Constants: Electric Potential (static case!)pleclair.ua.edu/ph106/Exams/Final/cheat_sheet.pdf1 ”...

2
Constants: ke 1/4πo =8.98755 × 10 9 N · m 2 · C -2 o = 8.85 × 10 -12 C 2 /N · m 2 μ o 4π × 10 -7 T · m/A c 2 = 1oo e = 1.60218 × 10 -19 C m e - = 9.10938 × 10 -31 kg m p + = 1.67262 × 10 -27 kg N A = 6.022 × 10 23 things/mol g = 9.81 m/s 2 Basic Equations: 0 = ax 2 + bx 2 + c = x = -b ± b 2 - 4ac 2a Fcentr = - mv 2 r ˆ r Centripetal Electric Force & Field: F12 = ke q1q2 r 2 ˆ r = q2 E1 E1 = F12/q2 = ke q1 r 2 ˆ r E = ke X i qi r 2 i ˆ ri ke dq r 2 ˆ r = ke ρˆ r r 2 dV ol Capacitors: Q capacitor = CΔV C parallel plate = 0A d U capacitor = 1 2 QΔV = Q 2 2C = C (ΔV ) 2 Ceq, par = C1 + C2 + C3 + ··· 1/C eq, series = 1/C1 +1/C2 +1/C3 + ··· C with dielectric = κC without κ air =1 I = dQ/dt = CdV/dt RC circuits Q C (t) = Q0 h 1 - e -t/τ i charging Q C (t) = Q0e -t/τ discharging Q(t) = CΔV (t) τ = RC ac Circuits τ = L/R RL circuit τ = RC RC circuit X C = 1 2πfC “resistance” of a capacitor for ac X L = 2πfL “resistance” of an inductor for ac ω cutoff = 1 τ =2πf Electric Potential (static case!): ΔV = V B - V A = ΔU q = - B A E · d l V point = ke q r V = ke dq r continuous Ex = - dV dx E = - V U pair of point charges = ke q1q2 r12 = V1q2 = V2q1 Usystem = sum over unique pairs = X pairs ij keqiqj rij U field = 1 2 oE 2 dV ol = 1 2 ρV dV ol V = ke dq r continuous Ex = - dV dx E = - V ΔPE = qΔV = -q| E||Δ x| cos θ = -qExΔx constant E field Other: E2 - E1 · ˆ n =4πkeσ sheet of charge with σ F sheet = σ 2 (E1 + E2) Current & Resistance: I = S J · d A uniform J -----→ I = dQ dt = nqAv d J = X k n k q k v k uniform J -----→ J = I A = nqv d S J · d A = - d dt V ρ dV ol R = l A ρ =1 v d = m E τ = scattering time ρ =1= m nq 2 τ R = V/I Ohm E = J orJ = σE Ohm P = dU/dt = I ΔV power Req = R1 + R2 + ... series 1/Req =1/R1 +1/R2 + ... parallel X I in = X Iout junction X closed path ΔV =0 loop EM Waves: c = λf = | E| | B| I = » photons time –» energy photon –» 1 Area I = energy time · area = Emax Bmax 2μ 0 = power (P) area = E 2 max 2μ 0 c 1

Transcript of Constants: Electric Potential (static case!)pleclair.ua.edu/ph106/Exams/Final/cheat_sheet.pdf1 ”...

Page 1: Constants: Electric Potential (static case!)pleclair.ua.edu/ph106/Exams/Final/cheat_sheet.pdf1 ” · nˆ = 4πk eσ sheet of charge with ... Derived unit Symbol equivalent to newton

Constants:

ke ≡ 1/4πεo = 8.98755× 109N ·m2 · C−2

εo = 8.85× 10−12

C2/N ·m2

µo ≡ 4π × 10−7 T · m/A

c2

= 1/µoεo

e = 1.60218× 10−19

C

me− = 9.10938× 10−31

kg

mp+ = 1.67262× 10−27

kg

NA = 6.022× 1023 things/mol

g = 9.81 m/s2

Basic Equations:

0 = ax2

+ bx2

+ c =⇒ x =−b±

√b2 − 4ac

2a

~Fcentr = −mv2

rr Centripetal

Electric Force & Field:

~F12 = keq1q2

r2r = q2~E1

~E1 = ~F12/q2 = keq1

r2r

~E = ke

Xi

qi

r2i

ri → ke

dq

r2r = ke

ρr

r2dVol

Capacitors:

Qcapacitor = C∆V

Cparallel plate =ε0A

d

Ucapacitor =1

2Q∆V =

Q2

2C= C (∆V )

2

Ceq, par = C1 + C2 + C3 + · · ·

1/Ceq, series = 1/C1 + 1/C2 + 1/C3 + · · ·

Cwith dielectric = κCwithout κair = 1

I = dQ/dt = CdV/dt

RC circuits

QC(t) = Q0

h1− e

−t/τi

charging

QC(t) = Q0e−t/τ discharging

Q(t) = C∆V (t)

τ = RC

ac Circuits

τ = L/R RL circuit

τ = RC RC circuit

XC =1

2πfC“resistance” of a capacitor for ac

XL = 2πfL “resistance” of an inductor for ac

ωcutoff =1

τ= 2πf

Electric Potential (static case!):

∆V = VB − VA =∆U

q= −

B

A

~E · d~l

Vpoint = keq

r

V = ke

dq

rcontinuous

Ex = −dV

dx→ ~E = −~∇V

Upair of point charges = keq1q2

r12= V1q2 = V2q1

Usystem = sum over unique pairs =X

pairs ij

keqiqj

rij

Ufield =1

2

εoE

2dVol =

1

2

ρV dVol

V = ke

dq

rcontinuous

Ex = −dV

dx→ ~E = −~∇V

∆PE = q∆V = −q|~E||∆~x| cos θ = −qEx∆x

↑ constant E field

Other:

“~E2 − ~E1

”· n = 4πkeσ sheet of charge with σ

Fsheet =σ

2(E1 + E2)

Current & Resistance:

I =

S

~J · d~Auniform J−−−−−→ I =

dQ

dt= nqAvd

J =X

k

nkqkvkuniform J−−−−−→ J =

I

A= nqvd

S

~J · d~A = −d

dt

V

ρ dVol

R =%l

Aρ = 1/σ

~vd =qτ

m~E τ = scattering time

ρ = 1/σ =m

nq2τ

R = V/I Ohm

E = %J orJ = σE Ohm

P = dU/dt = I∆V power

Req = R1 + R2 + . . . series

1/Req = 1/R1 + 1/R2 + . . . parallelXIin =

XIout junctionX

closed path

∆V = 0 loop

EM Waves:

c = λf =|~E||~B|

I =

»photons

time

– »energyphoton

– »1

Area

–I =

energytime · area

=EmaxBmax

2µ0=

power (P)

area=

E2max

2µ0c

1

Page 2: Constants: Electric Potential (static case!)pleclair.ua.edu/ph106/Exams/Final/cheat_sheet.pdf1 ” · nˆ = 4πk eσ sheet of charge with ... Derived unit Symbol equivalent to newton

Magnetism:

~FB = q~v × ~B

d~FB = Id~l× ~B I-carrying wire

d~B =µo

Id~l× r

r2wire

~B =µ0I

2rθ loop

B =µoNI

l= µonI solenoid

FB

l=

µoI1I2

2πd2 wires

ΦB =

~B · d~A

~τ = ~µ× ~B with ~µ = I~A I loop

U = −~µ× ~B dipole

Ufield =1

2µo

B

2dVol

Induction & Maxwell

∆V = |~v||~B|l = |~E|l motional voltage

L = NΦB/I

∆VL = −LdI/dt

L = µoN2A/l solenoid

I = (∆V/R)“1− e

−t/τ”

τ = L/R LR close

I = (∆V/R) e−t/τ

τ = L/R LR open

U =1

2LI

2

M12 = N2Φ12/I1 = M21 = N1Φ21/I2 = M mutual

∆V2 = −MdI1/dt− LdI2/dt

∆V =

~E · d~l = −

dΦB

dt

∆V = Blv motional

ΦE =

~E · d~A = 4πkeqencl =

qencl

εo~B · d~A = 0

~B · d~l = µoI +

1

c2

dΦE

dt

Optics:

E = hf =hc

λ

n =speed of light in vacuum

speed of light in a medium=

c

v

λ1

λ2=

v1

v2=

c/n1

c/n2=

n2

n1refraction

n1 sin θ1 = n2 sin θ2 Snell’s refraction

λf = c

M =h′

h= −

q

p

1

f=

1

p+

1

q=

2

Rmirror & lens

n1

p+

n2

q=

n2 − n1

Rspherical refracting

q = −n2

n1p flat refracting

1

f=

„n2 − n1

n1

« »1

R1−

1

R2

–lensmaker’s

Vectors:

|~F| =q

F 2x + F 2

y magnitude

θ = tan−1

»Fy

Fx

–direction

r = ~r/|~r|

d~l = dx x + dy y + dz z

let ~a = ax x + ay y + az z and ~b = bx x + by y + bz z

~a · ~b =axbx + ayby + azbz =nX

i=1

aibi = |~a||~b| cos θ

|~a× ~b| = |~a||~b| sin θ

~a× ~b =

˛˛ x y z

ax ay az

bx by bz

˛˛ = (aybz − azby) x + (azbx − axbz) y + (axby − aybx) z

Derived unit Symbol equivalent to

newton N kg·m/s2

joule J kg·m2/s2 = N·mwatt W J/s=m2·kg/s3

coulomb C A·sV W/A = m2·kg/·s3·Afarad F C/V = A2·s4/m2·kgohm Ω V/A = m2·kg/s3·A2

tesla T Wb/m2 = kg/s2·Aelectron volt eV 1.6× 10−19 J- 1 T · m/A 1 N/A2

- 1 T · m2 1 V · s- 1 N/C 1 V/m

Power Prefix Abbreviation

10−12 pico p10−9 nano n10−6 micro µ

10−3 milli m10−2 centi c103 kilo k106 mega M109 giga G1012 tera T

Right-hand rule #1

1. Point the fingers of your right hand along the direction of ~v.2. Point your thumb in the direction of ~B.3. The magnetic force on a + charge points out from the back of your hand.

Right-hand rule #2:Point your right thumb along the wire in the direction of the current. Your fingers curlaround the direction of the magnetic field, which circulates around the wire.

2