Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and...

16
Constrained MSSM fication of the gauge couplings iative EW Symmetry Breaking vy quark and lepton masses e decays (b -> sγ, b->μμ) malous magnetic moment of muon is neutral unt of the Dark Matter erimental limits from direct search Requirements: Allowed region in the parameter space of the MSSM 0 0 1/2 , , , ,tan A mM 0 1/2 100 G eV , , 2 TeV mM 0 0 0 3 3 ,1 tan 70 m A m
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    230
  • download

    2

Transcript of Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and...

Constrained MSSM

• Unification of the gauge couplings• Radiative EW Symmetry Breaking• Heavy quark and lepton masses• Rare decays (b -> sγ, b->μμ) • Anomalous magnetic moment of muon• LSP is neutral • Amount of the Dark Matter• Experimental limits from direct search

• Unification of the gauge couplings• Radiative EW Symmetry Breaking• Heavy quark and lepton masses• Rare decays (b -> sγ, b->μμ) • Anomalous magnetic moment of muon• LSP is neutral • Amount of the Dark Matter• Experimental limits from direct search

Requirements:

Allowed regionin the parameterspace of the MSSM

0 0 1/ 2, , , , tanA m M 0 0 1/ 2, , , , tanA m M

0 1/ 2100 GeV , , 2 TeVm M

0 0 03 3 , 1 tan 70m A m

Radiative EW Symmetry Breaking

1 2

2 2 222

2

tan

2 tan 1H HZ

m mM

2tan For given

0 1/ 2 and m m

1 1 0 1 TeVH Hm m m 1 TeV

Soft SUSY parameters Hard SUSY parameterμ - problem

Constrained MSSM ( (Choice of constraints)Experimental lower limits on Higgs and superparticle masses

tan β =35 tan β =50

114.3 GeVHiggsm Regions excluded by Higgs experimental limits provided by LEP2

B->s γ decay rate

Standard ModelStandard Model MSSMMSSM

~ ~ ~ ~

~ ~

~

~

~ ~~

H

W±, H±~ ~

4( ) (3.43 0.36) 10sB B X

SM:

MSSM

Experiment

Constrained MSSM (Choice of constraints)Data on rare processes branching ratios

tan β =35 tan β =50

4( ) (3.43 0.36) 10sB B X

Regions excluded by experimental limits (for large tanβ)

Rare Decay Bs → μ+ μ-

SM: Br=3.5٠10-9

2

~

Ex: <4.5٠ 10-8

Main SYSY contribution

SM

Constrained MSSM (Choice of constraints)Data on rare processes branching ratios

tan β =35 tan β =50

7( ) 3.7 10B Bs Regions excluded by experimental limits (for large tanβ)

211 2

2 2

( ) 4 100 GeV| | (1 ) 140 10 ( )

8SUSY SUSYZ

W SUSY SUSY

m MMa tan log tan

Sin M m M

Anomalous magnetic moment

EW

27±10

Constrained MSSM (Choice of constraints)Muon anomalous magnetic moment

Regions excluded by muon amm constraint

exp 10(27 10) 10tha a a

tan β =35 tan β =50

Constrained MSSM (Choice of constraints)

This constraint is a consequence of R-parity conservation requirement

The lightest supersymmetric particle (LSP) is neutral.

Regions excluded by LSP constraint

tan β =35 tan β =50

Favoured regions of parameter space

From the Higgs searches tan β >4, from aμ measurements μ >0

Pre-WMAP allowed regions in the parameter space.

tan β =35 tan β =50

In allowed region one fulfills all the constraints simultaneously and has the suitable amount of the dark matter

In allowed region one fulfills all the constraints simultaneously and has the suitable amount of the dark matter

Narrow allowed region enables one to predict the particle spectra and the main decay patterns

Narrow allowed region enables one to predict the particle spectra and the main decay patterns

Allowed regions after WMAP

WMAPLSPcharged

Higgs EWSB

tan β =50

Phenomenology essentially depends on the region of parameter space and has direct influence on the strategy of SUSY searches

Phenomenology essentially depends on the region of parameter space and has direct influence on the strategy of SUSY searches

SUSY Masses in MSSM

Gauginos+Higgsinos Squarks and Sleptons

Mass Spectrum in CMSSM

Symbol Low tan High tan

214, 413 64, 113

1028, 1016 194, 229

413, 1026 110, 130

1155 516

303, 270 1497, 1499

290 1495

1028, 936 1519, 1523

279, 403 1305, 1288

953, 1010 1309, 1152

727, 1017 906, 1046

h, H 95, 1344 115, 372

A, H 1340, 1344 372, 383

SUSY Masses in GeV

Fitted SUSY Parameters

Symbol Low tan High tan

tan 1.71 52.2

m 0 200 1500

m 1/2 500 170

(0) 1084 558

A(0) 0 0

1/ GUT 24.8 24.8

M GUT 16

1.6 •10 16

1.6 •10

0 03 1 4 2( ), ( )H H

0 0 31 2( ), ( )B W

1 2( ), ( )W H

g,L Re e

L,L Rq q

1 2,

1 2,b b

1 2,t t

(Sample)

95 115

The Lightest Superparticle

• Gravity mediation 0

1LSP stable

property signature

jets/leptons E T

• Gauge mediation LSP G stable E T

0

1NLSPRl

0

1 , ,G hG ZG photons/jets E T

Rl G lepton E T

• Anomaly mediation

0

1LSPL

stable

stablelepton E T

• R-parity violation LSP is unstable SM particles

Rare decaysNeutrinoless double decay• Modern limit 40 GeVLSPM

SUSY Dark MatterNeutralino = SUSY candidate for the cold Dark MatterNeutralino = the Lightest Superparticle (LSP) = WIMP

0 0 01 21 2 3 4N N z N H N H

photino zino higgsino higgsino

exp 40 GeVM

40 400 GeVtheorM

• Superparticles are created in pairs• The lightest superparticle is stable

3( ) 2( 1)

1, 1

B L S

p p

R

R R