Computational Electromagnetics : Antenna computations

25
0 Computational Electromagnetics : Antenna computations Uday Khankhoje Electrical Engineering, IIT Madras

Transcript of Computational Electromagnetics : Antenna computations

Page 1: Computational Electromagnetics : Antenna computations

0

Computational Electromagnetics :

Antenna computations

Uday Khankhoje

Electrical Engineering, IIT Madras

Page 2: Computational Electromagnetics : Antenna computations

1

Topics in this module

1 Scalar and Vector Potentials

2 The Simplest Antenna

3 Finite Antennas & Integral Equations

Page 3: Computational Electromagnetics : Antenna computations

1

Table of Contents

1 Scalar and Vector Potentials

2 The Simplest Antenna

3 Finite Antennas & Integral Equations

Page 4: Computational Electromagnetics : Antenna computations

2

Electromagnetics problems: scalar and vector potentials

Page 5: Computational Electromagnetics : Antenna computations

3

The Lorentz gauge and the vector wave equation

Page 6: Computational Electromagnetics : Antenna computations

4

Flow of problem solving in antenna problems

Page 7: Computational Electromagnetics : Antenna computations

4

Table of Contents

1 Scalar and Vector Potentials

2 The Simplest Antenna

3 Finite Antennas & Integral Equations

Page 8: Computational Electromagnetics : Antenna computations

5

The Hertz Dipole: ~A

Page 9: Computational Electromagnetics : Antenna computations

6

The Hertz Dipole: ~H, ~E

Page 10: Computational Electromagnetics : Antenna computations

7

The Hertz Dipole: Far fields

~H = I∆z4π jk(1 +

1jkr )

e−jkr

r sin θφ̂

~E = I∆z4π jωµ[1 +

1jkr +

1(jkr)2

] e−jkr

r sin θθ̂

+ I∆z2π jωµ[

1jkr +

1(jkr)2

] e−jkr

r cos θr̂

Page 11: Computational Electromagnetics : Antenna computations

8

The Hertz Dipole: Near fields

~H = I∆z4π jk(1 +

1jkr )

e−jkr

r sin θφ̂

~E = I∆z4π jωµ[1 +

1jkr +

1(jkr)2

] e−jkr

r sin θθ̂

+ I∆z2π jωµ[

1jkr +

1(jkr)2

] e−jkr

r cos θr̂

Page 12: Computational Electromagnetics : Antenna computations

9

The Hertz Dipole: Visualizing fields

Cr: Stutzman [1]

Field pattern: F (θ, φ) = EθEθ(max

Page 13: Computational Electromagnetics : Antenna computations

10

Antenna patterns in general

Typical power pattern: Side lobe level (SLL)

SLLdB = 20 log F (SLL)F (max)

Broadside and endfire NF v/s FF: 2D2

λ

Page 14: Computational Electromagnetics : Antenna computations

12

Antenna modelling: the scattered field

Recall: φ = jωε0µ0

∇ · ~A and ~E = −jω ~A−∇φ

Page 15: Computational Electromagnetics : Antenna computations

13

Antenna modelling: Pocklington’s equation

Page 16: Computational Electromagnetics : Antenna computations

14

Pocklington’s equation: Solution using MoM

Page 17: Computational Electromagnetics : Antenna computations

15

Source Modelling

Delta-gap Magnetic Frill Incident wave

Page 18: Computational Electromagnetics : Antenna computations
Page 19: Computational Electromagnetics : Antenna computations
Page 20: Computational Electromagnetics : Antenna computations
Page 21: Computational Electromagnetics : Antenna computations
Page 22: Computational Electromagnetics : Antenna computations
Page 23: Computational Electromagnetics : Antenna computations

21

Two antennas: any gain? (pun intended)

Page 24: Computational Electromagnetics : Antenna computations

22

Advantage of two antennas: beam forming

Page 25: Computational Electromagnetics : Antenna computations

23

Topics that were covered in this module

1 Scalar and Vector Potentials

2 The Simplest Antenna

3 Finite Antennas & Integral Equations

4 Mutual coupling between two antennas

References:

(1) Ch 1,10 of Antenna Theory & Design, Stutzman and Thiele, Wiley

(2) Ch 3,8 of Antenna Theory & Design, C A Balanis, Wiley

(3) Mutual coupling between a wire antenna of finite conductivity and a large object,

Vossen, Masters Thesis, Eindhoven University of Technology, 1997

https://pure.tue.nl/ws/portalfiles/portal/46983690/684720-1.pdf