“Complementi di Fisica” - Moodle@Units · Complementi di Fisica - Lecture 31 4-12-2012...

12
Complementi di Fisica - Lecture 31 4-12-2012 L.Lanceri - Complementi di Fisica 1 “Complementi di Fisica” Lecture 31 Livio Lanceri Università di Trieste Trieste, 4-12-2012 04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 2 In this lecture Contents Drift of electrons and holes in practice (numbers…): conductivity σ as a function of impurity concentration “band bending”: representation of macroscopic electric fields Diffusion in practice (numbers…): Diffusion coefficient D Induced (“Built-in”) electric field Einstein relation between σ and D Reference textbooks D.A. Neamen, Semiconductor Physics and Devices, McGraw- Hill, 3 rd ed., 2003, p.154-188 (“5 Carrier Transport Phenomena”) R.Pierret, Advanced Semiconductor Fundamental, Prentice Hall, 2nd ed., p.175-215 (“6 Carrier Transport”)

Transcript of “Complementi di Fisica” - Moodle@Units · Complementi di Fisica - Lecture 31 4-12-2012...

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 1

“Complementi di Fisica”Lecture 31

Livio LanceriUniversità di Trieste

Trieste, 4-12-2012

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 2

In this lecture• Contents

– Drift of electrons and holes in practice (numbers…):• conductivity σ as a function of impurity concentration• “band bending”: representation of macroscopic electric

fields– Diffusion in practice (numbers…):

• Diffusion coefficient D• Induced (“Built-in”) electric field• Einstein relation between σ and D

• Reference textbooks– D.A. Neamen, Semiconductor Physics and Devices, McGraw-

Hill, 3rd ed., 2003, p.154-188 (“5 Carrier Transport Phenomena”)– R.Pierret, Advanced Semiconductor Fundamental, Prentice

Hall, 2nd ed., p.175-215 (“6 Carrier Transport”)

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 2

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 3

From the Boltzmann Equation…• The continuity equations for the electrical current density in

semiconductors can be obtained from the Boltzmannequation:

• Multiplying by the group velocity and integrating over themomentum space dkx dky dkz:

• One obtains the expression for current density(detailed derivation: see FELD p.187-194, MOUT p.100-104)

!f!t

= "! v g #! $ ! r f "

! F "#! $ ! k f "

f " f0

%! F = "e

! E

Force on electrons

! v g!f!t" d3

! k = #

! v g! v g $! % ! r f( )d3

! k " #

! v g

! F "$! % ! k f

&

' (

)

* + d3! k " #

! v gf # f0,

d3! k "

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 4

Drift-diffusion continuity equation

relaxation time τ is small:This new term can be neglectedif frequency is not too high(few hundred MHz)

For electrons (similar for holes):

! n"! J n"t

+! J n = qnµn

! E + 1

nkBTq! # ! r n + kB

q! # ! r T

$

% &

'

( )

Drift Diffusion

Temperature gradient:also a temperature gradient can drive an electric current!Absent at thermal equilibrium

already discussed inthe Drude model

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 3

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 5

• Drift (mobility) anddiffusion (diffusivity)coefficients arecorrelated!

• Why ?– See previous lecture– Also: no current at

equilibrium, see next

Drift and diffusion: Einstein relation

ppnn

ppnnth

qkTD

qkTD

EvEvlvD

µµ

µµ

!!"

#$$%

&=!!"

#$$%

&=

='=(

driftvelocity

thermalvelocity

externalfield

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 6

Mobility and diffusivity vs. concentration

Electronsand holes:

Low dopingconcentration:Latticescatteringlimit

High dopingconcentration:Impurityscattering limit

pnpn mm µµ >!< ""

T ~ 300 K

mobility µ(cm2 V-1 s-1) diffusivity D

(cm2 s-1)

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 4

“Band bending”:“built-in” electrical field

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 8

Non-uniform doping: “built-in” field

qkT

V

dxdN

NV

dxdp

pV

dxdp

pVpq

dxdp

qkT

qpq

dxdp

DqpqJ

th

A

Athth

thn

nn

nnp

!

"=

=##$

%&&'

()=

=)=

=)=

11

01

0

µ

µµ

µ

Ɛ

Ɛ

Ɛ

Ɛ

p-type doping, thermal equilibrium (no “external” el.field applied!):

Ɛ is the “built-in” electric field:

“thermal voltage equivalent”

p(x)

n(x)

-N-A - n + p

Ɛ(x)

diffusion

Small “space charge” unbalance

Built-in field ⇒ drift

compensates diffusion

electrons

electrons

holes

holes

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 5

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 9

Non-uniform doping in equilibrium• Under thermal and diffusive

equilibrium conditions the Fermilevel (= total chemical potential)inside a material (or group ofmaterials in intimate contact) isinvariant as a function of position

• A non-zero (“built-in”) electricfield is established innonuniformly dopedsemiconductors underequilibrium conditionsƐx = (1/ q)(dEC/dx) == (1/ q)(dEi/dx) == (1/ q)(dEV/dx)

0===dzdE

dydE

dxdE FFF

“band bending”, as for an external field; here the field is “built-in”

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 10

Einstein relation - 1Relation between electron concentration, donor concentration,Fermi level EF and intrinsic Fermi level Ei in the “quasi-neutrality” approximation (local neutrality cannot be exact, otherwise there would be no built-in field!):

n x( ) = nieEF !Ei x( )( ) kT " ND x( )

At equilibrium, EF is constant ⇒ “band bending”:

EF ! Ei = kT lnND x( )ni

"

# $

%

& ' ( ! dEi

dx= kTND x( )

dND x( )dx

Induced (“built-in”) electric field:

! x = "dVdx

= "1

" qdEi

dx= "

kTq

1ND x( )

dND x( )dx

EC

EFEi

EV

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 6

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 11

Einstein relation - 2At equilibrium the total electric current (diffusion + drift) must be zero; using for the electric field εx the expression just derived one obtains:Jn,x = 0 = q nµn! x + q Dn

dndx

"

" q ND x( )µn! x + q DndND x( )dx

=

= q ND x( )µn #kTq

1ND x( )

dND x( )dx

$%&

'()+ q Dn

dND x( )dx

EC

EFEi

EV

Dn

µn

= kTq

Dp

µp

= kTq

!

" # #

$

% & &

⇒ Einstein relation for electrons (similar for holes):

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 12

Non-uniform doping: an example

⇒ Built-in electric field:

Ɛx = (1/ q)(dEi/dx) = = (1/ q)(d(EF-Ei)/dx) = = − dΨ/dx

Electric potential V(x) = Ψ(x) = (1/ q)(EF − Ei (x))

Donor concentration:

Equilibrium: EF = constant

“band bending”:

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 7

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 13

Example:abrupt pn junction

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 14

pn junction

n-typep-type

Built-in electric field

At thermal and diffusive equilibrium, no external field:Net current is zero, both for electrons and holes

drift

drift

diffusion

diffusion

electrons

holes

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 8

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 15

Einstein relation – numerical examples• In the “non-degenerate” limit:

• Typical sizes of mobility and diffusivity:

qkTD

qkTD

p

p

n

n ==µµ

s/cm26Vs/cm1000

V026.0300

22n !"=

!"=

nDqkTKT

µ

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 16

Current density equations• When an external electric field Ɛ is present in

addition to the concentration gradient: no equilibrium!– Both drift and diffusion currents will flow– The total current density is different from zero in this case!

• For electrons and holes: J = Jn + Jp

dxdp

DqpqJJJ

dxdn

DqnqJJJ

ppdiffpdriftpp

nndiffndriftnn

!=+=

+=+=

µ

µ

,,

,, Ɛ

Ɛ

drift diffusion

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 9

High field effects

Drift velocity saturationAvalanche processes

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 18

Drift velocity saturationSilicon: electrons and holes drift velocity- increases linearly at small fields- saturates (̃ thermal velocity) at high fields

GaAs: electrons and holes drift velocity- Peculiar behavior- see next slide for an explanation

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 10

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 19

Two-valley semiconductors

GaAs: Two-valley model of E-k band diagram:Different effective massesDifferent mobilities

( )( ) ( )Ev

nnnnqnnnq

mq

n

c

µµµµ

µµµ!

=++#

=+=

= $

212211

2211

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 20

Avalanche processesMean free path

Ek,min > Eg

To start an avalanche:enough kinetic energy to create an e-h pair

Order of magnitude estimatefrom energy and momentum conservation (process 1 → 2):

12m1vs

2 ! Eg + 312m1v f

2

m1vs ! 3m1v f

E0 = 12m1vs

2 !1.5 Eg

GA = 1q"n Jn + " p Jp( )

Band bending due toexternal field: Ɛx=(1/q)dEC/dx

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 11

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 21

Ionization rates and generation rate

!n,! p ionization rates (cm-1)

e " h generation rate (cm-3s-1)

GA = 1q!n Jn + ! p Jp( )

In Silicon: E0 = 3.2 Eg (el.)E0 = 4.4 Eg (h.)

Ɛ ̃ 3×105 V/cmFor α ̃ 104 cm-1

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 22

Lecture 31 - exercises• Exercise 1: Find the electron and hole concentrations, mobilities

and resistivities of silicon samples at 300K, for each of the followingimpurity concentrations: (a) 5x1015 boron atoms/cm3; (b) 2x1016

boron atoms/cm3 together with 1.5x1016 arsenic atoms/cm3; and (c)5x1015 boron atoms/cm3, together with 1017 arsenic atoms/cm3, and1017 gallium atoms/cm3.

• Exercise 2: For a semiconductor with a constant mobility ratio b ≡µnµp > 1 independent of impurity concentration, find the maximumresistivity ρm in terms of the intrinsic resistivity ρi and of the mobilityratio.

• Exercise 3: A semiconductor is doped with ND (ND>>ni) and has aresistance R1. The same semiconductor is then doped with anunknown amount of acceptors NA (NA>>ND), yielding a resistance of0.5R1. Find NA in terms of ND if the ratio of diffusivities for electronsand holes is Dn/Dp=50.

Complementi di Fisica - Lecture 31 4-12-2012

L.Lanceri - Complementi di Fisica 12

Back-up slides

04-12-2012 L.Lanceri - Complementi di Fisica - Lecture 31 24

Graded np junctionAD NNN !=

N: net fixed chargen0, p0: majority carrier concentrations

net mobile charge

net total charge

potential ΨEl.field Ɛx

electron energy-banddiagram