COLLAGE 2019

37
COLLAGE 2019 Magnetic Field Structures over a Solar Cycle Xudong Sun (UH/IfA) Apr 04 2019

Transcript of COLLAGE 2019

Page 1: COLLAGE 2019

COLLAGE 2019

Magnetic Field Structures over a Solar Cycle

Xudong Sun (UH/IfA)

Apr 04 2019

Page 2: COLLAGE 2019

Outline

• PFSS Model for coronal field

• Solar cycle

• Babcock-Leighton mechanism & surface flux transport

Page 3: COLLAGE 2019

PFSS Model for Coronal Field

Page 4: COLLAGE 2019

PFSS Model

• Assuming lower corona is current free,

B can be expressed as a scaler potential

• B vector in spherical coord

• Coronal field governed by Laplace eq.

B = − ∇Ψ

∇2Ψ = 0

Br = −∂Ψ

∂r

Bθ = −1

r

∂Ψ

∂θ

Bϕ = −1

r sin θ

∂Ψ

∂ϕ

Sun (2012)

Page 5: COLLAGE 2019

PFSS Model

• Inner boundary: photosphere radial field

• Outer boundary: source surface where

field becomes radial and open

• General solution of Laplace equation:

−∂Ψ

∂rr=R⊙

= Br(obs)

Ψr=Rs

= 0

Rs = 2.5R⊙

Ψ =

∑l=0

r−(l+1)

l

∑m=−l

almYml

(θ, ϕ) +

∑l=0

rll

∑m=−l

blmYml

(θ, ϕ)

NSO/GONG

Page 6: COLLAGE 2019

PFSS Model Solution

• Matching outer boundary

• Matching inner boundary

• Use normalization properties of spherical harmonics

• Surface integral of observed field

∑l=0

R−(l+1)s

l

∑m=−l

almYml

(θ, ϕ) +

∑l=0

Rls

l

∑m=−l

blmYml

(θ, ϕ) = 0, or, alm = − R2l+1s blm

∑l=0

(l + 1)R−(l+2)⊙

l

∑m=−l

almYml

(θ, ϕ) −

∑l=0

lRl−1⊙

l

∑m=−l

blmYml

(θ, ϕ) = Br(R⊙, θ, ϕ)

∮ dΩ Yml

(θ, ϕ)Ym′ �

l′ �(θ, ϕ) = δll′ �δmm′ �

(l + 1)R−(l+2)⊙

alm − lRl−1⊙ blm = ∮ dΩBr(R⊙, θ, ϕ)Ym

l(θ, ϕ)

http

://wso

.stanfo

rd.e

du/w

ord

s/pfss.p

df

Page 7: COLLAGE 2019

PFSS Widget

https://tinyurl.com/pfss-wid

Page 8: COLLAGE 2019

Utility of PFSS Model

Sun (2012)

Mapping Solar Wind: WSA Model

v ∝ f −1 =Br(Rs)R

2s

Br(R⊙)R2⊙

Topology Analysis for Sympathetic Flares

Titov et al. (2012)

Page 9: COLLAGE 2019

Solar Cycle

Page 10: COLLAGE 2019

Sunspot NumberM

uño

z-Jara

millo

& V

aq

uero

(2018

)

Page 11: COLLAGE 2019

Butterfly Diagram

Hathaway (2015)

Defining cycle minimum/maximum

Page 12: COLLAGE 2019

Historic ViewM

uño

z-Jara

millo

& V

aq

uero

(2018

)

Page 13: COLLAGE 2019

Total Solar IrradianceC

ourte

sy G. K

op

p

Variability?

Page 14: COLLAGE 2019

Spectral Irradiance Variability

Do

min

go

et a

l. (2009)

What features determine the variability in different wavelengths?

Page 15: COLLAGE 2019

X-Ray View Over a Cycle

Credit: Yohkoh/ISAS/LMSAL/NAOJ/U. Tokyo/NASA

Page 16: COLLAGE 2019

Cycle Parameters

Hathaway (2015)

Period Gnevyshev Gap

Waldmeier EffectAmplitude

Page 17: COLLAGE 2019

Spörer’s, Hale’s, & Joy’s Law

Hath

away (2

015)

Spörer’s Law

Joy’s Law

Hale’s Law

Courtesy S. Solanki

Page 18: COLLAGE 2019

Evolution of Magnetic Field

Hathaway (2015)

Page 19: COLLAGE 2019

Magnetic Butterfly Diagram

Hathaway (2015)

Spörer’s Law; N/S asymmetry; polarity reversal

Page 20: COLLAGE 2019

Minimum Phase

SoHO/MDI, EIT 19.5 nm

Page 21: COLLAGE 2019

Ascending Phase

SDO/HMI, AIA 19.3 nm

Page 22: COLLAGE 2019

Maximum Phase

SDO/HMI, AIA 19.3 nm

Page 23: COLLAGE 2019

Declining Phase

SDO/HMI, AIA 19.3 nm

Page 24: COLLAGE 2019

Magnetic TopologyN

SO

/GONG

Page 25: COLLAGE 2019

Total Solar Eclipse Imageshttp

://ww

w.zam

.fme.vu

tbr.cz/~

dru

ck/Eclip

se/

Page 26: COLLAGE 2019

Solar Wind Over a Cycle

McComas et al. (2008)

tan θ ∼ |k11 | / |k10 |

Page 27: COLLAGE 2019

Babcock-Leighton Mechanism &

Surface Flux Transport

Page 28: COLLAGE 2019

Babcock-Leighton Mechanism

α-effect

Sanchez et al. (2014)

B-L mechanism

Page 29: COLLAGE 2019

Surface Flux Transport

• Br evolution within a thin spherical shell near surface

• Induction equation with source & diffusion

or,

• Surface flow: differential rotation & meridional flow; measurable

• Diffusion: supergranular dispersion, etc.; empirically determined

• Source: flux emergence; measurable

∂Br

∂t= ∇ × (v × B)r + κ∇2Br + S(θ, ϕ, t)

∂Br

∂t= − ω(θ)

∂Br

∂ϕ−

1

R⊙ sin θ

∂θ[sin θv(θ)Br] +

κ

R2⊙

[1

sin θ

∂θ (sin θ∂Br

∂θ ) +1

sin2 θ

∂2Br

∂ϕ2 ] + S(θ, ϕ, t)

Page 30: COLLAGE 2019

Surface Flux Transport

• Toroidal field (sunspot) conversion to poloidal field (dipole)

• Essential ingredient: Hale’s law, Joy’s law, & cross equatorial cancellation

Charb

onneau

(2014)

Page 31: COLLAGE 2019

Active Region Flux Dispersal

HMI CR 2102-2104

Page 32: COLLAGE 2019

Active Region Flux Dispersal

SFT Model of Dipole Contribution

Jiang et al. (2019)

Page 33: COLLAGE 2019

Polar FieldTsu

neta

et a

l. (2008)

Hinode/S

P

Page 34: COLLAGE 2019

Polar Field Reversal

https://github.com/mbobra/plotting-polar-field

X. S

un &

M. B

ob

ra

Page 35: COLLAGE 2019

Application on Active Stars

Emergence rate 10 x + rotation period 6 d = polar field 30 x

Schrijver & Title (2001)Courtesy S. Solanki

Page 36: COLLAGE 2019

Cycle Prediction Based on B-L

Muñoz-Jaramillo et al. (2013) Upton & Hathaway (2014)

Poloidal field (polar field at min) of Cycle N ➢ Toroidal Field (SSN) of Cycle N+1

Page 37: COLLAGE 2019

Constructing Better Synoptic Maps

Near-Real-Time Data Assimilation + Surface Flux Transport

Courtesy M. DeRosa