Control of evolution problems involving the fractional ...€¦ · ZT 0 Z! jru j2 dxdt : Thus,...

23

Transcript of Control of evolution problems involving the fractional ...€¦ · ZT 0 Z! jru j2 dxdt : Thus,...

  • Control of evolution problems involving the

    fractional Laplace operator

    Umberto Biccarijoint work with Enrique Zuazua

    BCAM - Basque Center for Applied MathematicsNUMERIWAVES group meeting

    October 11, 2013

    1 / 13

  • Fractional laplacian

    (−∆)su(x) := cn,sP.V .∫Rn

    u(x)− u(y)|x − y |n+2s

    dy , s ∈ (0, 1)

    cn,s :=s2

    2sΓ( n+2s2)

    πn/2Γ(1−s)

    We analyse the control problem for the fractional wave equation

    utt + (−∆)s+1u = 0

    on a bounded C 1,1 domain Ω of Rn. We focus on the control from aneighborhood of the boundary ∂Ω.

    2 / 13

  • Fractional laplacian

    (−∆)su(x) := cn,sP.V .∫Rn

    u(x)− u(y)|x − y |n+2s

    dy , s ∈ (0, 1)

    cn,s :=s2

    2sΓ( n+2s2)

    πn/2Γ(1−s)

    We analyse the control problem for the fractional wave equation

    utt + (−∆)s+1u = 0

    on a bounded C 1,1 domain Ω of Rn. We focus on the control from aneighborhood of the boundary ∂Ω.

    2 / 13

  • Fractional Sobolev spaces

    De�nition

    Hs(Rn) :={u ∈ L2(Rn)

    ∣∣∣ |u(x)−u(y)||x−y |

    n

    2+s ∈ L2(Rn × Rn)

    }De�nition

    Ĥs(Rn) :={u ∈ L2(Rn)

    ∣∣(1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)}Is an Hilbert space with norm ‖u(x)‖Hs := ‖(1 + |ξ|2)s/2û(ξ)‖L2

    De�nition (Hs(Ω))

    u ∈ Hs(Ω) if u = U|Ω with U ∈ Hs(Rn)

    u ∈ Hs(Ω) if u ∈ L2(Ω) and∫∫

    Ω×Ω

    |u(x)− u(y)|2

    |x − y |n+2sdxdy < +∞

    3 / 13

  • Fractional Sobolev spaces

    De�nition

    Hs(Rn) :={u ∈ L2(Rn)

    ∣∣∣ |u(x)−u(y)||x−y |

    n

    2+s ∈ L2(Rn × Rn)

    }De�nition

    Ĥs(Rn) :={u ∈ L2(Rn)

    ∣∣(1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)}Is an Hilbert space with norm ‖u(x)‖Hs := ‖(1 + |ξ|2)s/2û(ξ)‖L2

    De�nition (Hs(Ω))

    u ∈ Hs(Ω) if u = U|Ω with U ∈ Hs(Rn)

    u ∈ Hs(Ω) if u ∈ L2(Ω) and∫∫

    Ω×Ω

    |u(x)− u(y)|2

    |x − y |n+2sdxdy < +∞

    3 / 13

  • Fractional Sobolev spaces

    De�nition

    Hs(Rn) :={u ∈ L2(Rn)

    ∣∣∣ |u(x)−u(y)||x−y |

    n

    2+s ∈ L2(Rn × Rn)

    }De�nition

    Ĥs(Rn) :={u ∈ L2(Rn)

    ∣∣(1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)}Is an Hilbert space with norm ‖u(x)‖Hs := ‖(1 + |ξ|2)s/2û(ξ)‖L2

    De�nition (Hs(Ω))

    u ∈ Hs(Ω) if u = U|Ω with U ∈ Hs(Rn)

    u ∈ Hs(Ω) if u ∈ L2(Ω) and∫∫

    Ω×Ω

    |u(x)− u(y)|2

    |x − y |n+2sdxdy < +∞

    3 / 13

  • Proposition

    Let Ω be a bounded C 0,1 domain; then, for any 0 < s < s1 we have

    Hs1(Ω) ↪→ Hs(Ω)

    with dense and compact embedding.

    Proposition

    Let s ∈ (0, 1); for any u ∈ Hs(Rn)

    (−∆)su = F−1(|ξ|2sFu) ∀ξ ∈ Rn

    Proposition

    Let u, v be two Hs(Rn) function vanishing outside Ω; then∫Ω

    v(−∆)sudx =∫Rn

    (−∆)s/2u(−∆)s/2vdx =∫

    u(−∆)svdx

    4 / 13

  • Proposition

    Let Ω be a bounded C 0,1 domain; then, for any 0 < s < s1 we have

    Hs1(Ω) ↪→ Hs(Ω)

    with dense and compact embedding.

    Proposition

    Let s ∈ (0, 1); for any u ∈ Hs(Rn)

    (−∆)su = F−1(|ξ|2sFu) ∀ξ ∈ Rn

    Proposition

    Let u, v be two Hs(Rn) function vanishing outside Ω; then∫Ω

    v(−∆)sudx =∫Rn

    (−∆)s/2u(−∆)s/2vdx =∫

    u(−∆)svdx

    4 / 13

  • Proposition

    Let Ω be a bounded C 0,1 domain; then, for any 0 < s < s1 we have

    Hs1(Ω) ↪→ Hs(Ω)

    with dense and compact embedding.

    Proposition

    Let s ∈ (0, 1); for any u ∈ Hs(Rn)

    (−∆)su = F−1(|ξ|2sFu) ∀ξ ∈ Rn

    Proposition

    Let u, v be two Hs(Rn) function vanishing outside Ω; then∫Ω

    v(−∆)sudx =∫Rn

    (−∆)s/2u(−∆)s/2vdx =∫

    u(−∆)svdx

    4 / 13

  • Fractional wave equation

    utt + (−∆)s+1u = 0 in Ω× [0,T ] := Qu ≡ 0 on ∂Ω× [0,T ] := Σu(x , 0) = u0(x) in Ωut(x , 0) = u1(x) in Ω

    In order to gurantee uniform velocity of propagation we need theexponent of the Fractional laplacian to be greater than 1.

    Higher order Fractional laplacian

    (−∆)s+1 := (−∆)(−∆)s = (−∆)s(−∆)

    D((−∆)s+1) = H10 (Ω)× H2(s+1)(Ω)

    5 / 13

  • Fractional wave equation

    utt + (−∆)s+1u = 0 in Ω× [0,T ] := Qu ≡ 0 on ∂Ω× [0,T ] := Σu(x , 0) = u0(x) in Ωut(x , 0) = u1(x) in Ω

    In order to gurantee uniform velocity of propagation we need theexponent of the Fractional laplacian to be greater than 1.

    Higher order Fractional laplacian

    (−∆)s+1 := (−∆)(−∆)s = (−∆)s(−∆)

    D((−∆)s+1) = H10 (Ω)× H2(s+1)(Ω)

    5 / 13

  • Energy

    E (t) :=1

    2

    ∫Ω

    {(∇ut)2 +

    ((−∆)

    s+22 u)2}

    dx

    dE (t)

    dt= 0⇒ E (t) ≡ E (0) ≡ E0 ∀t ≥ 0

    Pohozaev-type identity

    ∫Ω

    (−∆)su(x · ∇u)dx =∫

    u(−∆)sudx − Γ(1 + s)2

    2

    ∫∂Ω

    ( uδs

    )2(x · ν)dσ

    X. ROS-OTON and J. SERRA - The Pohozaev identity for the Fractional laplacian

    6 / 13

  • Energy

    E (t) :=1

    2

    ∫Ω

    {(∇ut)2 +

    ((−∆)

    s+22 u)2}

    dx

    dE (t)

    dt= 0⇒ E (t) ≡ E (0) ≡ E0 ∀t ≥ 0

    Pohozaev-type identity

    ∫Ω

    (−∆)su(x · ∇u)dx =∫

    u(−∆)sudx − Γ(1 + s)2

    2

    ∫∂Ω

    ( uδs

    )2(x · ν)dσ

    X. ROS-OTON and J. SERRA - The Pohozaev identity for the Fractional laplacian

    6 / 13

  • Proposition

    For any solution of the fractional wave equation it holds

    Γ(1 + s)2

    2

    ∫Σ

    (−∆uδs

    )2(x · ν)dσdt = 2s − n

    2

    ∫Q

    ((−∆)

    s+22 u)2

    dxdt

    +2 + n

    2

    ∫Q

    (∇ut)2dxdt

    +

    ∫Ω

    ut(x · ∇(−∆u))dx∣∣∣∣T0

    Proof.

    The identity is obtained by multiplying the equation by x · ∇(−∆u) andintegrating by parts over Q by using the Pohozaev identity.

    7 / 13

  • Energy estimate

    Theorem

    Let E (t) de�ned as before; then, there exists two non negative constantsA1 and A2, depending only on s, T and Ω, such that

    A1E0 ≤∫

    Σ

    (−∆uδs

    )2(x · ν)dσdt ≤ A2E0

    8 / 13

  • Control from a neighborhood of the boundary

    We will use Hilbert Uniqueness Method

    Observability inequality

    E0 ≤ C1∫ T0

    ∫ω

    {(∇ut)2 +

    ((−∆)

    s+22 u)2}

    dxdt

    9 / 13

  • By using equipartition of the energy

    E0 =∥∥∥(−∆) s+22 u0∥∥∥2

    L2(Ω)+ ‖∇u1‖2L2(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇ut)2dxdt (1)

    Take φ(x , t) :=

    ∫ t0

    u(x , s)ds − (−∆)−(s+1)u1(x); this φ satis�es the

    fractional wave equation with initial data

    φ0 := φ(0) = −(−∆)−(s+1)u1 φ1 := φt(0) = u0

    Thus (u0, u1) ∈ L2(Ω)× H−(s+1)(Ω)⇒ (φ0, φ1) ∈ Hs+1(Ω)× L2(Ω)

    Considering (1) for the function φ we have

    ‖∇u0‖2L2(Ω) + ‖u1‖2H−s(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇u)2dxdt (2)

    10 / 13

  • By using equipartition of the energy

    E0 =∥∥∥(−∆) s+22 u0∥∥∥2

    L2(Ω)+ ‖∇u1‖2L2(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇ut)2dxdt (1)

    Take φ(x , t) :=

    ∫ t0

    u(x , s)ds − (−∆)−(s+1)u1(x); this φ satis�es the

    fractional wave equation with initial data

    φ0 := φ(0) = −(−∆)−(s+1)u1 φ1 := φt(0) = u0

    Thus (u0, u1) ∈ L2(Ω)× H−(s+1)(Ω)⇒ (φ0, φ1) ∈ Hs+1(Ω)× L2(Ω)

    Considering (1) for the function φ we have

    ‖∇u0‖2L2(Ω) + ‖u1‖2H−s(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇u)2dxdt (2)

    10 / 13

  • By using equipartition of the energy

    E0 =∥∥∥(−∆) s+22 u0∥∥∥2

    L2(Ω)+ ‖∇u1‖2L2(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇ut)2dxdt (1)

    Take φ(x , t) :=

    ∫ t0

    u(x , s)ds − (−∆)−(s+1)u1(x); this φ satis�es the

    fractional wave equation with initial data

    φ0 := φ(0) = −(−∆)−(s+1)u1 φ1 := φt(0) = u0

    Thus (u0, u1) ∈ L2(Ω)× H−(s+1)(Ω)⇒ (φ0, φ1) ∈ Hs+1(Ω)× L2(Ω)

    Considering (1) for the function φ we have

    ‖∇u0‖2L2(Ω) + ‖u1‖2H−s(Ω) ≤ C2

    ∫ T0

    ∫ω

    (∇u)2dxdt (2)

    10 / 13

  • utt + (−∆)s+1u = 0u|Σ ≡ 0u(x , 0) = u0(x)ut(x , 0) = u1(x)

    RETROGRADE SYSTEM ψtt + (−∆)s+1ψ = h(u)

    ψ|Σ ≡ 0ψ(x ,T ) = ψ′(x ,T ) = 0

    The solution of the retrograde system is de�ned by transposition: thefunction ψ is a solution of the problem if and only if for any solution θ of

    θtt + (−∆)s+1θ = fθ|Σ ≡ 0θ(x , 0) = θ0θt(x , 0) = θ1

    ∫Q

    ψfdxdt −∫

    (ψt(0)θ0 − ψ(0)θ1)dx =∫Q

    θhdxdt (3)

    11 / 13

  • We de�ne the operator

    Λ(u0, u1) := (ψt(x , 0),−ψ(x , 0))

    by considering (3) with θ = u and choosing the control function

    h(u) = div(ρ(t)u)χ{ω×(0,T )}

    we obtain

    〈Λ(u0, u1); (u0, u1)〉 =∫ T0

    ∫ω

    |∇u|2 dxdt.

    Thus, thanks to the observability inequality, for any given couple of initialdata (ψ0, ψ1) ∈ H(s+1)(Ω)× L2(Ω) there exists a unique solution(u0, u1) ∈ L2(Ω)× H−(s+1)(Ω) of the problem Λ(u0, u1) = (ψ1,−ψ0)and we have found a control

    h ∈ L2(0,T ;H−1(ω))

    that drives the system in rest in time T .12 / 13

  • We de�ne the operator

    Λ(u0, u1) := (ψt(x , 0),−ψ(x , 0))

    by considering (3) with θ = u and choosing the control function

    h(u) = div(ρ(t)u)χ{ω×(0,T )}

    we obtain

    〈Λ(u0, u1); (u0, u1)〉 =∫ T0

    ∫ω

    |∇u|2 dxdt.

    Thus, thanks to the observability inequality, for any given couple of initialdata (ψ0, ψ1) ∈ H(s+1)(Ω)× L2(Ω) there exists a unique solution(u0, u1) ∈ L2(Ω)× H−(s+1)(Ω) of the problem Λ(u0, u1) = (ψ1,−ψ0)and we have found a control

    h ∈ L2(0,T ;H−1(ω))

    that drives the system in rest in time T .12 / 13

  • THANKS FOR YOUR ATTENTION!

    13 / 13