Coupled Heat and Groundwater Transfer in the Oregon Cascades · depth, m oMean absolute error, C...

1
Mean absolute error, C o depth, m δ Characteristic "aquifer" depth , m Recharge rate, m/year 0.5 1 1.5 2 160 180 200 220 240 mean annual recharge [m/year] 2 4 6 8 10 b 10 20 30 0 200 400 600 800 1000 a model data 6.5 Temperature, C o δ = 190 m u = 1 m/year r mean absolute error = 0.88 C o - - - - - - Mt. Adams Washington Oregon Nevada California Idaho British Columbia Mt. Garibaldi Mt. Baker Glacier Peak Mt. Ranier Mt. Jefferson Mt. Hood Mt. St. Helens Three Sisters Newberry Crater Lake Mt. McLoughlin Mt. Shasta Medicine Lake Lassen Peak Cinder Cone Mt. Thielson Pacific Ocean Blue Mountains High Lava Plains Three Sisters Mt. Jefferson (from Ingebritsen et al., 1992, 1993) a b -122 -121 45 44 b (from Blackwell et al., 1990) a (from Ingebritsen et al., 1989) a b Deep flow Cascades W E hot cold spring with heat discharge cold spring no heat discharge cold spring with heat discharge fault spring High Shallow flow Butte Western Cascades close to 1D recharge area aquifer with cold water horizontal gw flow or conductive regime close to 1D discharge area 1 2 3 4 Depth, m Depth, m Depth, m Depth, m 70°C/km 50°C/km 100°C/km 25°C/km 160°C/km Temperature, C o Temperature, C o Temperature, C o Temperature, C o transient geotherm several quifers with well-mixed water depth, m depth, m 120°C/km 240 mW/m2 40°C/km 80 mW/m2 - linear, due to horizontal groundwater flow or purely conductive heat flow convective heat transfer in a 1D recharge area aquifer transfers cold water from higher recharge elevation T z 4 T z 1 T z 2 3 T z basal heat flow low k spring 1 2 3 4 heat discharge cold spring small flux Cascades convective heat transfer in a 1D discharge area small flux high k °C °C 43.6 43.8 44 44.2 44.4 44.6 44.8 45 45.2 45.4 43.6 43.8 44 44.2 44.4 44.6 44.8 45 45.2 45.4 44.3 44.4 44.5 44.6 44.7 44.8 44.9 45 -122.2 -122 -121.8 a b 44.3 44.4 44.5 44.6 44.7 44.8 44.9 45 -20 0 20 40 60 80 100 120 140 d 500 1000 1500 2000 2500 3000 Elevation, m surface gradT -122.5 -122 -121.5 -121 -60 -40 -20 0 20 40 60 80 100 120 c T z , C/km o × × × × × × × × geothermal warming 0 10.0 2.0 14.0 12.0 8.0 6.0 4.0 500 1000 1500 2000 2500 3000 × climate stations deep groundwater flow shallow groundwater flow MEAN RECHARGE elevation (m) Temperature C LO MH SP Deep flow Shallow flow Heat BC DC CR QR δ C 13 DIC _ _ _ _ _ _ _ _ _ atmospheric equilibration dead carbon addition MH DIC equilibrated with atmospheric CO -20 -15 -10 -5 0 C (pmc) 14 120 100 80 40 60 20 0 DIC equilibrated with soil CO2 2 LO SP CR BC QR DC Minnehaha soda spring 120 100 80 40 60 20 0 _ _ _ _ _ Deep flow Shallow flow CO2 magmatic CO2 magmatic C, mantle He, geothermal warming NO magmatic C, NO mantle He, NO geothermal warming 0 0.4 0.8 1.2 1.6 x 10 4 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 no-flow earthquake Mt. Hood boundary Distamce from Mt. Hood, m Elevation, m Mt. Hood -122 -121.9 -121.8 -121.7 -121.6 -121.5 45.2 45.3 45.4 45.5 0 500 1000 1500 2000 2500 Longitude Latitude Elevation, m a b Temperature, C o 10 20 30 40 50 60 70 123 500 1500 2500 3500 4500 5500 0 200 400 600 800 1000 1200 0 10 20 30 40 50 60 70 80 90 Distance from Mt. Hood, m Depth, m 1 2 3 a 1500 2000 2500 3000 12 3 Elevation, m Temperature, C o 0 10 20 30 40 50 60 70 80 0 200 400 600 800 1000 1200 3 2 1 Temperature, C o Depth, m b δ = 250 m K = 10 m/s Sx -6 1500 2000 2500 3000 Elevation, m 1 2 3 Depth, m Distance from Mt. Hood, m 500 1500 2500 3500 4500 5500 200 400 600 800 1000 1200 0 2 4 6 8 10 12 14 16 18 Magnitude of velocity, m/year Martin O. Saar and Michael Manga Coupled Heat and Groundwater Transfer University of Oregon in the Oregon Cascades [email protected] AGU, Fall 2000

Transcript of Coupled Heat and Groundwater Transfer in the Oregon Cascades · depth, m oMean absolute error, C...

Page 1: Coupled Heat and Groundwater Transfer in the Oregon Cascades · depth, m oMean absolute error, C δCharacteristic "aquifer" depth , m Recharge rate, m/year 0.5 1 1.5 2 160 180 200

Mea

n ab

solu

te e

rror

, Co

dept

h, m

δC

hara

cter

istic

"aq

uife

r" d

epth

,

m

Recharge rate, m/year0.5 1 1.5 2

160

180

200

220

240

mean annual recharge [m/year]

2

4

6

8

10

b

10 20 30

0

200

400

600

800

1000

amodeldata

6.5

Temperature, Co

δ = 190 mu = 1 m/yearr

mean absolute error = 0.88 Co

- - -

- -

-

Mt. Adams

▲▲

▲▲

▲▲

Washington

Oregon

Nevada

California

Idah

o

British ColumbiaMt. Garibaldi

Mt. Baker

Glacier Peak

Mt. Ranier

Mt. Jefferson

Mt. Hood

Mt. St. Helens

Three SistersNewberry

Crater Lake

Mt. McLoughlin

Mt. Shasta

Medicine Lake

Lassen Peak

Cinder Cone

▲▲

Mt. Thielson

Paci

fic

Oce

an

Blue Mountains

High Lava Plains

ThreeSisters

Mt. Jefferson

(from Ingebritsen et al., 1992, 1993)

a b -122 -121

45

44

b

(from Blackwell et al., 1990)

a

(from Ingebritsen et al., 1989)

a b

Deep flow

CascadesW E

hot

cold springwith heat discharge

cold springno heat

dischargecold springwith heatdischarge

fault

spring

HighShallow

flow ButteWesternCascades

close to 1D recharge area

aquifer with cold water

horizontal gw flow or conductive regime

close to 1D discharge area

1 2

3 4

Dep

th, m

Dep

th, m

Dep

th, m

Dep

th, m

70°C/km 50°C/km

100°C/km 25°C/km

160°C/km

Temperature, CoTemperature, Co

Temperature, CoTemperature, Co

transient geothermseveral quifers with well-mixed water

dept

h, m

dept

h, m 120°C/km

240 mW/m2

40°C/km80 mW/m 2

-

linear, due to horizontalgroundwater flow or purely conductive heat flow

convective heattransfer in a 1D recharge area

aquifer transferscold water from higherrecharge elevation

T

z

4T

z

1 T

z

2 3 T

z

basal heat flow

low k

spring

1 2

3

4

heatdischarge

coldspring

small flux

Cascades

convective heattransfer in a 1D discharge area

small flux

high k

°C °C

43.6

43.8

44

44.2

44.4

44.6

44.8

45

45.2

45.4

43.6

43.8

44

44.2

44.4

44.6

44.8

45

45.2

45.444.3

44.4

44.5

44.6

44.7

44.8

44.9

45

−122.2 −122 −121.8

a b

44.3

44.4

44.5

44.6

44.7

44.8

44.9

45

−20

0

20

40

60

80

100

120

140

d

500

1000

1500

2000

2500

3000

Elevation, m

surface gradT

−122.5 −122 −121.5 −121

−60−40−20020406080100120

c

∂ T

∂ z, C/kmo

×

×

×

××

××

× geothermal w

arming

0

10.0

2.0

14.0

12.0

8.0

6.0

4.0

500 1000 1500 2000 2500 3000

× climate stationsdeep groundwater flowshallow groundwater flow

MEAN RECHARGE elevation (m)

Tem

pera

ture

Co

LO

MHSP

Deep flowShallow flow

Heat

BCDC

CR

QR

δ C 13

DIC

_

_

_

_

_

_ _ _ _

atmospheric equilibrationdead carbon addition

MH

DIC equilibrated with atmospheric

CO

-20 -15 -10 -5 0

C

(pm

c)14

120

100

80

40

60

20

0

DIC equilibratedwith soil CO 2

2

LO

SP

CR

BC

QR

DC

Minnehahasoda spring

120

100

80

40

60

20

0

_

_

_

_

_

Deep flowShallow flow

CO2 magmatic CO 2

magmatic C, mantle He, geothermal warmingNO magmatic C, NO mantle He, NO geothermal warming

0 0.4 0.8 1.2 1.6 x 104−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

distance from Mt. Hood [m]

no-flow

earthquake

Mt. Hood

boundary

Distamce from Mt. Hood, m

Ele

vatio

n, m

Mt. Hood

−122−121.9

−121.8−121.7

−121.6−121.5

45.2

45.3

45.4

45.50

500

1000

1500

2000

2500

Longitude

Latitude

Ele

vatio

n, m

a b

Temperature, Co10203040506070

123

500 1500 2500 3500 4500 5500

0

200

400

600

800

1000

12000

10

20

30

40

50

60

70

80

90

Distance from Mt. Hood, m

Dep

th, m

1 2 3

a

1500200025003000 1 2 3

Ele

vatio

n, m

Tem

pera

ture

, Co

0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

1200

3

2

1

Temperature, Co

Dep

th, m

bδ = 250 m

K = 10 m/sSx -6

1500200025003000

Ele

vatio

n, m

1 2 3

Dep

th, m

Distance from Mt. Hood, m500 1500 2500 3500 4500 5500

200

400

600

800

1000

12000

2

4

6

8

10

12

14

16

18

Mag

nitu

de o

f ve

loci

ty,

m/y

ear

Martin O. Saar and Michael Manga

Coupled Heat and Groundwater Transfer

University of Oregon

in the Oregon Cascades

[email protected]

AGU, Fall 2000