conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the...

139
Prologue The story of the Closed String The story of the Open String Conclusions and Outlook SUSY and the brane: A σ-model story Wieland Staessens in collaboration with A. Sevrin and A. Wijns based on: 0709.3733, 0809.3659, 0908.2756 Vrije Universiteit Brussel and The International Solvay Institutes 07 September 2009, Z¨ urich

Transcript of conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the...

Page 1: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

SUSY and the brane: A σ-model story

Wieland Staessensin collaboration with A. Sevrin and A. Wijns

based on: 0709.3733, 0809.3659, 0908.2756

Vrije Universiteit Brussel and The International Solvay Institutes

07 September 2009, Zurich

Page 2: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 3: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 4: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 5: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 6: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 7: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)

→ RNS Superstring formalism2 dim N = (2,2) SUSY non-linear σ-models→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 8: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)→ RNS Superstring formalism

2 dim N = (2,2) SUSY non-linear σ-models→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 9: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)→ RNS Superstring formalism2 dim N = (2,2) SUSY non-linear σ-models

→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 10: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)→ RNS Superstring formalism2 dim N = (2,2) SUSY non-linear σ-models→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 11: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)→ RNS Superstring formalism2 dim N = (2,2) SUSY non-linear σ-models→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 12: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading characters

Type II Superstrings in general NSNS background (G , H)→ RNS Superstring formalism2 dim N = (2,2) SUSY non-linear σ-models→ encode local geometry of Generalized Kahler Target manifolds

Why interesting?

• physics: Stringy description of flux compactifications withoutRR fluxes

• mathematics: playground for Generalized Kahler Geometry

Here: Include D-branes in general NSNS background preservinghalf of the (world-sheet) SUSY

• physics: D-branes ∼ gauge d.o.f and chiral matter(intersecting)

• mathematics: D-branes ∼ subspaces of Generalized KahlerGeometry

Page 13: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading charactersSUSY → Superspace:

1. exhibits the relation between (extended) SUSY on world-sheetand (generalized) complex geometry on target space

2. facilitates the analysis

3. full off-shell N =(2,2) superspace description is known

Boundary SUSY → Boundary Superspace

1. fruitful for the local geometric description of a D-branewrapping a subspace

2. appropriate setting for analysis of β-function⇒ Stability conditions for D-brane

Purpose of this talk

D-branes on Generalized Kahler Geometries using 2 dim SUSYσ-models in boundary superspace

Page 14: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading charactersSUSY → Superspace:

1. exhibits the relation between (extended) SUSY on world-sheetand (generalized) complex geometry on target space

2. facilitates the analysis

3. full off-shell N =(2,2) superspace description is known

Boundary SUSY → Boundary Superspace

1. fruitful for the local geometric description of a D-branewrapping a subspace

2. appropriate setting for analysis of β-function⇒ Stability conditions for D-brane

Purpose of this talk

D-branes on Generalized Kahler Geometries using 2 dim SUSYσ-models in boundary superspace

Page 15: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Introducing the leading charactersSUSY → Superspace:

1. exhibits the relation between (extended) SUSY on world-sheetand (generalized) complex geometry on target space

2. facilitates the analysis

3. full off-shell N =(2,2) superspace description is known

Boundary SUSY → Boundary Superspace

1. fruitful for the local geometric description of a D-branewrapping a subspace

2. appropriate setting for analysis of β-function⇒ Stability conditions for D-brane

Purpose of this talk

D-branes on Generalized Kahler Geometries using 2 dim SUSYσ-models in boundary superspace

Page 16: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 17: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The N= (1,1) SUSY non-linear σ-model

σ-model consists of mappings X : Σ →M

Σ: (super)world-sheet with coordinates

• (bosonic) light-cone coordinates: σ=| ≡ τ + σ, σ= ≡ τ − σ• (fermionic) coordinates θ+, θ− with derivatives:

D2+ = − i

2∂=| , D2− = − i

2∂= , D+,D− = 0

M: target manifold with local coordinates X a, a ∈ 1, . . . , d• metric gab(X )

• Closed 3-form (torsion) Habc(X ), locally: Habc = −32∂[aBbc]

extra gauge symmetry B → B + dA

• 2 connections Γa(±)bc ≡

abc ± Ha

bc , but Γa(+)bc = Γa

(−)cb

Page 18: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The N= (1,1) SUSY non-linear σ-model

σ-model consists of mappings X : Σ →M

Σ: (super)world-sheet with coordinates

• (bosonic) light-cone coordinates: σ=| ≡ τ + σ, σ= ≡ τ − σ• (fermionic) coordinates θ+, θ− with derivatives:

D2+ = − i

2∂=| , D2− = − i

2∂= , D+,D− = 0

M: target manifold with local coordinates X a, a ∈ 1, . . . , d• metric gab(X )

• Closed 3-form (torsion) Habc(X ), locally: Habc = −32∂[aBbc]

extra gauge symmetry B → B + dA

• 2 connections Γa(±)bc ≡

abc ± Ha

bc , but Γa(+)bc = Γa

(−)cb

Page 19: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The N= (1,1) SUSY non-linear σ-model

σ-model consists of mappings X : Σ →M

Σ: (super)world-sheet with coordinates

• (bosonic) light-cone coordinates: σ=| ≡ τ + σ, σ= ≡ τ − σ• (fermionic) coordinates θ+, θ− with derivatives:

D2+ = − i

2∂=| , D2− = − i

2∂= , D+,D− = 0

M: target manifold with local coordinates X a, a ∈ 1, . . . , d• metric gab(X )

• Closed 3-form (torsion) Habc(X ), locally: Habc = −32∂[aBbc]

extra gauge symmetry B → B + dA

• 2 connections Γa(±)bc ≡

abc ± Ha

bc , but Γa(+)bc = Γa

(−)cb

Page 20: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The action and extended SUSYUsing N = (1,1) superspace the action is simply

SN=(1,1) =

∫d2σd2θ(Gab + Bab)D+X aD−X b

Additional world-sheet SUSY? [Alvarez-Gaume - Freedman (1981);

Gates-Hull-Rocek (1984)]

δX a = ε+Ja(+)b(X )D+X b + ε−Ja

(−)b(X )D−X b

99K requirement 1: SUSY algebra closes (off-shell) on-shell⇒ J+ and J− are two (commuting) complex structures

99K requirement 2: N =(1,1) action is invariant

JT(±)GJ± = G ,

∇(±)a Jb

(±)c = 0

⇒ M characterized by (Gab,Habc , J±): Bihermitian Geometry orGeneralized Kahler Geometry [Gualtieri math/0401221]

Page 21: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The action and extended SUSYUsing N = (1,1) superspace the action is simply

SN=(1,1) =

∫d2σd2θ(Gab + Bab)D+X aD−X b

Additional world-sheet SUSY? [Alvarez-Gaume - Freedman (1981);

Gates-Hull-Rocek (1984)]

δX a = ε+Ja(+)b(X )D+X b + ε−Ja

(−)b(X )D−X b

99K requirement 1: SUSY algebra closes (off-shell) on-shell⇒ J+ and J− are two (commuting) complex structures

99K requirement 2: N =(1,1) action is invariant

JT(±)GJ± = G ,

∇(±)a Jb

(±)c = 0

⇒ M characterized by (Gab,Habc , J±): Bihermitian Geometry orGeneralized Kahler Geometry [Gualtieri math/0401221]

Page 22: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The action and extended SUSYUsing N = (1,1) superspace the action is simply

SN=(1,1) =

∫d2σd2θ(Gab + Bab)D+X aD−X b

Additional world-sheet SUSY? [Alvarez-Gaume - Freedman (1981);

Gates-Hull-Rocek (1984)]

δX a = ε+Ja(+)b(X )D+X b + ε−Ja

(−)b(X )D−X b

99K requirement 1: SUSY algebra closes (off-shell) on-shell⇒ J+ and J− are two (commuting) complex structures

99K requirement 2: N =(1,1) action is invariant

JT(±)GJ± = G ,

∇(±)a Jb

(±)c = 0

⇒ M characterized by (Gab,Habc , J±): Bihermitian Geometry orGeneralized Kahler Geometry [Gualtieri math/0401221]

Page 23: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The action and extended SUSYUsing N = (1,1) superspace the action is simply

SN=(1,1) =

∫d2σd2θ(Gab + Bab)D+X aD−X b

Additional world-sheet SUSY? [Alvarez-Gaume - Freedman (1981);

Gates-Hull-Rocek (1984)]

δX a = ε+Ja(+)b(X )D+X b + ε−Ja

(−)b(X )D−X b

99K requirement 1: SUSY algebra closes (off-shell) on-shell⇒ J+ and J− are two (commuting) complex structures

99K requirement 2: N =(1,1) action is invariant

JT(±)GJ± = G ,

∇(±)a Jb

(±)c = 0

⇒ M characterized by (Gab,Habc , J±): Bihermitian Geometry orGeneralized Kahler Geometry [Gualtieri math/0401221]

Page 24: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

The action and extended SUSYUsing N = (1,1) superspace the action is simply

SN=(1,1) =

∫d2σd2θ(Gab + Bab)D+X aD−X b

Additional world-sheet SUSY? [Alvarez-Gaume - Freedman (1981);

Gates-Hull-Rocek (1984)]

δX a = ε+Ja(+)b(X )D+X b + ε−Ja

(−)b(X )D−X b

99K requirement 1: SUSY algebra closes (off-shell) on-shell⇒ J+ and J− are two (commuting) complex structures

99K requirement 2: N =(1,1) action is invariant

JT(±)GJ± = G ,

∇(±)a Jb

(±)c = 0

⇒ M characterized by (Gab,Habc , J±): Bihermitian Geometry orGeneralized Kahler Geometry [Gualtieri math/0401221]

Page 25: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)2. TWISTED CHIRAL J(+) = −J(−): (w , w)3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 26: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)2. TWISTED CHIRAL J(+) = −J(−): (w , w)3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 27: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)2. TWISTED CHIRAL J(+) = −J(−): (w , w)3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 28: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)

2. TWISTED CHIRAL J(+) = −J(−): (w , w)3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 29: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)2. TWISTED CHIRAL J(+) = −J(−): (w , w)

3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 30: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = (2,2) Superspace formulation

• N= (2,2) superspace coordinates: σ=|, σ=, θ+, θ−, θ+, θ−

(+ corresponding derivatives)N = (2,2) action

SN=(2,2) = 4

∫d2σd2θd2θV (X , X )

• N = (2,2) C superfields X → Too many d.o.f. and nodynamics→ impose constraints: D±X a = Ja

(±)bD±X b

• integrability conditions ⇒ J(+), J(−) complex structures3 types of superfield representation:

1. CHIRAL J(+) = J(−): (z , z)2. TWISTED CHIRAL J(+) = −J(−): (w , w)3. SEMI-CHIRAL [J(+), J(−)] 6= 0: (l , l , r , r)

Page 31: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• The most general model consists of chiral, twisted chiral andsemi-chiral superfields: V (z , z ,w , w , l , l , r , r)

• Reduction N = (2,2) → N = (1,1) superspace by integratingout θ+, θ− + elimination of auxiliary fields⇒ Gab,Bab, J(±) as non-linear expressions of V

• special case: chiral and/or twisted chiral → linear expressionse.g. 4 dim with chiral and twisted chiral

gzz = +Vzz gww = −Vww

bzw = −Vzw bwz = +Vwz

• potential V is determined up to Generalized Kahlertransformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

• toy examples: T 4, SU(2)× U(1)

Page 32: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• The most general model consists of chiral, twisted chiral andsemi-chiral superfields: V (z , z ,w , w , l , l , r , r)

• Reduction N = (2,2) → N = (1,1) superspace by integratingout θ+, θ− + elimination of auxiliary fields⇒ Gab,Bab, J(±) as non-linear expressions of V

• special case: chiral and/or twisted chiral → linear expressionse.g. 4 dim with chiral and twisted chiral

gzz = +Vzz gww = −Vww

bzw = −Vzw bwz = +Vwz

• potential V is determined up to Generalized Kahlertransformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

• toy examples: T 4, SU(2)× U(1)

Page 33: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• The most general model consists of chiral, twisted chiral andsemi-chiral superfields: V (z , z ,w , w , l , l , r , r)

• Reduction N = (2,2) → N = (1,1) superspace by integratingout θ+, θ− + elimination of auxiliary fields⇒ Gab,Bab, J(±) as non-linear expressions of V

• special case: chiral and/or twisted chiral → linear expressionse.g. 4 dim with chiral and twisted chiral

gzz = +Vzz gww = −Vww

bzw = −Vzw bwz = +Vwz

• potential V is determined up to Generalized Kahlertransformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

• toy examples: T 4, SU(2)× U(1)

Page 34: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• The most general model consists of chiral, twisted chiral andsemi-chiral superfields: V (z , z ,w , w , l , l , r , r)

• Reduction N = (2,2) → N = (1,1) superspace by integratingout θ+, θ− + elimination of auxiliary fields⇒ Gab,Bab, J(±) as non-linear expressions of V

• special case: chiral and/or twisted chiral → linear expressionse.g. 4 dim with chiral and twisted chiral

gzz = +Vzz gww = −Vww

bzw = −Vzw bwz = +Vwz

• potential V is determined up to Generalized Kahlertransformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

• toy examples: T 4, SU(2)× U(1)

Page 35: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• The most general model consists of chiral, twisted chiral andsemi-chiral superfields: V (z , z ,w , w , l , l , r , r)

• Reduction N = (2,2) → N = (1,1) superspace by integratingout θ+, θ− + elimination of auxiliary fields⇒ Gab,Bab, J(±) as non-linear expressions of V

• special case: chiral and/or twisted chiral → linear expressionse.g. 4 dim with chiral and twisted chiral

gzz = +Vzz gww = −Vww

bzw = −Vzw bwz = +Vwz

• potential V is determined up to Generalized Kahlertransformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

• toy examples: T 4, SU(2)× U(1)

Page 36: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Toy Examples

• torus T 4 with H = 0• 2 chiral• 2 twisted chiral• 1 chiral + 1 twisted chiral• 1 semi-chiral

• WZW model SU(2)× U(1) with H 6= 0• 1 chiral + 1 twisted chiral [Rocek, Schoutens,Sevrin ’91]

• 1 Semi-chiral [Sevrin-Troost hep-th/9610102]

Page 37: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Toy Examples

• torus T 4 with H = 0• 2 chiral• 2 twisted chiral• 1 chiral + 1 twisted chiral• 1 semi-chiral

• WZW model SU(2)× U(1) with H 6= 0• 1 chiral + 1 twisted chiral [Rocek, Schoutens,Sevrin ’91]

• 1 Semi-chiral [Sevrin-Troost hep-th/9610102]

Page 38: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the closed string

• Extended SUSY on the world-sheet↓

Complex structure(s) on the target space⇒ Target space geometry: (G , H, J(±))

• Conditions on target space geometry: solved in terms of ageneralized Kahler potential V

• V is a real function of chiral, twisted chiral and semi-chiralsuperfields

• examples: T 2n, SU(2)× U(1), D × T 2, SU(2)× SU(2),...

Page 39: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the closed string

• Extended SUSY on the world-sheet↓

Complex structure(s) on the target space⇒ Target space geometry: (G , H, J(±))

• Conditions on target space geometry: solved in terms of ageneralized Kahler potential V

• V is a real function of chiral, twisted chiral and semi-chiralsuperfields

• examples: T 2n, SU(2)× U(1), D × T 2, SU(2)× SU(2),...

Page 40: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the closed string

• Extended SUSY on the world-sheet↓

Complex structure(s) on the target space⇒ Target space geometry: (G , H, J(±))

• Conditions on target space geometry: solved in terms of ageneralized Kahler potential V

• V is a real function of chiral, twisted chiral and semi-chiralsuperfields

• examples: T 2n, SU(2)× U(1), D × T 2, SU(2)× SU(2),...

Page 41: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the closed string

• Extended SUSY on the world-sheet↓

Complex structure(s) on the target space⇒ Target space geometry: (G , H, J(±))

• Conditions on target space geometry: solved in terms of ageneralized Kahler potential V

• V is a real function of chiral, twisted chiral and semi-chiralsuperfields

• examples: T 2n, SU(2)× U(1), D × T 2, SU(2)× SU(2),...

Page 42: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 43: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Related and complementary work

• [Ooguri-Oz-Yin hep-th/9606112]

From N = (2,2) SCFT → N = 2 Boundary SCFT

⇒ Boundary conditions: lagrangian (A) and holomorphic (B) branes

• [Lindstrom-Zabzine hep-th/0209098]

SUSY variations in σ-models ⇒ more general boundary conditions

also allowed coisotropic branes (A)

• [Koerber-Nevens-Sevrin hep-th/0309229]

N = 2 boundary superspace for chiral superfields → holomorphic

branes

• [Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

N = 2 boundary superspace for twisted chiral and semi-chiral

superfields → lagrangian and coisotropic branes

Page 44: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Related and complementary work

• [Ooguri-Oz-Yin hep-th/9606112]

From N = (2,2) SCFT → N = 2 Boundary SCFT

⇒ Boundary conditions: lagrangian (A) and holomorphic (B) branes

• [Lindstrom-Zabzine hep-th/0209098]

SUSY variations in σ-models ⇒ more general boundary conditions

also allowed coisotropic branes (A)

• [Koerber-Nevens-Sevrin hep-th/0309229]

N = 2 boundary superspace for chiral superfields → holomorphic

branes

• [Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

N = 2 boundary superspace for twisted chiral and semi-chiral

superfields → lagrangian and coisotropic branes

Page 45: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Related and complementary work

• [Ooguri-Oz-Yin hep-th/9606112]

From N = (2,2) SCFT → N = 2 Boundary SCFT

⇒ Boundary conditions: lagrangian (A) and holomorphic (B) branes

• [Lindstrom-Zabzine hep-th/0209098]

SUSY variations in σ-models ⇒ more general boundary conditions

also allowed coisotropic branes (A)

• [Koerber-Nevens-Sevrin hep-th/0309229]

N = 2 boundary superspace for chiral superfields → holomorphic

branes

• [Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

N = 2 boundary superspace for twisted chiral and semi-chiral

superfields → lagrangian and coisotropic branes

Page 46: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Related and complementary work

• [Ooguri-Oz-Yin hep-th/9606112]

From N = (2,2) SCFT → N = 2 Boundary SCFT

⇒ Boundary conditions: lagrangian (A) and holomorphic (B) branes

• [Lindstrom-Zabzine hep-th/0209098]

SUSY variations in σ-models ⇒ more general boundary conditions

also allowed coisotropic branes (A)

• [Koerber-Nevens-Sevrin hep-th/0309229]

N = 2 boundary superspace for chiral superfields → holomorphic

branes

• [Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

N = 2 boundary superspace for twisted chiral and semi-chiral

superfields → lagrangian and coisotropic branes

Page 47: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

• boundary at σ = 0, θ′ = 0, θ′ = 0 : N = (2, 2) → N = 2? unbroken directions: ∂τ , D ≡ D+ + D−, D ≡ D+ + D−? broken directions: ∂σ, D ′ ≡ D+ − D−, D ′ ≡ D+ − D−

• N = 2 boundary superfields are 1 dim @ boundary:field properties @ boundary determine which boundaryconditions

1 chiral field (z): constrained chiral superfields (Dz = iDz)→ 2 Dirichlet conditions→ 2 Neumann conditions

2 twisted chiral field (w) and semi-chiral fields (l ,r):unconstrained superfields→ Dirichlet and associated Neumann (lagrangian)→ full Neumann conditions (coisotropic)

• ⇒ possible spectrum of D-branes depends on field content

Page 48: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

• boundary at σ = 0, θ′ = 0, θ′ = 0 : N = (2, 2) → N = 2? unbroken directions: ∂τ , D ≡ D+ + D−, D ≡ D+ + D−? broken directions: ∂σ, D ′ ≡ D+ − D−, D ′ ≡ D+ − D−

• N = 2 boundary superfields are 1 dim @ boundary:field properties @ boundary determine which boundaryconditions

1 chiral field (z): constrained chiral superfields (Dz = iDz)→ 2 Dirichlet conditions→ 2 Neumann conditions

2 twisted chiral field (w) and semi-chiral fields (l ,r):unconstrained superfields→ Dirichlet and associated Neumann (lagrangian)→ full Neumann conditions (coisotropic)

• ⇒ possible spectrum of D-branes depends on field content

Page 49: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

• boundary at σ = 0, θ′ = 0, θ′ = 0 : N = (2, 2) → N = 2? unbroken directions: ∂τ , D ≡ D+ + D−, D ≡ D+ + D−? broken directions: ∂σ, D ′ ≡ D+ − D−, D ′ ≡ D+ − D−

• N = 2 boundary superfields are 1 dim @ boundary:field properties @ boundary determine which boundaryconditions

1 chiral field (z): constrained chiral superfields (Dz = iDz)→ 2 Dirichlet conditions→ 2 Neumann conditions

2 twisted chiral field (w) and semi-chiral fields (l ,r):unconstrained superfields→ Dirichlet and associated Neumann (lagrangian)→ full Neumann conditions (coisotropic)

• ⇒ possible spectrum of D-branes depends on field content

Page 50: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

• boundary at σ = 0, θ′ = 0, θ′ = 0 : N = (2, 2) → N = 2? unbroken directions: ∂τ , D ≡ D+ + D−, D ≡ D+ + D−? broken directions: ∂σ, D ′ ≡ D+ − D−, D ′ ≡ D+ − D−

• N = 2 boundary superfields are 1 dim @ boundary:field properties @ boundary determine which boundaryconditions

1 chiral field (z): constrained chiral superfields (Dz = iDz)→ 2 Dirichlet conditions→ 2 Neumann conditions

2 twisted chiral field (w) and semi-chiral fields (l ,r):unconstrained superfields→ Dirichlet and associated Neumann (lagrangian)→ full Neumann conditions (coisotropic)

• ⇒ possible spectrum of D-branes depends on field content

Page 51: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superfields

[Sevrin-WS-Wijns 0709.3733, 0809.3659, 0908.2756]

• boundary at σ = 0, θ′ = 0, θ′ = 0 : N = (2, 2) → N = 2? unbroken directions: ∂τ , D ≡ D+ + D−, D ≡ D+ + D−? broken directions: ∂σ, D ′ ≡ D+ − D−, D ′ ≡ D+ − D−

• N = 2 boundary superfields are 1 dim @ boundary:field properties @ boundary determine which boundaryconditions

1 chiral field (z): constrained chiral superfields (Dz = iDz)→ 2 Dirichlet conditions→ 2 Neumann conditions

2 twisted chiral field (w) and semi-chiral fields (l ,r):unconstrained superfields→ Dirichlet and associated Neumann (lagrangian)→ full Neumann conditions (coisotropic)

• ⇒ possible spectrum of D-branes depends on field content

Page 52: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D-brane spectrum

Example: 4 dim target spaces T 4, SU(2)× U(1), . . .

field content Geometry spectrum

C C Kahler D0, D2, D4C T [J+, J−] = 0 D1,D3T T Kahler D2, D4S [J+, J−] 6= 0 D2, D4

Page 53: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D-brane spectrum

Example: 4 dim target spaces T 4, SU(2)× U(1), . . .

field content Geometry spectrum

C C Kahler D0, D2, D4C T [J+, J−] = 0 D1,D3T T Kahler D2, D4S [J+, J−] 6= 0 D2, D4

D0 and D1 branes only possible for specific field content

Page 54: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D-brane spectrum

Example: 4 dim target spaces T 4, SU(2)× U(1), . . .

field content Geometry spectrum

C C Kahler D0, D2, D4C T [J+, J−] = 0 D1,D3T T Kahler D2, D4S [J+, J−] 6= 0 D2, D4

D0 and D1 branes only possible for specific field content

Explicit examples:

• D1- and D3-branes on T 4 and SU(2)× U(1) [Sevrin-WS-Wijns:

0809.3659]

• D2- and D4-branes on T 4 and SU(2)× U(1) [Sevrin-WS-Wijns:

0908.2756]

Page 55: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superspace action

• unbroken directions: ∂τ , D, D; broken directions: ∂σ, D ′, D ′

• most general N = 2 action

S = −∫

d2σdθd θD ′D ′V (z ,w , l , r) + i

∫dτdθd θW (z ,w , l , r)

• model is invariant under generalized Kahler transformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

W → W − i (F − F ) + i(G − G )

• variation w.r.t. various superfields: BA ∼ i ∂AV

δSboundary = i

∫dτ d2θ

δΛαD′Bα + δΛαD′Bα + BaδX

a + δW

→ imposing appropiate boundary conditions: δSboundary = 0⇒ Geometric properties of D-brane

Page 56: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superspace action

• unbroken directions: ∂τ , D, D; broken directions: ∂σ, D ′, D ′

• most general N = 2 action

S = −∫

d2σdθd θD ′D ′V (z ,w , l , r) + i

∫dτdθd θW (z ,w , l , r)

• model is invariant under generalized Kahler transformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

W → W − i (F − F ) + i(G − G )

• variation w.r.t. various superfields: BA ∼ i ∂AV

δSboundary = i

∫dτ d2θ

δΛαD′Bα + δΛαD′Bα + BaδX

a + δW

→ imposing appropiate boundary conditions: δSboundary = 0⇒ Geometric properties of D-brane

Page 57: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superspace action

• unbroken directions: ∂τ , D, D; broken directions: ∂σ, D ′, D ′

• most general N = 2 action

S = −∫

d2σdθd θD ′D ′V (z ,w , l , r) + i

∫dτdθd θW (z ,w , l , r)

• model is invariant under generalized Kahler transformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

W → W − i (F − F ) + i(G − G )

• variation w.r.t. various superfields: BA ∼ i ∂AV

δSboundary = i

∫dτ d2θ

δΛαD′Bα + δΛαD′Bα + BaδX

a + δW

→ imposing appropiate boundary conditions: δSboundary = 0⇒ Geometric properties of D-brane

Page 58: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

N = 2 boundary superspace action

• unbroken directions: ∂τ , D, D; broken directions: ∂σ, D ′, D ′

• most general N = 2 action

S = −∫

d2σdθd θD ′D ′V (z ,w , l , r) + i

∫dτdθd θW (z ,w , l , r)

• model is invariant under generalized Kahler transformation:

V → V + F (z ,w , l) + F (z , w , l) + G (z , w , r) + G (z ,w , r)

W → W − i (F − F ) + i(G − G )

• variation w.r.t. various superfields: BA ∼ i ∂AV

δSboundary = i

∫dτ d2θ

δΛαD′Bα + δΛαD′Bα + BaδX

a + δW

→ imposing appropiate boundary conditions: δSboundary = 0⇒ Geometric properties of D-brane

Page 59: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Boundary analysis

Main message

Type of Boundary L9999K geometric propertiesSuperfields of D-brane

• [Sevrin-WS-Wijns: 0709.3733]

• purely chiral → holomorphic branes with Fαβ = −i Wαβ

• purely twisted chiral → lagrangian and coisotropic branes w.r.t.

ω ≡ −gJ(+)

• [Sevrin-WS-Wijns: 0809.3659]

• chiral + twisted chiral → “combination” of the previous two cases

• [Sevrin-WS-Wijns: 0908.2756]

• twisted chiral + semi-chiral → lagrangian and coisotropicbranes w.r.t. Ω(−) ≡ 2G (J+ − J−)−1

• general case → not symplectic ?!

Page 60: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Boundary analysis

Main message

Type of Boundary L9999K geometric propertiesSuperfields of D-brane

• [Sevrin-WS-Wijns: 0709.3733]

• purely chiral → holomorphic branes with Fαβ = −i Wαβ

• purely twisted chiral → lagrangian and coisotropic branes w.r.t.

ω ≡ −gJ(+)

• [Sevrin-WS-Wijns: 0809.3659]

• chiral + twisted chiral → “combination” of the previous two cases

• [Sevrin-WS-Wijns: 0908.2756]

• twisted chiral + semi-chiral → lagrangian and coisotropicbranes w.r.t. Ω(−) ≡ 2G (J+ − J−)−1

• general case → not symplectic ?!

Page 61: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Boundary analysis

Main message

Type of Boundary L9999K geometric propertiesSuperfields of D-brane

• [Sevrin-WS-Wijns: 0709.3733]

• purely chiral → holomorphic branes with Fαβ = −i Wαβ

• purely twisted chiral → lagrangian and coisotropic branes w.r.t.

ω ≡ −gJ(+)

• [Sevrin-WS-Wijns: 0809.3659]

• chiral + twisted chiral → “combination” of the previous two cases

• [Sevrin-WS-Wijns: 0908.2756]

• twisted chiral + semi-chiral → lagrangian and coisotropicbranes w.r.t. Ω(−) ≡ 2G (J+ − J−)−1

• general case → not symplectic ?!

Page 62: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Boundary analysis

Main message

Type of Boundary L9999K geometric propertiesSuperfields of D-brane

• [Sevrin-WS-Wijns: 0709.3733]

• purely chiral → holomorphic branes with Fαβ = −i Wαβ

• purely twisted chiral → lagrangian and coisotropic branes w.r.t.

ω ≡ −gJ(+)

• [Sevrin-WS-Wijns: 0809.3659]

• chiral + twisted chiral → “combination” of the previous two cases

• [Sevrin-WS-Wijns: 0908.2756]

• twisted chiral + semi-chiral → lagrangian and coisotropicbranes w.r.t. Ω(−) ≡ 2G (J+ − J−)−1

• general case → not symplectic ?!

Page 63: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3, D2 and D4 on T 4

• ds2 = dzdz + dwdw , H = 0 → V = zz − ww

• D3-brane → Dirichlet w − w = a(z − z), a ∈ Q• δSboundary = 0 ⇒ W = − i

2

(w2 − w2

)+ Neumann for z

• Generalized Kahler Transformation:V → V = − 1

4 (z + z − w − w)2 + 14 (z − z − w + w)2 + (z + z)2

W → W = i2 (z − z − w + w)(w + w)

• T-dualization: (z ,w) L9999K (l , r)a = 1 99K D2-brane (lagrangian)a 6= 1 99K D4-brane (coisotropic)

Page 64: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3, D2 and D4 on T 4

• ds2 = dzdz + dwdw , H = 0 → V = zz − ww

• D3-brane → Dirichlet w − w = a(z − z), a ∈ Q

• δSboundary = 0 ⇒ W = − i2

(w2 − w2

)+ Neumann for z

• Generalized Kahler Transformation:V → V = − 1

4 (z + z − w − w)2 + 14 (z − z − w + w)2 + (z + z)2

W → W = i2 (z − z − w + w)(w + w)

• T-dualization: (z ,w) L9999K (l , r)a = 1 99K D2-brane (lagrangian)a 6= 1 99K D4-brane (coisotropic)

Page 65: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3, D2 and D4 on T 4

• ds2 = dzdz + dwdw , H = 0 → V = zz − ww

• D3-brane → Dirichlet w − w = a(z − z), a ∈ Q• δSboundary = 0 ⇒ W = − i

2

(w2 − w2

)+ Neumann for z

• Generalized Kahler Transformation:V → V = − 1

4 (z + z − w − w)2 + 14 (z − z − w + w)2 + (z + z)2

W → W = i2 (z − z − w + w)(w + w)

• T-dualization: (z ,w) L9999K (l , r)a = 1 99K D2-brane (lagrangian)a 6= 1 99K D4-brane (coisotropic)

Page 66: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3, D2 and D4 on T 4

• ds2 = dzdz + dwdw , H = 0 → V = zz − ww

• D3-brane → Dirichlet w − w = a(z − z), a ∈ Q• δSboundary = 0 ⇒ W = − i

2

(w2 − w2

)+ Neumann for z

• Generalized Kahler Transformation:V → V = − 1

4 (z + z − w − w)2 + 14 (z − z − w + w)2 + (z + z)2

W → W = i2 (z − z − w + w)(w + w)

• T-dualization: (z ,w) L9999K (l , r)a = 1 99K D2-brane (lagrangian)a 6= 1 99K D4-brane (coisotropic)

Page 67: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3, D2 and D4 on T 4

• ds2 = dzdz + dwdw , H = 0 → V = zz − ww

• D3-brane → Dirichlet w − w = a(z − z), a ∈ Q• δSboundary = 0 ⇒ W = − i

2

(w2 − w2

)+ Neumann for z

• Generalized Kahler Transformation:V → V = − 1

4 (z + z − w − w)2 + 14 (z − z − w + w)2 + (z + z)2

W → W = i2 (z − z − w + w)(w + w)

• T-dualization: (z ,w) L9999K (l , r)a = 1 99K D2-brane (lagrangian)a 6= 1 99K D4-brane (coisotropic)

Page 68: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outline

Prologue

The story of the Closed String

The story of the Open String

Conlusions and Outlook

Page 69: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the Open String

• Using N = 2 Boundary Superspace → D-brane geometrycharacterized by V , W , field content and boundary conditions

• Full geometric characterization for D-branes in terms ofsymplectic geometry (chiral or twisted + semi-chiral); forgeneral case?

• Certain D-brane configurations are possible due to presence ofworldvolume gauge field (can always be obtained in N = 2Boundary Superspace)

• T-Duality transformations ∼ method to construct non-trivialexamples of D-branes (e.g. D4c on T 4, SU(2)× U(1),D × T 2)

Page 70: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the Open String

• Using N = 2 Boundary Superspace → D-brane geometrycharacterized by V , W , field content and boundary conditions

• Full geometric characterization for D-branes in terms ofsymplectic geometry (chiral or twisted + semi-chiral); forgeneral case?

• Certain D-brane configurations are possible due to presence ofworldvolume gauge field (can always be obtained in N = 2Boundary Superspace)

• T-Duality transformations ∼ method to construct non-trivialexamples of D-branes (e.g. D4c on T 4, SU(2)× U(1),D × T 2)

Page 71: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the Open String

• Using N = 2 Boundary Superspace → D-brane geometrycharacterized by V , W , field content and boundary conditions

• Full geometric characterization for D-branes in terms ofsymplectic geometry (chiral or twisted + semi-chiral); forgeneral case?

• Certain D-brane configurations are possible due to presence ofworldvolume gauge field (can always be obtained in N = 2Boundary Superspace)

• T-Duality transformations ∼ method to construct non-trivialexamples of D-branes (e.g. D4c on T 4, SU(2)× U(1),D × T 2)

Page 72: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Conclusions for the Open String

• Using N = 2 Boundary Superspace → D-brane geometrycharacterized by V , W , field content and boundary conditions

• Full geometric characterization for D-branes in terms ofsymplectic geometry (chiral or twisted + semi-chiral); forgeneral case?

• Certain D-brane configurations are possible due to presence ofworldvolume gauge field (can always be obtained in N = 2Boundary Superspace)

• T-Duality transformations ∼ method to construct non-trivialexamples of D-branes (e.g. D4c on T 4, SU(2)× U(1),D × T 2)

Page 73: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outlook

Outlook

• Geometric characterization for the general case, possibly inlanguage of GCG

• Extend analysis to 6 dim target spaces (e.g. T 6)

• β-function in N = 2 boundary superspace → stabilityconditions for D-branes (in casu coisotropic branes)

Page 74: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outlook

Outlook

• Geometric characterization for the general case, possibly inlanguage of GCG

• Extend analysis to 6 dim target spaces (e.g. T 6)

• β-function in N = 2 boundary superspace → stabilityconditions for D-branes (in casu coisotropic branes)

Page 75: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Outlook

Outlook

• Geometric characterization for the general case, possibly inlanguage of GCG

• Extend analysis to 6 dim target spaces (e.g. T 6)

• β-function in N = 2 boundary superspace → stabilityconditions for D-branes (in casu coisotropic branes)

Page 76: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

To be continued...

but THE END for now.

Page 77: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

To be continued... but THE END for now.

Page 78: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector space(i.e. ΩT = −Ω and dΩ = 0)

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace:• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 79: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector space(i.e. ΩT = −Ω and dΩ = 0)

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace:• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 80: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector space(i.e. ΩT = −Ω and dΩ = 0)

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace:• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 81: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector space(i.e. ΩT = −Ω and dΩ = 0)

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace:• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 82: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector spacephase space : q1, q2, p1, p2 with canonical Poisson brackets

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace:• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 83: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector spacephase space : q1, q2, p1, p2 with canonical Poisson brackets

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace: q1, q2• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace:• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 84: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Intermezzo

• (M,Ω) is a symplectic 2n dim vector spacephase space : q1, q2, p1, p2 with canonical Poisson brackets

• N ⊆ M 99K symplectic complement N⊥

N⊥ ≡ Y ∈ M|Ω(X ,Y ) = 0, ∀X ∈ N

(1) Lagrangian subspace: q1, q2• N = N⊥ ⇔ Ω|N = 0 = Ω|N⊥• dim N = n

(2) Coisotropic subspace: q1, q2, p1• N⊥ ⊂ N ⇔ Ω|N⊥ = 0

• dim N ≥ n

Page 85: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Twisted chiral + Semi-chiral

• boundary variation w.r.t. X a : (l , l , r , r ,w , w)

δS∣∣∣boundary

= i

∫dτ d2θ

Ba(X ) δX a + δW (X )

⇒ 2Ω

(−)ab = ∂aBb − ∂bBa

• One can show: Ω(−) ≡ 2G (J+ − J−)−1 is a symplectic formnote: no semi-chiral fields, Ω(−) 99K ω ≡ −gJ+ (Kahler)

• impose appropiate boundary conditions → δSboundary = 0

• Dirichlet + associated Neumann (σA): ∂ W∂σA = −Bb

∂X b

∂σA

→ Ω(−)|brane = 0 and dim brane = 12 dim target space

• all Neumann: DX a = K ab(X )DX b

→ complex structure K + U(1) flux Fab = Ω(−)ac K c

b,brane⊥ = 0 dim brane > 1

2 dim target space

Page 86: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Twisted chiral + Semi-chiral

• boundary variation w.r.t. X a : (l , l , r , r ,w , w)

δS∣∣∣boundary

= i

∫dτ d2θ

Ba(X ) δX a + δW (X )

⇒ 2Ω

(−)ab = ∂aBb − ∂bBa

• One can show: Ω(−) ≡ 2G (J+ − J−)−1 is a symplectic formnote: no semi-chiral fields, Ω(−) 99K ω ≡ −gJ+ (Kahler)

• impose appropiate boundary conditions → δSboundary = 0

• Dirichlet + associated Neumann (σA): ∂ W∂σA = −Bb

∂X b

∂σA

→ Ω(−)|brane = 0 and dim brane = 12 dim target space

• all Neumann: DX a = K ab(X )DX b

→ complex structure K + U(1) flux Fab = Ω(−)ac K c

b,brane⊥ = 0 dim brane > 1

2 dim target space

Page 87: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Twisted chiral + Semi-chiral

• boundary variation w.r.t. X a : (l , l , r , r ,w , w)

δS∣∣∣boundary

= i

∫dτ d2θ

Ba(X ) δX a + δW (X )

⇒ 2Ω

(−)ab = ∂aBb − ∂bBa

• One can show: Ω(−) ≡ 2G (J+ − J−)−1 is a symplectic formnote: no semi-chiral fields, Ω(−) 99K ω ≡ −gJ+ (Kahler)

• impose appropiate boundary conditions → δSboundary = 0

• Dirichlet + associated Neumann (σA): ∂ W∂σA = −Bb

∂X b

∂σA

→ Ω(−)|brane = 0 and dim brane = 12 dim target space

• all Neumann: DX a = K ab(X )DX b

→ complex structure K + U(1) flux Fab = Ω(−)ac K c

b,brane⊥ = 0 dim brane > 1

2 dim target space

Page 88: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Twisted chiral + Semi-chiral

• boundary variation w.r.t. X a : (l , l , r , r ,w , w)

δS∣∣∣boundary

= i

∫dτ d2θ

Ba(X ) δX a + δW (X )

⇒ 2Ω

(−)ab = ∂aBb − ∂bBa

• One can show: Ω(−) ≡ 2G (J+ − J−)−1 is a symplectic formnote: no semi-chiral fields, Ω(−) 99K ω ≡ −gJ+ (Kahler)

• impose appropiate boundary conditions → δSboundary = 0

• Dirichlet + associated Neumann (σA): ∂ W∂σA = −Bb

∂X b

∂σA

→ Ω(−)|brane = 0 and dim brane = 12 dim target space

• all Neumann: DX a = K ab(X )DX b

→ complex structure K + U(1) flux Fab = Ω(−)ac K c

b,brane⊥ = 0 dim brane > 1

2 dim target space

Page 89: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

Twisted chiral + Semi-chiral

• boundary variation w.r.t. X a : (l , l , r , r ,w , w)

δS∣∣∣boundary

= i

∫dτ d2θ

Ba(X ) δX a + δW (X )

⇒ 2Ω

(−)ab = ∂aBb − ∂bBa

• One can show: Ω(−) ≡ 2G (J+ − J−)−1 is a symplectic formnote: no semi-chiral fields, Ω(−) 99K ω ≡ −gJ+ (Kahler)

• impose appropiate boundary conditions → δSboundary = 0

• Dirichlet + associated Neumann (σA): ∂ W∂σA = −Bb

∂X b

∂σA

→ Ω(−)|brane = 0 and dim brane = 12 dim target space

• all Neumann: DX a = K ab(X )DX b

→ complex structure K + U(1) flux Fab = Ω(−)ac K c

b,brane⊥ = 0 dim brane > 1

2 dim target space

Page 90: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary termsTool to construct complicated (coisotropic) D-brane configurations

Page 91: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary termsTool to construct complicated (coisotropic) D-brane configurations

Page 92: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary termsTool to construct complicated (coisotropic) D-brane configurations

Page 93: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary termsTool to construct complicated (coisotropic) D-brane configurations

Page 94: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary terms

Tool to construct complicated (coisotropic) D-brane configurations

Page 95: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace

based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Grisaru-Massar-Sevrin-Troost

hep-th/9801080 ], etc.

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield

chiral (z) L9999K twisted chiral (w)chiral (z) + twisted chiral(w) L9999K semi-chiral (l , r)

T 2 × D L9999K SU(2)× U(1) L9999K T 2 × D(z1z2) (zw) (w1w2)

D × T 2 L9999K SU(2)× U(1)(zw) (lr)

Boundaries: add appropiate boundary termsTool to construct complicated (coisotropic) D-brane configurations

Page 96: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N = 2 Boundary Superspace

Examples where z L9999K w[Sevrin-WS-Wijns: 0709.3733, 0809.3659, 0908.2756]

dual model original model dual model

D0 on X4

z1z2

D1 on X4

zw

D2 on X4 D2` on X4

z1z2 w1w2

D3 on X4

zw

D4 on X4 D4c on X4

z1z2 w1w2

Page 97: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N = 2 Boundary Superspace

Examples where (zw) L9999K (lr)[Sevrin-WS-Wijns: 0709.3733, 0809.3659, 0908.2756]

original model dual model

D1 on X4

zw

D2` on X4

lrD3 on X4

zw

D4c on X4

lr

Page 98: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane

• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 99: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane

• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 100: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane

• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 101: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane

• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 102: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 103: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 104: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 105: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on T 4

• hyper-Kahler: 3 C structures Ji satisfying JiJj = −δij1+ εijkJk

• flat and assume without torsion

• 1 chiral + 1 twisted chiral: V (z , z ,w , w) = zz − ww

• D3-brane• 1 Dirichlet boundary condition

αw + α w = β z + β z , α, β ∈ Z + iZ, α 6= 0

• 3 Neumann boundary conditions

• U(1) gauge field

• boundary potential

W =i

2

α

αw2 − i

2

α

αw2 + f (z , z)

Page 106: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion

• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane

• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 107: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane

• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 108: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane

• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 109: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z

• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 110: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 111: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 112: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field

• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 113: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

D3 branes on S3 × S1

• WZW model on group manifold SU(2)× U(1) with torsion• 1 chiral + 1 twisted chiral [Rocek, Schoutens, Sevrin ’91]

V = +

∫ zz/ww dq

qln

(1 + q

)− 1

2

(lnw w

)2

• D3-brane• 1 Dirichlet boundary condition

−i lnw

w= m1 x + m2 y , x ≡ ln(zz + ww), y ≡ −i ln

z

z• 3 Neumann boundary conditions

• Hopf coordinates: z = cosψeρ+iφ1 , w = sinψeρ+iφ2

with φ1, φ2, ρ ∈ R mod2π, ψ ∈ [0, π/2]⇒ φ2 = m1ρ+ m2φ1, m1,m2 ∈ Z

• U(1) gauge field• boundary potential

W = −m1

2x2 −m2 y ln zz

Page 114: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the boundary conditions

General facts

• T-duality

IIA String theory ↔ II B String theoryon S1(R) on S1(1/R)

• closed strings: momentum ↔ winding number

• open strings: ∂τ (D) ↔ ∂σ (N)

• T-duality along Dp-brane → D(p-1)-braneT-duality ⊥ Dp-brane → D(p+1)-brane

• magnetized Dp-brane ↔ rotated D(p-1)-brane

Page 115: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the boundary conditions

General facts

• T-duality

IIA String theory ↔ II B String theoryon S1(R) on S1(1/R)

• closed strings: momentum ↔ winding number

• open strings: ∂τ (D) ↔ ∂σ (N)

• T-duality along Dp-brane → D(p-1)-braneT-duality ⊥ Dp-brane → D(p+1)-brane

• magnetized Dp-brane ↔ rotated D(p-1)-brane

Page 116: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the boundary conditions

General facts

• T-duality

IIA String theory ↔ II B String theoryon S1(R) on S1(1/R)

• closed strings: momentum ↔ winding number

• open strings: ∂τ (D) ↔ ∂σ (N)

• T-duality along Dp-brane → D(p-1)-braneT-duality ⊥ Dp-brane → D(p+1)-brane

• magnetized Dp-brane ↔ rotated D(p-1)-brane

Page 117: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the boundary conditions

General facts

• T-duality

IIA String theory ↔ II B String theoryon S1(R) on S1(1/R)

• closed strings: momentum ↔ winding number

• open strings: ∂τ (D) ↔ ∂σ (N)

• T-duality along Dp-brane → D(p-1)-braneT-duality ⊥ Dp-brane → D(p+1)-brane

• magnetized Dp-brane ↔ rotated D(p-1)-brane

Page 118: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the boundary conditions

General facts

• T-duality

IIA String theory ↔ II B String theoryon S1(R) on S1(1/R)

• closed strings: momentum ↔ winding number

• open strings: ∂τ (D) ↔ ∂σ (N)

• T-duality along Dp-brane → D(p-1)-braneT-duality ⊥ Dp-brane → D(p+1)-brane

• magnetized Dp-brane ↔ rotated D(p-1)-brane

Page 119: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 120: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 121: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 122: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 123: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 124: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 125: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model

5 Boundaries: add appropiate boundary terms to preserveisometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 126: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 127: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-duality on the level of the action: basic idea

• based on: [Gates-Hull-Rocek ’84], [Buscher ’87], [Alvarez-Barbon-Borlaf

hep-th/9603089], [Rocek-Verlinde hep-th/9110053]

• Assumption: target space of the sigma model has isometries

• General philosophy

1 Gauge an isometry and introduce a gauge field Y (on theworld-sheet)

2 Impose that Y is purely gauge through Lagrange-multiplier inthe action

3 Integrating out the Lagrange-multiplier yields the originalmodel

4 Integrating out Y yields the dual model5 Boundaries: add appropiate boundary terms to preserve

isometry at the boundary

• e.g. Bosonic Sigma Model, N=(2,2) Sigma Model

Page 128: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality on the level of the actionTo preserve isometry at boundary → add boundary terms

• original model on S1(R)

Soriginal = −1

2

∫d2σ∂αX∂αX

isometry: X → X + constantgauging: ∇αX = ∂αX + Yα

Neumann boundary condition: ∂σX = 0

• first order action

S(1) =

∫d2σ

(−1

2∇αX∇αX + X εαβ∂βYα

)−

∫dτ XYτ

gauge choice: ∂αX = 0 → Yσ = 0 Neumann boundarycondition: ∇σX = 0Dirichlet boundary condition: δX = 0gauge choice: ∂αX = 0 → Yσ = 0

Page 129: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality on the level of the actionTo preserve isometry at boundary → add boundary terms

• original model on S1(R)

Soriginal = −1

2

∫d2σ∂αX∂αX

isometry: X → X + constantgauging: ∇αX = ∂αX + Yα

Neumann boundary condition: ∂σX = 0

• first order action

S(1) =

∫d2σ

(−1

2∇αX∇αX + X εαβ∂βYα

)−

∫dτ XYτ

gauge choice: ∂αX = 0 → Yσ = 0 Neumann boundarycondition: ∇σX = 0Dirichlet boundary condition: δX = 0gauge choice: ∂αX = 0 → Yσ = 0

Page 130: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality on the level of the actionTo preserve isometry at boundary → add boundary terms

• original model on S1(R)

Soriginal = −1

2

∫d2σ∂αX∂αX

isometry: X → X + constantgauging: ∇αX = ∂αX + Yα

Neumann boundary condition: ∂σX = 0

• first order action

S(1) =

∫d2σ

(−1

2∇αX∇αX + X εαβ∂βYα

)−

∫dτ XYτ

gauge choice: ∂αX = 0 → Yσ = 0 Neumann boundarycondition: ∇σX = 0Dirichlet boundary condition: δX = 0gauge choice: ∂αX = 0 → Yσ = 0

Page 131: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• Varying X → Yα = ∂αXand boundary condition Yσ = ∂σX = 0

• Varying Yα → Yα = −εβα∂βX → dual model on S1(1/R)and boundary condition Yσ = ∂τ X = 0 or δX = 0

Sdual = −1

2

∫d2σ∂αX∂αX

• boundary term:∫

dτ X∂τX introduced to preserve isometryX → X + constant → ∂τ X = 0 or ∂τX = 0

• Note: D2-brane on T 2 with non-trivial magnetic flux F→ D1-brane on T 2 at an angle θ = arctanF

• Note: same procedure for general string background(including Bµν) with Killing-isometry → Buscher rules

Page 132: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• Varying X → Yα = ∂αXand boundary condition Yσ = ∂σX = 0

• Varying Yα → Yα = −εβα∂βX → dual model on S1(1/R)and boundary condition Yσ = ∂τ X = 0 or δX = 0

Sdual = −1

2

∫d2σ∂αX∂αX

• boundary term:∫

dτ X∂τX introduced to preserve isometryX → X + constant → ∂τ X = 0 or ∂τX = 0

• Note: D2-brane on T 2 with non-trivial magnetic flux F→ D1-brane on T 2 at an angle θ = arctanF

• Note: same procedure for general string background(including Bµν) with Killing-isometry → Buscher rules

Page 133: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• Varying X → Yα = ∂αXand boundary condition Yσ = ∂σX = 0

• Varying Yα → Yα = −εβα∂βX → dual model on S1(1/R)and boundary condition Yσ = ∂τ X = 0 or δX = 0

Sdual = −1

2

∫d2σ∂αX∂αX

• boundary term:∫

dτ X∂τX introduced to preserve isometryX → X + constant → ∂τ X = 0 or ∂τX = 0

• Note: D2-brane on T 2 with non-trivial magnetic flux F→ D1-brane on T 2 at an angle θ = arctanF

• Note: same procedure for general string background(including Bµν) with Killing-isometry → Buscher rules

Page 134: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• Varying X → Yα = ∂αXand boundary condition Yσ = ∂σX = 0

• Varying Yα → Yα = −εβα∂βX → dual model on S1(1/R)and boundary condition Yσ = ∂τ X = 0 or δX = 0

Sdual = −1

2

∫d2σ∂αX∂αX

• boundary term:∫

dτ X∂τX introduced to preserve isometryX → X + constant → ∂τ X = 0 or ∂τX = 0

• Note: D2-brane on T 2 with non-trivial magnetic flux F→ D1-brane on T 2 at an angle θ = arctan F

• Note: same procedure for general string background(including Bµν) with Killing-isometry → Buscher rules

Page 135: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

• Varying X → Yα = ∂αXand boundary condition Yσ = ∂σX = 0

• Varying Yα → Yα = −εβα∂βX → dual model on S1(1/R)and boundary condition Yσ = ∂τ X = 0 or δX = 0

Sdual = −1

2

∫d2σ∂αX∂αX

• boundary term:∫

dτ X∂τX introduced to preserve isometryX → X + constant → ∂τ X = 0 or ∂τX = 0

• Note: D2-brane on T 2 with non-trivial magnetic flux F→ D1-brane on T 2 at an angle θ = arctan F

• Note: same procedure for general string background(including Bµν) with Killing-isometry → Buscher rules

Page 136: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace: closed strings

chiral superfield: D±z = 0 + c.c.twisted chiral superfield D+w = 0 = D−w + c.c.

chiral (z) twisted chiral (w)

isometry z → z + iε w → w + iε

R gauge field Yz Yw

fieldstrengths D−D+Yz + c .c . D−D+Yw + c .c .

potential V = V (Yz)− (u + u)Yz V = V (Yw )− (u + u)Yw

u ≡ D+D−X u ≡ D+D−X

varying X Yz = z + z Yw = w + w

varying Y dual model u, u dual model u, u

Page 137: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace: closed strings

chiral superfield: D±z = 0 + c.c.twisted chiral superfield D+w = 0 = D−w + c.c.

chiral (z) twisted chiral (w)

isometry z → z + iε w → w + iε

R gauge field Yz Yw

fieldstrengths D−D+Yz + c .c . D−D+Yw + c .c .

potential V = V (Yz)− (u + u)Yz V = V (Yw )− (u + u)Yw

u ≡ D+D−X u ≡ D+D−X

varying X Yz = z + z Yw = w + w

varying Y dual model u, u dual model u, u

Page 138: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace: closed strings

chiral superfield: D±z = 0 + c.c.twisted chiral superfield D+w = 0 = D−w + c.c.

chiral (z) twisted chiral (w)

isometry z → z + iε w → w + iε

R gauge field Yz Yw

fieldstrengths D−D+Yz + c .c . D−D+Yw + c .c .

potential V = V (Yz)− (u + u)Yz V = V (Yw )− (u + u)Yw

u ≡ D+D−X u ≡ D+D−X

varying X Yz = z + z Yw = w + w

varying Y dual model u, u dual model u, u

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging chiral and twisted chiral superfields

Page 139: conf.itp.phys.ethz.ch · 2009-09-08 · Prologue The story of the Closed String The story of the Open String Conclusions and Outlook Introducing the leading characters Type II Superstrings

Prologue The story of the Closed String The story of the Open String Conclusions and Outlook

T-Duality in N=(2,2) Superspace: closed strings

chiral superfield: D±z = 0 + c.c.twisted chiral superfield D+w = 0 = D−w + c.c.

chiral (z) twisted chiral (w)

isometry z → z + iε w → w + iε

R gauge field Yz Yw

fieldstrengths D−D+Yz + c .c . D−D+Yw + c .c .

potential V = V (Yz)− (u + u)Yz V = V (Yw )− (u + u)Yw

u ≡ D+D−X u ≡ D+D−X

varying X Yz = z + z Yw = w + w

varying Y dual model u, u dual model u, u

T-Duality in N=(2,2) superspace = Legendre-transformationinterchanging different kinds of superfield