Computational Modeling of Concrete Structures

11
Computational Modeling of Concrete Structures Gianluca Cusatis The Lattice Discrete Particle Model for the Simulation of Reinforced Concrete Elements Tokyo Institute of Technology July 27, 2018 1 / 11 July-2018 :: Gianluca Cusatis

Transcript of Computational Modeling of Concrete Structures

Page 1: Computational Modeling of Concrete Structures

Computational Modeling of Concrete Structures

Gianluca Cusatis

The Lattice Discrete Particle Model for the Simulation ofReinforced Concrete Elements

Tokyo Institute of Technology

July 27, 2018

1 / 11 July-2018 :: Gianluca Cusatis

Page 2: Computational Modeling of Concrete Structures

Presentation Outline

1 Simulation of Reinforced Concrete

2 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 3: Computational Modeling of Concrete Structures

Rebar model and its interaction with concrete

Rebar model

σs ={Esεs εs ≤ εyfy εs > εy

with εy = fy/Es

Rebar Concrete Interaction

f(t) = φ(u)v(t)

v(x, t) = vc(x, t)− vr(x, t)

φ(u) = Penalty Stiffness

3 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 4: Computational Modeling of Concrete Structures

Under-Reinforced Concrete Beam Behavior

0 5 10 15 20 250

5

10

15

20

25

30

35

Mid−span displacement [mm]

Mid−s

pan

mom

ent [

KN

.m]

Exp.fy=600 MPa

fy=540 MPa

−36−30−24−18−12 −6 0 60

4

8

12

16

20

24

28

Stress [MPa]

Dep

th [c

m]

UncrackedCrackedUltimate

-19.7

2.24

0 5 10 15 20 250

5

10

15

20

25

30

35

Mid Span Displacement [mm]

Mid

span

Mom

ent [

KN

.m]

ExperimentalSimulated

c) d)

a)

120 cm

280 cm

10 cm 10 cm

b)

-35.7

1.11

-3.41

3.36

Uncracked Cracked Yielding

Uncracked

Cracked Yielding

Reinforcement and Stirrup detail

Yielding

0.0

0.0 0.0

fy

fy

Figure: a) Geometry; b) moment-displacement curve; c) stress distribution atmid-span; and d) average stress distribution at mid-span.

4 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 5: Computational Modeling of Concrete Structures

Ductile Flexural Failure

BeamReinforcement Mn Pmin Pmax Psim

Top Bottom Stirrups [KNm] [KN] [KN] [KN]B1 (2) No. 3 (2) No. 3 No. 3 @ 150 mm 33.81 41.81 46.71 42.5B2 (3) No. 6 (2) No. 3 No. 3 @ 150 mm 158.43 194.83 218.85 208.17B5 (5) No. 8 (2) No. 3 No. 4 @ 150 mm 386.41 475.96 533.79 528B6 (5) No. 8 (3) No. 8 No. 4 @ 150 mm 419.57 515.99 579.60 536.16

5 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 6: Computational Modeling of Concrete Structures

Ductile Flexural Failure, Cont.

6 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 7: Computational Modeling of Concrete Structures

Ductile Flexural Failure, Cont.

Mid Span Displacement [mm]10 14 18 22 26 30 34

Mid

Spa

n Lo

ad [K

N]

500

525

550

575

600

625

1

2 3

4 5

6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Axial Strain [x10-3]

2.464 2.468 2.469 2.470

7 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 8: Computational Modeling of Concrete Structures

Over-Reinforced Concrete Beams

Beam L× b× h [mm] a [mm] As [mm2]Group IL11×15 4600×110×150 1960 400L11×30 4600×110×300 1960 800L11×60 4600×110×600 1900 1600Group IIS5×7 1150×55×75 480 100

M11×15 2300×110×150 960 400L22×30 4600×220×300 1900 1600Group IIIS11×15 1150×110×150 460 400M11×30 2300×110×300 930 800L11×60 4600×110×600 1900 1600

8 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 9: Computational Modeling of Concrete Structures

Over-Reinforced Concrete Beams, Cont.

c)

a)

b)

c) -1.0 -0.75 -0.50 -0.25 0.0 Principal Stress [MPa] Axial Force [N]

-24 80 160 240 320 395

Figure: a) Before failure but after the elastic stage; b) at the onset of failure(maximum load) showing concrete crushing; c) rebars axial force andcompressive principal stress distribution before failure showing the arch actionmechanism.

9 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 10: Computational Modeling of Concrete Structures

Over-Reinforced Concrete Beams, Cont.

with d = h, µ = 3Pua/(bd2), µ = µ0(1 + d/D0)

−1/2

10 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis

Page 11: Computational Modeling of Concrete Structures

Over-Reinforced Concrete Beams, Cont.

Group BeamPu [KN] (δPu [%]) Pred. Error [%] µu [MPa]

Exp. LDPM ACI318 LDPM ACI318 Exp. LDPM ACI318

IL11×15 12.4 (19.4) 10.9 (1.8) 10.9 -11.4 -11.9 44.4 39.3 39.1L11×30 50.8 (6.2) 39 (2.9) 43.6 -23.1 -14.2 45.6 35 39.1L11×60 159.1 (11.1) 142.4 (1.5) 179.8 -10.5 9.6 34.6 31 39.1

IIS5×7 5.6 (20.8) 6.1 (3.3) 5.6 9.8 -0.2 39.2 43 39.1

M11×15 22.8 (7.9) 22.6 (1.5) 22.2 -1 -2.4 40.1 39.7 39.1L22×30 84.2 (2.2) 85.8 (1.3) 89.9 1.9 6.7 36.7 37.4 39.1

IIIS11×15 52.8 (44.3) 65.5 (3.7) 46.4 24 -12.2 44.5 55.2 39.1M11×30 101.9 (9.1) 92.4 (1) 91.8 -9.3 -9.9 43.4 39.3 39.1L11×60 159.1 (11.1) 142.4 (1.5) 179.8 -10.5 9.6 34.6 31 39.1

Groupµ0 [MPa] D0 [mm]

Exp. Num. Exp. Num.I 55.6 43.4 324 501II 44.1 44.6 540 553III 80.8 87.7 97 68

µ = µ0(1 + d/D0)−1/2

11 / 11 Simulation of Reinforced Concrete July-2018 :: Gianluca Cusatis