)

37.1 Rayonnement électromagnétique

37.1.1 Rappels

Champ électromagnétique

Le rayonnement électromagnétique consiste en la propagation simultanée dans le vide, et dans certains milieux assimilés,d’un champ électrique ~E(~r, t) et d’un champ magnétique ~B(~r, t).Dans un milieu isotrope d’indice n, on établit la relation de Maxwell-Faraday :

~B(~r, t) =nc~u∧~E(~r, t)

si ~u est le vecteur unitaire de la direction de propagation. Dans un tel milieu, on montre la relation de structure des ondesplanes progressives, ~B(~r, t) ·~u = 0 et ~E(~r, t) ·~u = 0. Ces deux champs se propagent ensemble et à la même vitesse c/n, oùc = 2.9979458×108 m · s−1.

Milieux transparents

Nous ne considérons que les milieux matériels transparents. Ceci peut n’être vérifié que dans un certain domaine de fré-quence, hors de ce qu’on appelle les bandes ou zones d’absorption ; on peut alors, dans le cadre de certains modèles, montrerque n > 1 pour les milieux moléculaires non absorbants.Nous ne considérerons dans le suite que le cas où n est voisin de l’unité, comme par exemple pour l’air dans les conditionsnormales de température et de pression et dans le domaine de fréquence correspondant à la lumière visible.

Page 22: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

278 Manuel de Physique

Fréquence et longueur d’onde

Rappelons encore que le rayonnement électromagnétique se traduit, en chaque point de l’espace, par une oscillation deschamps ~E et ~B, qu’on peut caractériser par sa fréquence ν ou par sa pulsation ω = 2πν, mais qu’on préfère souvent enpratique décrire au moyen de la longueur d’onde dans le vide du rayonnement, définie par :

λ0 =cν

=2πk

(37.1)

Un usage abusif mais commun transforme en général cette notion, dans le vocabulaire courant, en longueur d’onde λ, alorsque la « vraie » longueur d’onde de l’onde électromagnétique dépend bien sûr de l’indice optique n. La classification desdivers domaines des ondes électromagnétiques est rappelée dans le tableau ci-après.

Nom des ondes électromagnétiques Limites (approximatives) de λOndes radio plus de 1m

Hyperfréquences ou ondes centimétriques de 0,1 mm à 1 mInfrarouge de 750 nm à 0,1 mm

Lumière visible de 400 nm à 750 nmUltraviolets de 10−10 m à 400 nmRayons X de 10−12 m à 10−10 mRayons γ moins de 10−12 m

Vecteur de Poynting

En tout point où parvient une telle onde, on a montré qu’elle transporte une puissance électromagnétique qui se met sousforme d’une intégrale de surface, étendue à la surface qui reçoit cette puissance :

P(t) =

S~R(~r, t) ·~ndS avec ~R(~r, t) =

1µ0

~E(~r, t)∧~B(~r, t)

37.1.2 Courant thermique de rayonnement

Définitions

La somme des puissances rayonnées à travers une surface (S), portant sur les différentes directions de rayonnement, etdéterminée en moyenne temporelle, s’écrit nécessairement comme une intégrale de surface ; on la notera :

Φr =

Sjr dS

où on remarque que la densité volumique de puissance rayonnée jr n’est plus définie de façon vectorielle, puisqu’il s’agiten général d’une somme sur plusieurs directions.C’est ce terme jr, analogue des grandeurs jc et jp définies plus haut lors des études de la conduction et des transfertspariétaux, que nous étudierons dans ce qui suit. Notons ici que jr est algébrique ; son signe dépend du sens du transferteffectif global à travers la surface étudiée. Nous choisirons dans toute la suite une convention thermodynamique, imposantjr > 0 pour un flux reçu par le système (Σ) étudié1.

Bilans thermiques de rayonnement

Les milieux transparents étudiés, siège de la propagation des ondes électromagnétiques, seront limités par des corps solidesou liquides considérés comme des matériaux opaques, sur la surface desquels la totalité du rayonnement électromagnétiqueincident est soit réfléchi, soit absorbé.

1Il est important de noter que les conventions de signe sont souvent très floues ; on prendra soin de les préciser lors de la résolution d’un problème debilans thermiques de rayonnement.

Page 23: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Rayonnement thermique 279

Ajoutant aux flux réfléchi et absorbé un flux éventuellement émis (si le corps étudié est lui-même un émetteur de rayonne-ment électromagnétique), on pourra faire un bilan thermique pour le système (Σ) de surface extérieure (S) en écrivant lapuissance reçue par (Σ) sous la forme :

Pt =

Sjr dS+

Sjp dS (37.2)

où on a choisi ici encore de compter positivement jr et jp s’ils sont reçus par le système.

Flux hémisphérique

La grandeur jr porte ici le nom de flux hémisphérique unitaire, puisque c’est la somme de toutes les puissances traversantvers l’extérieur l’unité de surface extérieure au corps opaque étudié, du fait du rayonnement, quelle que soit le sens depropagation de ce rayonnement.On verra plus loin qu’on peut décomposer ce flux hémisphérique et diverses composantes (incidente, réfléchie, ...).D’autre part, on verra encore qu’on peut en proposer une décomposition spectrale, détaillant la répartition de la puissanceunitaire jr en fonction de la fréquence ν à laquelle elle est émise, ou de la longueur d’onde λ correspondante.

Équilibre thermique, équilibre radiatif

En l’absence de transferts de travail, un système (Σ) sera en équilibre thermique (et donc en particulier à énergie interneconstante) si la puissance thermique totale reçue s’annule, Pt = 0 On parlera d’équilibre radiatif dans le cas particulier où ce

système est en équilibre thermique sous l’action des seules grandeurs liées au rayonnement, selon Pt = Φr =∮

Sjr dS = 0.

Enfin, on parlera d’équilibre radiatif local2 si cette relation est partout localement vraie : jr = 0.

37.2 Transferts thermiques par rayonnement

37.2.1 Définitions

Généralités

Ce qui suit est consacré à une étude simplifiée et phénoménologique des transferts thermiques associés au rayonnement ;certains résultats sont admis, et de nombreuses définitions ont essentiellement un but descriptif. Des développements théo-riques sont présentés ultérieurement (modèle statistique de Planck, et modèle de l’émission stimulée d’Einstein), formantdes liens entre l’étude du rayonnement thermique, la Thermodynamique statistique et l’Électromagnétique.

Absorption et réflexion

Comme on l’a déjà indiqué, lors de l’abord de la surface extérieure d’un obstacle opaque, le flux énergétique incident estsoit réfléchi, soit absorbé :

j↓r = jrr + ja

r

ABSORPTION DU RAYONNEMENT

Le rayonnement électromagnétique incident sur la surface extérieure d’un système thermodynamique(Σ) peut exciter des modes de vibration des atomes du système (Σ), conduisant à l’absorption d’unepartie du flux incident.

On pourra définir un coefficient de réflexion énergétique R par la relation3 R =jrr

j↓r∈ [0;1].

Le phénomène de réflexion totale (R = 1) représente un cas exceptionnel. Plus généralement, la réflexion ne suit les lois deSnell-Descartes que pour les matériaux à état de surface idéalement régulier.

2L’équilibre radiatif local est parfois improprement appelé équilibre thermodynamique local, d’où la notation ETL.3Dans le cas de la réflexion par une planète de la lumière émise par le Soleil, le coefficient R prend le nom d’albédo.

Page 24: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

280 Manuel de Physique

j↓r jrr = R j↓r

jar = j↓r − jr

r

Système (Σ)

FIG. 37.1 – Répartition du flux incident j↓r

Précisons ici les conventions de signe adoptées : chaque flux hémisphérique radiatif est compté positivement le long d’unenormale à la surface du corps opaque, qui est dirigée dans le sens de propagation moyen du rayonnement correspondant :vers l’extérieur pour le rayonnement réfléchi, vers l’intérieur pour le rayonnement incident.Le flux absorbé est, par construction, positif, comme le flux réfléchi et le flux incident. Par contre, pour faire un bilanénergétique pour le système (Σ), on devra affecter ja

r d’un signe positif et jrr d’un signe négatif :

Φar =

Sjar dS Φr

r =−∮

Sjrr dS

Émission et réflexion

En plus de ces deux cas (réflexion et absorption) (qui font partie de ceux ordinairement étudiés en optique par exemple),nous allons décrire ici des situations dans lesquelles la surface de tel ou tel corps opaque peut aussi émettre du rayonnementélectromagnétique, en particulier en liaison avec la température de ce corps émetteur.

ÉMISSION DE RAYONNEMENT

La désexcitation des atomes du système thermodynamique (Σ) peut conduire à l’émission de rayonne-ment électromagnétique par (Σ). Ce rayonnement émis s’ajoute au rayonnement réfléchi pour former lerayonnement total partant de la surface de (Σ).

Ainsi, si on étudie le flux radiatif hémisphérique partant (ou émergent) j↑r de l’élément de surface du corps opaque, onconstate qu’il est, en général, supérieur au seul flux réfléchi ; le supplément est appelé flux radiatif hémisphérique émis jre

par l’unité de surface du corps opaque, avec la relation :

j↑r = jrr + je

r

Ici, les normales conventionnelles sont dirigées vers l’extérieur du corps opaque pour les trois flux positifs j↑r , jrr et je

r d’oùles puissances correspondantes :

Φrr =−

Sjrr dS Φe

r =−∮

Sjer dS

en convention thermodynamique pour le corps (Σ) de surface extérieure (S).

Flux radiatif

On peut encore définir le flux radiatif total surfacique à la paroi du corps opaque par les relations :

jr =− j↑r + j↓r =− jer + ja

r (37.3)

et la puissance totale reçue par rayonnement par le corps intérieur à (S) s’écrit :

Page 25: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Rayonnement thermique 281

Pr =∮

S

(

− j↑r + j↓r)

dS =∮

S(− je

r + jar )dS

Le flux radiatif jr et l’ensemble de ses composantes décrites ci-dessus s’expriment en W ·m−2 ; ils constituent donc desgrandeurs locales ou extensives relativement à la surface du corps opaque considéré.Par contre il s’agit de grandeurs intégrales relativement à la direction de propagation du rayonnement, et aussi relativementà la longueur d’onde du rayonnement considéré.

Étude spectrale

Seule l’étude spectrale (en fonction de la longueur d’onde) figure à notre programme, dans le seul cas de l’équilibre ther-modynamique local. On la caractérise en limitant l’étude du flux radiatif et de ses composantes à un intervalle de longueurd’onde [λ;λ+dλ] pour lequel les divers flux hémisphériques se mettent sous la forme :

d jx =d jxdλ

On peut aussi étudier d’autres répartitions spectrales, en fonction de la fréquence ν par exemple, d jx =d jxdν

dν ; compte tenu

de ν =cλ

donc |dν|= cλ2 |dλ|, on a bien sûr

d jxdν

=λ2

cd jxdλ

.

On peut repasser au flux total à partir du flux spectral par les relations :

jx =

∫ ∞

ν=0

d jxdν

dν =

∫ ∞

λ=0

d jxdλ

37.2.2 Rayonnement d’équilibre

Loi de Planck

Nous admettrons provisoirement la loi de Planck, qui énonce qu’un corps opaque, non réfléchissant, à l’équilibre radiatif(à la température T ) dans un milieu transparent d’indice unité admet des valeurs égales des flux hémisphériques spectrauxincident et partant, avec pour valeur commune la densité spectrale de rayonnement d’équilibre :

d j↓rdλ

=d j↑rdλ

=d je

dλd je

dλ=

2πhc2

λ5

1

exp(

hcλkBT

)

−1(37.4)

en tout point de la surface du corps opaque, en fonction des constantes de Planck 4 h et de Boltzmann5 kB. Compte tenu dela méthode changement de variable déjà signalée, on en donne aussi l’expression en termes de fréquence :

d j↓rdν

=d j↑rdν

=d je

dνd je

dν=

2πhν3

c2

1

exp(

hνkBT

)

−1(37.5)

Constante de Planck

Cette expression a été proposée par Planck pour des raisons théoriques, et les deux constantes fondamentales qui y figurentsont la constante thermodynamique microscopique de Boltzmann et une autre constante, introduite par Planck pour alignersa formule théorique avec les valeurs expérimentales :

kB = 1,3805×10−23 J ·K−1 h = 6,6262×10−34 J · s (37.6)4L’œuvre du physicien allemand MAX PLANCK (1858-1947) est fondamentale. Einstein a salué en son auteur un homme à qui il a été donné de doter

le monde d’une grande idée créatrice et dont la découverte devint la base de toute la recherche en physique au vingtième siècle.5Le physicien autrichien LUDWIG BOLTZMANN (1844-1906) fut à Vienne l’élève de Josef Stefan. Il a eu une influence a été profonde sur le dévelop-

pement de la science moderne. Par son interprétation de l’entropie, qui introduit la probabilité en thermodynamique, il a inspiré les travaux de Planck etd’Einstein sur la théorie statistique du rayonnement, sur l’hypothèse des quanta et des photons.

Page 26: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

282 Manuel de Physique

Équilibre radiatif

Puisque les flux incident et partant sont égaux, l’équilibre radiatif local d’un corps opaque avec le milieu environnant (enl’absence donc de flux conductif et de flux pariétal convecto-conductif) est donc bien sûr caractérisé par un flux radiatif nul :

d jrdλ

=−d j↑rdλ

+d j↓rdλ

=−d jer

dλ+

d jar

dλ= 0

et on obtient le même résultat pour les flux hémisphériques totaux, par intégration sur l’ensemble du spectre des longueursd’onde.

37.3 Conséquences de la loi de Planck

37.3.1 Lois de Wien et de Stefan

Expressions de la loi

Notons d’ores et déjà que l’expression de la loi de Planck en termes de fréquence est utilisée pour les développementsthéoriques, tandis que la forme écrite en fonction de la longueur d’onde est celle que nous utiliserons en pratique.Pour analyser les conséquences formelles de la loi de Planck, écrivons la sous la forme :

d je

dλ=

2πk5BT 5

h4c3 f (u) u =hc

kBλTf (u) =

u5

exp(u)−1

u

f (u)

4.9651

FIG. 37.2 – Tracé de f (u) =u5

exp(u)−1

Le tracé de la fonction f est relativement aisé ; nous remarquerons que :

d fdu

=u5

(exp(u)−1)2 (5−u−uexp(−u))

soit encore, si exp(u) 1,

d fdu' u5

(exp(u)−1)2 (5−u)

qui s’annule lorsque u0 ' 5 (en fait, pour u0 = 4,9651). On en déduit la forme de f (u), et donc de la loi de Planck, à unetempérature donnée ; f (u) est tracée sur la figure 37.2.

Page 27: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Rayonnement thermique 283

Loi du déplacement de Wien

En particulier, le rayonnement partant (ou incident) à l’équilibre thermique admet un maximum pour une certaine longueurd’onde λ0 qui vérifie :

λ0T =hc

kBu0= 2,895×10−3 m ·K (37.7)

d je

λ0 = 579nm (jaune)

λ0 = 827nm (infrarouge)

3500 K

5000 K

FIG. 37.3 – Spectres de la loi de Planck à 3500 K et 5000 K

La relation entre λ0 et T porte le nom de loi de déplacement de Wien 6.On n’oubliera cependant pas que la hauteur du maximum varie aussi avec la température, proportionnellement à T 5 ; on peutainsi proposer, sur la figure 37.3, la comparaison des répartitions spectrales de flux hémisphériques à 3500 K et 5000 K. On

notera que les tracés sont ici effectués en fonction de1λ

; un tracé en fonction de λ est proposé plus loin.

Loi de Stefan-Boltzmann

On constate en particulier que l’émission totale augmente très fortement avec la température ; on peut caractériser celle-ciquantitativement par l’intégrale :

je =

∫ ∞

λ=0

d je

dλdλ =

2πhk4BT 4

h4c2

∫ ∞

0

u3

exp(u)−1du

qu’on écrira encore :

je = σT 4 σ =2πk4

B

h3c2

∫ ∞

0

u3

exp(u)−1du

Le calcul de cette intégrale se fait sous la forme :

I =

∫ ∞

0

u3

exp(u)−1du =

∫ ∞

0

u3 exp(−u)

1− exp(−u)du =

∫ ∞

0u3 exp(−u) [1+ exp(−u)+ exp(−2u)+ · · ·]du

6Le physicien allemand WILHELM WIEN (1864-1928) travaillait dans le laboratoire de Hermann von Helmholtz. L’amélioration des techniques demesure des hautes températures lui permit d’énoncer la loi qui porte son nom ; c’est lui qui proposa en 1894 la définition du corps noir proposée plus bas.Il obtient le prix Nobel de physique en 1911.

Page 28: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

284 Manuel de Physique

au moyen d’un développement de Taylor du dénominateur. Notons alors :

Kα =

∫ ∞

0u3 exp(−αu)du =

1α4

∫ ∞

0v3 exp(−v)dv

on reconnaît une intégrale faisant partie d’une suite récurrente :

Jn =

∫ ∞

0vn exp(−v)dv = [−vn exp(−v)]∞0 +nJn−1 = nJ−1

ce qui permet d’affirmer J3 = 6J0, et un calcul immédiat montre que J0 = 1. Finalement, Kα =6

α4 d’où :

I = 6∞

∑α=1

1α4 = 6

π4

90=

π4

15

On en déduit la loi de Stefan7 :

je = σT 4 σ =2π5k4

B

15h3c2 = 5,67×10−8 W ·m−2 ·K−4 (37.8)

Flux pariétal équivalent

Considérons une surface S d’un corps porté à la température T , dont le rayonnement est donné par la loi de Planck. Leséchanges thermiques par rayonnement entre ce corps et son environnement se font par l’intermédiaire du flux émis (doncnégatif), Φe

r =−SσT 4. Si l’extérieur rayonne aussi selon la même loi, avec une température T ′ et une surface rayonnanteS′, par l’intermédiaire du flux reçu, Φr

r = +S′σT ′4.Dans le cas de l’étude d’un corps disposé en face d’un autre avec, entre ces deux corps, un faible écart de température, onpeut donc écrire le flux total reçu sous la forme :

Φr = Sσ(T ′4−T 4)' 4SσT 3(T ′−T )

ce qui montre que les échanges thermiques par rayonnement peuvent se mettre sous une forme équivalente aux transfertspariétaux convecto-conductifs, avec le coefficient équivalent :

hr = 4σT 3 (37.9)

Étendue spectrale

On peut encore remarquer que le spectre d’émission représenté par la loi de Planck reste peu étendu de part et d’autre dela longueur d’onde maximale ; en particulier, on qualifie en général d’étendue spectrale d’un émetteur à l’équilibre à la

température T l’intervalle de longueurs d’onde

[12

λ0;8λ0

]

car on peut montrer numériquement que :

∫ 8λ0

λ02

d je

dλdλ = 0.98σT 4

ce qui signifie que cette étendue spectrale concentre 98% de la lumière partant du corps opaque considéré.On peut, compte tenu de la loi de Wien, donner quelques valeurs numériques ; elles sont reportées dans le tableau 37.5.La première ligne (T = 3 K), dans le domaine des ondes centimétriques correspond au rayonnement électromagnétiquefossile (rayonnement cosmologique) considéré aujourd’hui comme la preuve la plus flagrante de l’explosion initiale (bigbang) de l’Univers.Si les deux lignes suivantes (T = 300 K et T = 1500 K) relèvent de l’infrarouge, la quatrième (qui décrit assez bien unepartie du rayonnement solaire, avec T = 5700 K) est partiellement dans le domaine visible, débordant dans les prochesinfrarouge et ultraviolet, avec un maximum d’émission à 530 nm, voisin du maximum de sensibilité de l’oeil humain moyen(560 nm environ), qui est situé dans le jaune.

L’étendue spectrale du rayonnement est visualisée sur la figure 37.4, qui représented jedλ

en fonction de λ.

7Les travaux du physicien autrichien JOSEF STEFAN (1835-1893) ont porté sur la théorie cinétique des gaz, l’hydrodynamique et surtout sur la théoriedu rayonnement. Stefan démontre empiriquement en 1879 que l’intensité du rayonnement du corps noir est proportionnelle à la quatrième puissance de satempérature absolue, relation connue depuis sous le nom de loi de Stefan-Boltzmann, Boltzmann l’ayant déduite en 1884 de considérations thermodyna-miques.

Page 29: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Rayonnement thermique 285

λ

d je

Étendue spectrale

λ012 λ0 8λ0

FIG. 37.4 – Étendue spectrale du rayonnement

Température d’équilibre λ0/2 8λ0

3 K 0,5 mm 8 µm300 K 5 µm 80 µm

1500 K 1 µm 16 µm5700 K 260 nm 4,2 µm

FIG. 37.5 – Limites de quelques étendues spectrales

37.3.2 Corps noir

Définition

Un corps noir ou absorbeur intégral est un corps opaque qui absorbe tout rayonnement incident, quelles que soient lesdirections de rayonnement et ce, à toute longueur d’onde. Le flux partant est donc le seul flux émis, jrr = 0⇒ j↓r = jra

(absorbeur intégral) donc j↑r = jre (flux partant = flux émis), que le corps noir soit ou non à l’équilibre thermodynamique.

Équilibre thermodynamique local du corps noir

Dans le cas de l’équilibre thermodynamique de l’ensemble du système formé d’un corps noir et de son environnement, leflux radiatif est nul et on peut donc appliquer la loi de Stefan sous les deux formes :

jrr = 0⇒ j↓r = jra = j↑r = jre = σT 4 (37.10)

d je

dλ=

d j↓rdλ

=d jra

dλ=

d j↑rdλ

=d jre

LOI DU CORPS NOIR

Les flux hémisphériques totaux et spectraux émis jre , absorbé jra , partant j↑r et incident j↓r sur la surfaced’un corps noir à l’équilibre à la température T sont donnés par les lois de Planck, Wien et Stefan-Boltzmann :

d je

dλ=

2πhc2

λ5

1

exp(

hcλkBT

)

−1λ0T = 2,895×10−3 m ·K je = σT 4

Page 30: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

286 Manuel de Physique

Pour cette raison, la loi de Planck du rayonnement thermique est aussi appelée loi de rayonnement du corps noir.Le corps noir est une idéalisation qui n’est pas présente dans la nature ; cependant, de nombreux systèmes réels réalisentune assez bonne approximation du corps noir, au moins dans certains domaines spectraux ou de température.Ainsi, un mur enduit de plâtre (blanc), qui est un corps assez bien réfléchissant dans le domaine visible (puisqu’il est blanc)peut-il être considéré comme un corps noir dans le domaine infrarouge.De la même façon, le verre, qui est pratiquement transparent dans le domaine visible, pour une température d’émetteur de5700 K, est un bon corps noir pour une source à 300 K. Cette propriété est rendue possible par le caractère disjoint desétendues spectrales des rayonnements solaire (5700 K, de 260 nm à 4,2 µm) et des objets terrestres (environ 300 K, entre5 µm et 80 µm).

Page 31: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

38Théories du rayonnement thermique

ALFRED KASTLER (1902–1984)

38.1 Les modèles classiques du rayonnement

38.1.1 Éléments de description

Source de rayonnement thermique

On peut réaliser une bonne approximation d’un corps noir au moyen d’un four, dont les parois métalliques sont portées à latempérature T .Dans ces conditions, le rayonnement électromagnétique qui s’établit, à l’intérieur de cette cavité, sous forme d’ondes sta-tionnaires, présente les caractéristiques spectrales de l’émission du corps noir.

RayonnementFour

FIG. 38.1 – Four, source de rayonnement thermique

Page 32: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

288 Manuel de Physique

On peut s’en rendre compte, sur le plan expérimental, en ouvrant une petite cavité dans une des parois du four pour observerle rayonnement qui en est issu (cf. fig 38.1).

Pression d’un gaz de photons

On a vu, par l’étude de la pression de radiation exercée par un flux de photons (ou par une onde électromagnétique plane)qu’on peut considérer chaque photon comme une particule d’énergie individuelle ε = hν et de quantité de mouvement

p =εc

=hνc

.

Considérons alors un modèle thermodynamique élémentaire, décrivant le four comme un récipient de température T , enéquilibre thermique avec le gaz de photons qu’il contient.Considérons aussi pour simplifier que le récipient est de forme parallélépipédique. Les photons ont tous la vitesse c, maiscelle-ci est répartie aléatoirement en direction.En moyenne, un sixième du flux total de photons se dirige, à chaque instant, vers une des parois ; un élément d’aire dS decelle-ci se verra, au cours de la durée dt, heurtée par un nombre de photons égal à :

dN =16

NV

dScdt

si N est le nombre total de photons. Chacun d’entre ces photons fournira, au cours de son choc élastique avec la paroi1, laquantité de mouvement 2p à celle-ci. L’augmentation de quantité de mouvement de la paroi peut donc s’écrire :

dP =13

NV

dShνdt

et la force par unité de surface correspondante, qui est la pression exercée par le gaz de photons, s’écrit :

P =13

NhνV

ou, en fonction de l’énergie interne U du gaz de photons :

P =13

UV

Énergie interne d’un gaz de photons

Admettons provisoirement que l’énergie interne d’un gaz de photons à l’équilibre thermique puisse s’écrire sous la forme :

U = w(T )V

où la densité volumique d’énergie w(T ) ne dépend que de la température T .L’écriture du premier principe de la Thermodynamique peut alors se faire selon :

dU = w(T )dV +VdwdT

dT = δQ+δW = δQr−13

w(T )dV

d’où le transfert thermique réversible :

δQr =43

w(T )dV +VdwdT

dT

et la variation correspondante de la fonction d’état entropie :

dS =δQr

T=

43T

w(T )dV +VT

dwdT

dT

ce qui permet encore d’écrire les dérivées partielles :

1L’hypothèse d’équilibre thermique impose bien sûr la conservation de l’énergie des photons, au moins en moyenne, au cours de ces chocs : l’énergiedu gaz de photons n’évolue pas.

Page 33: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 289

(∂S∂V

)

T=

43T

w(T )

(∂S∂T

)

V=

VT

dwdT

L’identité de Schwartz (égalité des dérivées secondes partielles croisées) permet alors d’écrire :

∂∂T

(4

3Tw(T )

)

=∂

∂V

(VT

dwdT

)

soit encore :

43

dwdT− 4

3w(T )

T=

dwdT

Après simplification et intégration, il vient la solution :

w(T ) = k T 4

qui évoque évidemment la loi de Stefan-Boltzmann... à condition de relier la densité volumique d’énergie w(T ) et la puis-sance surfacique émise je(T ).Quel que soit le modèle utilisé (modèle classique de Rayleigh2 et Jeans, étudié ci-après en 38.1.2, ou modèle statistique dePlanck, décrit plus bas en 38.2), la description microscopique des échanges énergétiques entre le corps noir et le rayonne-ment mène à une expression de la densité volumique d’énergie électromagnétique spectrale.Il reste donc à établir le lien entre densité spectrale d’énergie volumique et puissance électromagnétique émise par unité desurface d’un tel émetteur en équilibre thermique.

Lien entre énergie volumique et puissance émise

Considérons un élément de surface de la paroi d’un corps en équilibre thermique à la température T avec le rayonnementsitué à côté de sa surface ; on notera~n la normale extérieure à la surface et dS l’élément de surface étudié.Si on note ~c la célérité de la propagation de ce rayonnement, se propageant vers la surface, l’énergie contenue dans lecylindre de base dS~n et de génératrice~cdt —qui arrivera donc sur dS pendant dt— peut être notée, en remarquant que~c et~n sont de sens contraire :

dE =−δwdS~n ·~cdt

où δw est la densité volumique d’énergie incidente dans la direction définie par l’angle θ = (−~n,~c) à δθ près, soit, comptetenu de l’isotropie du rayonnement :

δw = wδΩ4π

= wsinθδθ

2

On remarque qu’on prend bien en compte tout l’angle solide 4π, ce qui prend en compte automatiquement le fait qu’unepartie seulement du rayonnement se dirige effectivement vers dS.Finalement, prenant en compte la répartition spectrale du rayonnement, le flux énergétique unitaire je, par unité d’aire et detemps, incident sur la surface des parois du corps en équilibre avec le rayonnement, s’écrit, par exemple en fonction de larépartition en fréquence :

dδ je =12

ccosθsinθδθdwdν

ou, sommant sur toutes les directions pour un flux hémisphérique :

2Le physicien anglais JOHN WILLIAM STRUTT, LORD RAYLEIGH (1842-1919) succéda à Maxwell comme titulaire de la chaire de physique expéri-mentale de l’université de Cambridge, avant d’occuper divers autres postes. Ses études ont porté sur pratiquement tous les domaines de la Physique. Lestravaux cités ici (étude des modes de vibration stationnaires des ondes électromagnétiques contenues dans une enceinte vide) datent de 1900. Il obtient leprix Nobel de physique et 1904 pour des travaux dans le domaine de l’Optique.

Page 34: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

290 Manuel de Physique

d je =

∫ π2

θ=0dδ je =

c4

dwdν

Finalement, le lien cherché s’écrit :

d jedν

=c4

dwdν

(38.1)

38.1.2 Le modèle classique de Rayleigh-Jeans

Champ électromagnétique dans le four

Nous étudierons un modèle classique décomptant le nombre de modes énergétiques pouvant s’établir dans le four, assimiléà une cavité métallique parfaitement conductrice.Une telle cavité cubique, vide, a pour longueur commune de ses côtés l ; ces côtés sont parallèles aux axes de coordonnéesOx, Oy et Oz d’une base orthonormée directe.Cherchons à quelles conditions peut se propager dans cette cavité un champ électrique monochromatique de pulsation ω :

~E(x,y,z, t) = exp(iωt) [Ex(x,y,z)~ux +Ey(x,y,z)~uy +Ez(x,y,z)~uz]

avec par hypothèse :

Ex(x,y,z) = E0x cos(kxx+φx)sin(kyy+φy)sin(kzz+φz)

Ey(x,y,z) = E0y sin(kxx+φx)cos(kyy+φy)sin(kzz+φz)

Ez(x,y,z) = E0z sin(kxx+φx)sin(kyy+φy)cos(kzz+φz)

Nous poserons encore :

~k = kx~ux + ky~uy + kz~uz ~E0 = E0x~ux +E0

y~uy +E0z~uz

et le champ électrique ci-dessus ne vérifie l’équation de Maxwell-Gauss qu’à la condition :

~k ·~E0 = 0

Ondes stationnaires

La seule autre condition imposée au seul champ électrique par les équations de Maxwell, l’équation de d’Alembert, s’écrit

~k2 =ω2

c2 . D’autre part, l’annulation des composantes tangentielles du champ électrique au voisinage immédiat des limites

métalliques de la boîte impose les relations :

Ex(y = 0) = Ex(y = l) = 0 Ex(z = 0) = Ex(z = l) = 0

et toutes celles qu’on en déduit par permutation circulaire, ce qui impose :

φx = 0 kx =nxπ

l

où nx est un entier, qu’on choisira positif. Dans ces conditions, les fréquences possibles dans la boîte sont quantifiées avecla relation :

Page 35: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 291

ω =cπl

n2x +n2

y +n2z

Ainsi, ω peut être considéré comme la longueur d’un rayon mené depuis d’origine d’un système de coordonnées arbitrairevers un point de coordonnées :

cπl

[nx,ny,nz]

c’est-à-dire un point appartenant à un réseau cubique.

Décompte des modes

Nous supposerons ici que la pulsation étudiée est assez élevée pour que le décompte du nombre de modes puisse se faire ensupposant pour ceux-ci une répartition quasiment continue.

Or

nx

ny

nz

FIG. 38.2 – Décompte des modes

Le nombre dN de modes dont la fréquence est comprise entre ω et ω+dω est égal au volume compris entre les huitièmesde sphères de rayons r et r +dr, avec :

r =lωπc

soit, chaque mode —triplet nx,ny,nz— occupant un volume unité, un nombre de modes égal à :

dN =18

4πr2dr =l3

2π2c3 ω2dω

Ce résultat peut encore être écrit sous diverses formes, en fonction de la pulsation ω, de la fréquence ν =ω2π

ou de la

longueur d’onde λ =cν

; cependant, on prendra en compte le fait que chaque mode peut correspondre à deux états de

polarisation indépendants, soit enfin les expressions que nous retiendrons pour la suite :

dNdω

=l3ω2

π2c3

dNdν

=8πl3ν2

c3 (38.2)

Page 36: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

292 Manuel de Physique

Le modèle de Rayleigh-Jeans

Compte tenu de ce qui précède, nous chercherons une description d’un absorbeur intégral sous forme d’une cavité métalliquede volume V , dans laquelle un rayonnement électromagnétique stationnaire s’établit.Comme on peut s’y attendre, les fréquences possibles dans un tel système stationnaire sont quantifiées ; nous établirons lenombre dN de solutions linéairement indépendantes des équations de Maxwell (ou nombre de modes) correspondant à unintervalle donné [ν;ν+dν] de valeurs de la fréquence.Ce nombre augmente fortement avec la valeur de la fréquence ν :

dNdν

=8πVν2

c3

La catastrophe ultraviolette

Avant l’introduction de la description de Planck, on pensait que le théorème d’équipartition de l’énergie devait s’appliquerdirectement au résultat précédent, donnant la valeur kBT à l’énergie de chacun des modes ci-dessus.L’expression de la densité volumique d’énergie électromagnétique qui en résulte (ou expression de Rayleigh-Jeans) :

ddν

dEdτ

=dudν

=8πkBT ν2

c3

est évidemment absurde, puisqu’elle prévoir une augmentation indéfinie de la densité volumique d’énergie vers les hautesfréquences (on parle de catastrophe ultraviolette).Par contre, cette expression donne, pour tous les émetteurs thermiques, à basse température, une bonne approximation de ladensité volumique d’énergie.Le modèle statistique de Planck a donc pour but d’améliorer l’expression du théorème d’équipartition de l’énergie, c’est-à-dire de déterminer l’énergie moyenne associée à un mode électromagnétique de fréquence ν.

La loi de Rayleigh-Jeans

Compte tenu de ce qui précède, on montre immédiatement la loi du rayonnement qui découle des hypothèses de Rayleigh-Jeans sous la forme :

d jedν

=2πkBT ν2

c2 (38.3)

dont on vérifie immédiatement qu’elle constitue une bonne approximation de la loi de Planck, à basse fréquence ou à hautetempérature (cf. fig. 38.3) :

kBT hν⇒ 2πhν3

c3(

exp(

hνkBT

)

−1) ' 2πhν3

c3 hνkBT

=2πkBT ν2

c2

Le modèle de Planck évite la divergence à haute fréquence (catastrophe ultraviolette) en rendant compte de la moindreprévalence des modes de haute fréquence du fait d’un modèle statistique faisant intervenir un facteur de Boltzmann :

ν→ ∞⇒ exp

(

− hνkBT

)

→ 0

38.2 Le modèle statistique de Planck

38.2.1 Statistique de Planck-Boltzmann

Échanges d’énergie avec le rayonnement

Planck a supposé que les échanges d’énergie entre les parois de l’émetteur (à la température T ) et un rayonnement élec-tromagnétique monochromatique ne peuvent se faire que par quanta, multiples de la plus petite énergie portée par unrayonnement de pulsation donnée.

Page 37: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 293

ν

d jedν

Modèle de Planck

Modèle de Rayleigh-Jeans

catastrophe ultraviolette

FIG. 38.3 – Comparaison des modèles de Planck et Rayleigh-Jeans

Ainsi les valeurs de l’énergie échangée avec le rayonnement électromagnétique sont nécessairement égales, à chaqueéchange3, à hν = hω.Après les travaux d’Einstein, cette affirmation a été relue ainsi : les parois de l’émetteur ne peuvent émettre ou recevoir quedes photons individuels, d’énergie hν.

Énergie du rayonnement

A tout instant, le rayonnement électromagnétique (toujours supposé monochromatique) contenu dans la cavité d’un émetteurthermique est constitué d’un certain nombre n de photons ; le nombre n fluctue avec les échanges paroi–rayonnement.Les valeurs de n faibles correspondent à une faible énergie, et sont donc très probables. Au contraire, les valeurs de n élevéescorrespondent à une énergie élevée, et sont donc peu probables. Globalement, il existe une valeur moyenne de n pour chaquetempérature T , ce qui correspond à une énergie moyenne d’un tel mode, fonction de ν et T .Cette énergie moyenne n’est pas exactement égale à kBT , ce qui constitue la modification souhaitée au théorème d’équipar-tition de l’énergie.

La statistique de Planck-Boltzmann

Chaque état d’oscillation, de fréquence ν est, dans le modèle de Planck, associé à l’énergie :

En = nhν

Les différentes valeurs de n ∈ N sont alors réparties selon la loi statistique de Boltzmann, la probabilité d’observer unnombre n de photons émis simultanément étant :

P(n) = K exp

(

− nhνkBT

)

où la constante de normalisation K est donnée 1 =∞

∑n=0

P(n), d’où on déduit immédiatement :

P(n) = exp

(

− nhνkBT

)(

1− exp

(

− hνkBT

))

Enfin, l’énergie moyenne de chacun des oscillateurs si la fréquence est ν peut s’écrire :

3La constante de Planck rationnalisée h est égale à h3π .

Page 38: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

294 Manuel de Physique

〈E〉=∞

∑n=0

nhνP(n)

ou, après des calculs élémentaires :

〈E〉(ν,T ) =hν

exp(

hνkBT

)

−1(38.4)

On vérifie aisément que :

limT→∞〈E〉(ν,T ) = kBT

Loi de Planck

L’énergie disponible dans la boîte cubique, de côté l, par unité de pulsation et de volume s’écrit :

dudν

= 〈E〉 1l3

dNdν

soit, en admettant que ces expressions sont indépendantes de la forme de la boîte et de la nature des modes d’oscillationélectromagnétique stationnaires dans la boîte :

dudν

=8πhν3

c3(

exp(

hνkBT

)

−1)

Finalement, on en déduit, compte tenu des relations cinématiques écrites plus haut :

d jedν

=2πhν3

c3(

exp(

hνkBT

)

−1) (38.5)

qui constitue la loi de Planck.On verra au chapitre suivant une interprétation différente de la même loi, basée sur la notion d’émission induite proposéepar Einstein.

38.2.2 Généralisation : oscillateurs quantiques

Position du problème

Le modèle statistique de Planck constitue la première apparition de la quantification de l’énergie associée à une onde, depulsation ω.Nous allons montrer que le lien entre pulsation propre de l’oscillateur et niveaux d’énergie ne constitue pas un cas isolé,mais bien une solution générale de l’équation de Schrödinger.Considérons pour cela une particule de masse m, astreinte à se déplacer sur un axe (on parle d’oscillateur unidimensionnel)Ox sous l’action de forces dérivant d’une énergie potentielle élastique, qu’on écrira :

Ep(x) =12

mω2x2

où ω est la pulsation de l’oscillateur associé dans le cadre de la mécanique classique.On cherche donc à résoudre l’équation de Schrödinger indépendante du temps :

− h2

2md2ϕ(x)

dx2 +12

mω2x2ϕ(x) = Eϕ(x)

Page 39: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 295

Une solution particulière

Cherchons d’abord une solution particulière de cette équation linéaire sous la forme d’une solution gaussienne4 qu’onécrira :

ϕ0(x) = A0 exp(−ax2)

ce qui impose nécessairement :

dϕ0

dx=−2Aaxexp

(−ax2) dϕ0

dx=−2Aaexp

(−ax2)[1−2ax2]

et on obtient une solution de l’équation de Schrödinger sous réserve que :

h2

2m

(2a−4a2x2)+

12

mω2x2 = E

pour tout x, donc encore :

12

mω2 = 2h2a2

mE =

h2am

et la solution trouvée a pour expression5, et pour énergie :

ϕ0(x) = A0 exp

(

−mωx2

2 h

)

E0 =12

Niveaux d’énergie

On cherche les autres solutions de l’équation de Schrödinger par une méthode variationnelle sous la forme :

ϕ(x) = An exp

(

−mωx2

2 h

)

f (x)

ce qui mène à l’équation différentielle :

f ′′− 2mωh

x f ′− mωh

f

(

1−2Ehω

)

= 0

Cherchant une solution sous forme polynômiale, on écrira seulement la condition d’annulation du terme de plus haut degréanxn dans l’équation différentielle :

2n+

(

1−2Ehω

)

= 0

Les solutions de cette équation différentielle sont connues sous le nom de polynômes d’Hermite fn(x) ; la solution de degrén a pour énergie :

En =

(

n+12

)

On reconnaît la suite des énergies définies, à la constante E0 près6, par :

En−E0 = n hω = nhν (38.6)

comme dans le modèle de Planck ci-dessus.4On peut donner une justification simple de la recherche d’une solution de cette forme dans le cadre de méthodes basées sur la transformation de

Fourier.

5Il reste, dans cette expression, à déterminer le facteur de normalisation A0 en imposant∫

R

|ϕ0(x)|2dx = 1 ce qui mène à A0 =

√mωπ h

.6Dans le modèle statistique classique, le choix de l’origine des énergies est dépourvu de signification physique, et de signification quant à l’étagement

des probabilités. Il n’en va pas de même en mécanique classique, où on peut donner à la valeur E0 une signification physique : même dans son étatfondamental, il subsiste une énergie non nulle pour tout oscillateur harmonique. Cette valeur minimale de l’énergie est égale, pour chaque degré de liberté,

à12

hν.

Page 40: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

296 Manuel de Physique

38.3 Émission et absorption des photons par la matière

Le but de ce qui suit est la présentation, dans un autre cadre que le modèle statistique de Planck, les interactions de la matièreet du rayonnement électromagnétique ; nous utiliserons l’aspect corpusculaire —les photons— du rayonnement pour décriresont interaction (absorption, émission) avec un matériau qui n’est plus nécessairement parfaitement réfléchissant.Les modèles présentés ici ont été développés par Albert Einstein7 en 1917. Il existe naturellement un développement bienplus rigoureux, dans le cadre de la théorie quantique, qui permet de retrouver la plupart des résultats présentés ici ; nousnous contenterons de présenter les relations d’Einstein et leurs propriétés.On profitera de ces développements pour présenter certaines applications de l’émission induite qui est présentée plus bas.On insistera sur les dispositifs connus sous le nom de masers8 et lasers9.

38.3.1 Absorption de photons par la matière

Règle de sélection de Bohr

Considérons un faisceau de photons, transportant un certain nombre de photons par unité de section droite et de temps, sedirigeant vers une cible plane, d’épaisseur et de surface données, comportant un nombre de particules (cibles) connu.On notera encore ν la fréquence de l’onde associée à ces photons, et donc hν leur énergie individuelle.Les atomes de la cible peuvent absorber ces photons seulement si la fréquence ν vérifie la règle de sélection de Bohr :

ε = hν = E2−E1

et l’atome effectue alors une transition quantique entre un niveau d’énergie initial inférieur (noté E1 dans la suite) et unniveau d’énergie final supérieur (noté E2). On parle alors d’absorption résonante à la fréquence ν.

Probabilité de transition

La réalisation de la règle de sélection n’est, en pratique, pas suffisante pour que la transition ait effectivement lieu ; seulscertains photons sont absorbés, d’une manière qui n’est pas prévisible individuellement mais qui peut faire l’objet d’untraitement statistique.Ainsi, on appellera probabilité d’absorption par unité de temps le nombre P12 tel que le nombre de photons interagissanteffectivement avec la matière est égal au nombre de photons disponibles multiplié par P12.Le nombre de photons disponibles pour l’interaction est lui-même proportionnel au nombre de photons présents dans lefaisceau incident, donc à la densité volumique d’énergie w du faisceau incident ; on notera donc :

P12 = β12w

Ainsi, si on note n1 et n2 les populations10 des niveaux 1 et 2, par unité de volume, l’absorption résonante se traduit par unevariation de la population n1 par absorption de photons, donnée par :

dn1

n1

∣∣∣∣a=−β12 wdt

avec évidemment dans le même temps une augmentation de la population n2 ; on écrira enfin :

dn2

dt

∣∣∣∣a=− dn1

dt

∣∣∣∣a= β12 n1 w

7L’œuvre du physicien américain, d’origine allemande ALBERT EINSTEIN (1879-1955) couvre tous les domaines de la physique théorique : théorie dela relativité restreinte (dont il est le fondateur, et qui assure la cohérence du système électromagnétique de Maxwell et de la Mécanique), théorie quantiquedu rayonnement (avec les développements présentés ici, mais aussi ses travaux sur l’effet photoélectrique, au nom desquels il reçut le prix Nobel dePhysique en 1905), physique statistique avec l’étude du mouvement brownien, cosmologie avec la théorie de la relativité générale.

8Maser = microwave amplification by stimulated emission of radiation.9Laser = light amplification by stimulated emission of radiation.

10On appelle population d’un niveau d’énergie le nombre d’atomes qui sont, à un instant donné, dans un état quantique caractérisé par cette valeurparticulière de l’énergie.

Page 41: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 297

qui fait apparaître une analogie formelle stricte avec une loi cinétique du second ordre, pour une interaction du type :

γ+C1→C2

où on note γ un photon, C1 et C2 un atome cible respectivement dans un état d’énergie E1 ou E2.

Coefficient d’Einstein pour l’absorption

Le phénomène d’absorption résonante ne se produit pas seulement pour des photons incidents ayant une fréquence exacte-

ment donnée par la règle de sélection de Bohr ν12 =E2−E1

h, mais aussi pour des fréquences voisines ; naturellement, le

phénomène est d’autant plus sensible que ν reste voisine de la fréquence de Bohr.On peut alors montrer, dans certaines conditions, que l’expression ci-dessus pour les variations de population par absorptionrésonante se généralisent sous la forme :

− 1n1

dn1

dt

∣∣∣∣a= wνB12 (38.7)

où on a introduit le coefficient d’Einstein B12 pour l’absorption résonante, ainsi que la densité spectrale d’énergie volumiquedu faisceau incident :

wν =dwdν

Dans l’expression ci-dessus, B12 est caractéristique du type d’atome étudié et de la transition 1→ 2 concernée, mais nedépend pas de la population initiale du niveau 1 ; il s’agit donc bien d’un coefficient intensif, caractéristique de la seuleabsorption résonante.

38.3.2 Émission spontanée de photons

Le phénomène d’émission spontanée

A l’exception de l’état fondamental, les états électroniques stationnaires11 ne sont en général que métastables ; lors de toutphénomène d’excitation (par absorption d’un photon par exemple), les électrons atteignent pour une durée finie un niveauexcité, avant de le quitter en émettant, spontanément, un photon ; celui-ci emporte avec lui l’excédent énergétique, avecdonc une fréquence fixée selon la règle de Bohr :

ν =E2−E1

h

où la désexcitation par émission spontanée refait passer l’atome du niveau E2 au niveau E1.

Coefficient d’Einstein pour l’émission spontanée

Par analogie avec le coefficient B12 décrivant l’absorption d’électrons par les atomes, nous définirons le coefficient d’Einsteinpour l’émission spontanée par la relation :

dn2

dt

∣∣∣∣es

=−A21n2

qui donne la variation de la population du niveau 2 pendant la durée dt, due à l’émission spontanée. Le coefficient d’Einsteinainsi introduit peut être qualifié de probabilité d’émission spontanée par unité de temps et par atome excité, pour un typed’atome donné et une transition 2→ 1 donnée.On fait apparaître ainsi une analogie formelle stricte avec une loi cinétique du premier ordre, pour une interaction du type :

C2→ γ+C1

avec les mêmes notations que précédemment.

11C’est-à-dire, les solutions de l’équation de Schrödinger indépendante du temps.

Page 42: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

298 Manuel de Physique

Durée de vie des états excités

Si le phénomène d’émission spontanée se présentait seul, il se traduirait par une diminution de la population de tout niveauexcité selon la loi :

n2(t) = n20 exp

(

−∑f

A2 f t

)

et la durée de vie moyenne de l’état excité pourrait être définie comme une somme portant sur les divers états finals possibles :

t =

∫ ∞

t=0t ·n2(t)

∫ ∞

t=0n2(t)

=1

∑ f A2 f

On appelle aussi cette valeur t durée de vie du niveau excité E2.

Mesure du coefficient d’émission spontanée

La mesure du ou des coefficients d’Einstein A21 se fait en général par l’intermédiaire de mesure de durées de vie moyennesd’états excités ; en effet, la puissance électromagnétique émise lors des désexcitations est proportionnelle aux nombred’atomes présents dans l’état excité, d’où la relation12 :

P(t) = P0 exp(− f ractt)

L’étude de ce type de phénomène de désexcitation suppose donc qu’on réalise une excitation brève d’un grand nombred’atomes d’un état de bas niveau vers un état de niveau élevé13, avant d’observer la relaxation du système.On peut aussi réaliser un étalement spatial du phénomène en réalisant l’excitation sur un jet d’atomes en mouvement ;la puissance émise par désexcitation sera donc lentement décroissante le long du trajet du faisceau atomique, tandis quel’excitation de ces atomes a pu être imposée au point de départ du faisceau, c’est-à-dire à un instant unique.

38.4 Émission induite et loi de Planck

38.4.1 Le phénomène d’émission induite

Présentation

On peut décrire l’interaction d’un atome et du rayonnement qui l’éclaire, dans le cadre classique, dans divers modèles ; dansceux-ci, le champ électromagnétique impose un déplacement des électrons de l’atome éclairé ; le courant qui en résulte est,à son tour, source d’un champ électromagnétique rayonné.Dans ce type de modèle, le champ électromagnétique peut être émis par l’électron oscillant —et par conséquent emporterune partie de son énergie— ou au contraire agir sur celui-ci et contribuer à augmenter son énergie ; tout ne dépend finalementque de la phase relative du champ électromagnétique et de la vitesse de l’électron.Einstein a postulé, en s’appuyant notamment sur cette analogie, l’existence d’un troisième phénomène décrivant, en plusde l’absorption et de l’émission spontanée, l’interaction de la matière et du rayonnement : il s’agit de l’émission induite ouémission stimulée.Dans le cadre de l’émission induite, un atome soumis à un champ électromagnétique incident, à une fréquence ν voisine

d’une des fréquences de Bohr ν12 =E2−E1

hpourra, s’il se trouve initialement déjà dans l’état 2 excité, réaliser une désex-

citation plus importante en présence de ce rayonnement que la seule émission spontanée.

12On ne manquera pas de remarquer l’analogie formelle avec la radioactivité, la somme ∑ f A2 f des coefficients d’Einstein jouant le rôle de la constanteradioactive λ et la puissance électromagnétique émise celui de l’activité de l’échantillon radioactif. Dans le cas particulier de la radioactivité γ, l’analogieest complète puisque les rayonnements ionisants émis sont précisément constitués de photons. Cependant, s’agissant de désexcitations nucléaires et nonatomiques, l’ordre de grandeur des énergies mises en jeu est bien supérieur et l’émission se fait dans le domaine X ou γ, et non pas dans les domainesvisible ou radio, comme pour ce qui nous concerne ici.

13On peut par exemple proposer d’illuminer la population atomique avec un flash de très courte durée, en utilisant comme interrupteur de faisceaulumineux une cellule de Kerr alimentée par une tension en impulsion brève.

Page 43: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 299

Le coefficient d’Einstein pour l’émission induite

On a vu que les variations des populations n1 et n2 peuvent s’écrire, pour l’absorption résonante :

dn2

dt

∣∣∣∣a=− dn1

dt

∣∣∣∣a= n1wνB12

et, pour l’émission spontanée :

dn2

dt

∣∣∣∣es

=− dn1

dt

∣∣∣∣es

=−n2A21

Par analogie, Einstein proposa pour le phénomène d’émission induite la relation, que l’on peut établir par d’autres voiesdans le cadre de la physique quantique :

dn2

dt

∣∣∣∣ei

=− dn1

dt

∣∣∣∣ei

=−n2wνB21

Le phénomène d’émission induite fait apparaître une analogie formelle avec une loi cinétique du second ordre, pour uneinteraction du type :

C1→ γ+C2

catalysée par les photons γ du rayonnement incident.

Bilans d’interaction matière-rayonnement

Prenant en compte les trois phénomènes simultanément, tels qu’ils se produisent effectivement, les variations de populationpeuvent s’écrire :

dn2

dt=−dn1

dt= wνB12n1− (wνB21 +A21)n2 (38.8)

38.4.2 Liens entre les coefficients d’Einstein

Relations entre absorption et émission induite

Considérons une situation d’équilibre du rayonnement et de la matière, donc tel que les populations des différents n’évoluentpas. On peut alors, simultanément, écrire les relations suivantes :

A21 = wν

(

B12n1

n2−B21

)

du fait des équilibres entre phénomènes radiatifs, et :

n1

n2= exp

(

−E1−E2

kBT

)

du fait de la distribution statistique de Boltzmann entre les niveaux à la température T 14.On peut donc encore écrire :

A21 = wν

(

B12 exp

(

−E1−E2

kBT

)

−B21

)

14Dans cette expression, on néglige les éventuelles dégénérescences des niveaux d’énergie, c’est-à-dire le nombre d’états discernables mais de mêmeénergie E1 ou E2.

Page 44: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

300 Manuel de Physique

où les coefficients d’Einstein sont indépendants de la température. La limite de cette expression à température infinie s’écritdonc :

A21

wν= (B12−B21)→ 0

On en déduit donc la relation entre coefficients d’Einstein pour l’émission induite et l’absorption de rayonnement :

B12 = B21 (38.9)

On interprète cette relation comme suit : si la densité volumique d’énergie électromagnétique devient assez élevée, lesphénomènes induits (émission induite et absorption) deviennent prépondérants et l’émission spontanée négligeable ; ce sontdonc les phénomènes induits qui doivent se compenser.

Relations avec la loi de Planck

Reprenant l’expression établie plus haut à l’équilibre thermique, on peut encore écrire :

wν =A21

B21

1

exp(

−E1−E2kBT

)

−1

qu’on écrira encore :

wν =A21

B21

1

exp(

hνkBT

)

−1

Ceci permet, par identification avec la loi de Planck, d’établir le lien entre les coefficients d’Einstein de l’émission spontanéeet de l’émission induite :

A21 = B218πhλ3

38.5 Applications

Le phénomène nouveau, prédit sur la base d’une analogie par Einstein, est l’émission induite. Nous proposons ici l’étudetrès simplifiée de deux phénomènes physiques basés sur l’existence des phénomènes d’absorption, d’émission spontanée etd’émission induite.

38.5.1 Largeur des raies de résonance

Toutes les raies spectrales ont une certaine largeur, c’est-à-dire qu’elles ne sont pas rigoureusement monochromatiques.Cette largeur est liée à deux phénomènes : l’effet Doppler qui réalise un élargissement symétrique, et les collisions dans lessources à haute pression, qui réalisent un élargissement dissymétrique, plus important aux hautes fréquences.Cependant, le phénomène d’absorption peut se traduire, pour des valeurs élevées des densités volumiques d’énergie wν etd’atomes dans l’état 1, par l’absorption sur les bords de la source, du rayonnement émis en son centre.Cette auto-absorption des raies de résonance se traduit par une diminution de leur hauteur, donc par un élargissement ap-parent de la raie de résonance. Le phénomène peut même être complètement inversé, avec une raie de résonance présentant,au voisinage de son maximum attendu ν12, un minimum local.

Page 45: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

Théories du rayonnement thermique 301

38.5.2 Effets Maser et Laser

Principe simplifié

Nous décrirons le principe général commun des masers et lasers dans le cas des masers —historiquement, le premier réa-lisé15— ; nous considérerons dans la suite une population de systèmes quantiques à deux niveaux non dégénérés, d’énergiesE1 et E2 avec E2 > E1.Le mot “maser” signifie amplification de micro-ondes par émission induite de rayonnement. Dans un maser, la densitévolumique d’énergie électromagnétique est très élevée et nous négligerons donc le phénomène d’émission spontanée devantcelui d’émission induite, ce qui permet d’écrire la variation de population du niveau inférieur sous la forme :

dn1 = B21(n2−n1)dt

Ce terme est également le nombre de photons de fréquence ν12 absorbés pendant le même temps dt, d’où la variationde l’énergie de l’onde électromagnétique stationnaire16 dans le maser ; ainsi, la puissance de cette onde varie, lors de latraversée de la cavité maser, de :

∆P = hν12dn1

dt= hν12B21(n2−n1)

Dans le cas général, ce terme est négatif à l’équilibre thermique (n2 < n1) et il y a globalement absorption de l’ondeélectromagnétique par le milieu contenu dans la cavité. L’effet maser —ou laser—, d’amplification de l’onde lors des allerset retours dans la cavité, ne peut donc être obtenu qu’au prix d’une inversion de population, donc en réalisant n2 > n1.

Inversion de population

Nous ne décrirons ici que le seul principe du pompage optique pour lasers, indiqué en 1949 par Alfred Kastler.Dans ce premier modèle de laser, dit à trois niveaux, le milieu utile est un cristal de rubis17 rose. Sa couleur, lorsqu’ilest éclairé en lumière blanche, résulte d’une absorption de radiations vertes qui fait passer les ions de l’état fondamentald’énergie E1 à l’un des états d’énergie E2 d’un ensemble de niveaux excités très voisins ; la présence de cet ensemble,remplaçant un niveau unique, permet d’augmenter l’énergie emmagasinée. Au lieu de retourner très vite au niveau E1 parémission spontanée, cette énergie se trouve en grande partie cédée, du fait de chocs non radiatifs, à un niveau intermédiaireEi (E1 < Ei < E2), dont les possibilités d’absorption directe, mais aussi d’émission spontanée Ei→ E1, sont beaucoup plusfaibles que pour E2→ E1

18.Le stockage ainsi réalisé sur le niveau d’énergie Ei permet une émission stimulée avec amplification de la lumière dans lacavité laser, pour la transition Ei→ E1.Les photons induits ont même direction et sens de propagation que ceux qui stimulent leur émission ; c’est de cette propriétéqu’il est tiré parti dans les masers et lasers.

Réalisation du faisceau laser

Pour obtenir un nombre suffisant de rencontres avec des atomes excités, il faut que le parcours des photons dans le milieuutile soit assez long, ce qu’on peut obtenir par des réflexions successives. On utilise à cet effet deux miroirs plans parallèles(ou un dispositif équivalent), comme dans l’interféromètre de Pérot et Fabry19.

15Le maser à ammoniac, réalisé par Charles H. Townes et ses collaborateurs en 1954, a constitué la première preuve expérimentale de l’émission induiteou stimulée. Il a ensuite été possible à Charles H. Townes et Arthur L. Schawlow de prévoir la possibilité d’amplifier des ondes lumineuses et donc deréaliser les lasers. Les masers amplificateurs ont contribué au développement de la radioastronomie, de la radiométrie et des liaisons par satellites, à uneépoque où peu d’amplificateurs présentaient la très grande sensibilité requise. Les masers peuvent en effet fonctionner soit en oscillateurs hyperfréquencesdoués d’une très grande pureté spectrale —facteur de qualité très élevé—, soit en amplificateurs hyperfréquences dont l’extrême sensibilité n’est limitéeque par des phénomènes fondamentaux de fluctuation quantique. Le maser à hydrogène a permis de réaliser l’horloge atomique qui présente la meilleurestabilité de fréquence à court et à moyen terme. Il subsiste quelques masers amplificateurs associés aux plus grandes antennes de réception de signaux enprovenance de radiosources naturelles ou artificielles. Ils tendent à être supplantés par des dispositifs plus simples, utilisant, par exemple, des transistors àeffet de champ.

16Le caractère stationnaire de l’onde est nécessaire au mode de fonctionnement décrit ici ; il impose, comme on le verra, la géométrie de la cavité maserou laser.

17Le rubis est un cristal d’alumine Al2O3 contenant des traces d’ions chrome Cr3+.18Il s’agit de transitions interdites. L’existence de telles transitions, permises ou interdites, est une conséquence de la théorie quantique du rayonnement.19Pour des raisons de stabilité, on remplace éventuellement les cavités à miroirs plans par des cavités à miroirs sphériques, confocales par exemple.

Page 46: cours - exvacuo.free.frexvacuo.free.fr/div/Sciences/Cours/Phys MP/Phys 34-38 Transferts... · L’expression « transfert thermique » a récemment été introduite pour remplacer

302 Manuel de Physique

L’un de ces miroirs est aussi parfaitement réfléchissant que possible, l’autre légèrement transparent, pour laisser sortirle faisceau qu’on veut utiliser. Des ondes stationnaires s’établissent entre les deux miroirs, dont la distance doit être un

multiple entier kλ2

avec k ∈ N de la demi-longueur d’onde associée à la transition pour laquelle on sait réaliser l’inversion

de population.

Propriétés du faisceau laser

Si λ est de l’ordre du micromètre, l’entier k atteint 105 ou 106, et les ondes qui se stabilisent suivant la normale au miroirpeuvent correspondre à un certain nombre de modes (valeurs diverses de k) à l’intérieur de la largeur spectrale ∆λ de lalumière de longueur d’onde λ. Cette largeur ∆λ qui caractérise l’émission spontanée correspond, pour un gaz, à la largeurDoppler due à l’agitation thermique des atomes, et, pour les liquides ou solides, à une largeur déterminée par les actionsintermoléculaires.Lorsque l’émission stimulée a lieu, la largeur δλ des raies laser est beaucoup plus petite que celle d’une source de lumièrenaturelle ; la monochromaticité d’une raie laser —-surtout d’un laser à gaz–– est d’un degré de finesse que n’atteignaitaucune des sources de lumière monochromatique précédemment connues. La cause en réside dans le phénomène d’interfé-rences multiples, et la finesse de la raie dépend de celle de la cavité utilisée.La largeur spectrale δλ n’est jamais nulle, car les niveaux d’énergie mis en jeu dans la transition subissent des fluctuations,mais elle est très petite : alors qu’il n’y a aucune relation de phase permanente entre les ondes émises spontanément par desatomes excités, l’émission induite se trouve en accord de phase avec celle qui la stimule. Elle se fait donc par trains d’ondesbeaucoup plus longs que ceux des autres sources de lumière.Un laser donné peut être multimodes. Il émet alors simultanément sur plusieurs modes voisins, correspondant chacun à unordre d’interférence entier k, ces différents ordres étant situés à l’intérieur de la largeur d’émission spontanée ∆λ. Il peut,dans certaines conditions, être monomode et ne donner lieu qu’à une raie laser unique située alors au voisinage du centre dela raie d’émission spontanée.Enfin, les faisceaux laser présentent une très grande cohérence spatiale, ce qui signifie que des points situés normalement àla direction de propagation, à une certaine distance l’un de l’autre (plusieurs millimètres ou même davantage), sont encoreen accord de phase et peuvent donner lieu à des interférences, contrairement à ce qui se passe pour les autres sources. Ilsort ainsi d’un laser à miroirs plans dans la direction normale à ceux-ci une onde plane cohérente, l’ouverture du faisceauétant parfois réduite au minimum qu’imposent les phénomènes de diffraction. Cette directivité favorise une transmission dela lumière à grande distance.