Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT....

16
Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT

Transcript of Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT....

Page 1: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Coherent-π production ~Experiments~

Hide-Kazu TANAKAMIT

Page 2: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Outline• Introduction

• Previous results

• Recent results at low energy

• K2K, MiniBooNE, SciBooNE

• Future prospect

• Summary

2

Page 3: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Coherent pion production

3

Aνπ

• Neutrino interacts with nucleons coherently, producing a pion• No nuclear breakup occurs

Charged Current (CC): νµ+A→µ+A+π+

Neutral Current (NC): νµ+A→νµ+A+π0

ν (ν) µ± (ν / ν)

W± (Z) π±(0)

A

q2

tA

Coherence requires: t = (q - pπ)2 < 1/R2

where R is the size of the nucleus.

From the Rein-Sehgal model:1) σ(CC) = 2 σ(NC)2) σ(A) ~ A1/3

Characterized by a small momentum transfer to the nucleus, forward going π.

Page 4: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Measurements in past• Measurements for ν, ν CC and NC modes• High energy region: >7GeV (CC), >2GeV (NC)• R&S model agrees with the high energy results

(for various nuclear targets)

4

Experiments CC/NC ν / ν E Target<A>

Aachen-Padova NC ν, ν 2 Al<27>

Gargamelle NC ν, ν 2 Freon <30>

CHARM NC ν, ν 20-30 Glass <20.7>

CHARM II CC ν, ν 20-30 Glass <20.7>

BEBC CC ν 5-100 Ne/H2 <20>

SKAT CC, NC ν, ν 3-20 Freon <30>

FNAL 15-ft NC ν 2-100 Ne/H2 <20>

FNAL 15-ft E632 CC ν, ν 10-100 Ne/H2

<20>

Assume:•  A1/3 dependence•  σ(CC coherent)=2*σ(NC coherent)

Volume 313, number 1,2 PHYSICS LETTERS B 26 August 1993

300

250

o E 200

~b 150

.-~ 100

50

300 ' ' ' ' I ' ~ ' ' I ' ' ' ' I ' ~

Z , i i I i i i i I i i i I I i

0 50 100 150 0

Ev [GeV]

250

•Eo200 ~-~" 150

% 13 ~ 100

5O

- I I I I I I I I I I I I I I I I

B&K

i i i l i i i i I i i i I I i

50 100 150

E ~ [ GeV]

Fig. 5. Visible cross section (En >/ 5 GeV) for coherent single charged plon production for neutrino and antmeutrmo induced

interactions. The predictions of the Rein-Sehgal model (full hne) and of the Bel 'kov-Kopehovlch model (dashed hne) are

indicated

500

400

E o 300

o .?,

~ 200

100

500

i i i I i i i I i ' i ' ' ' ' i i i i i i i i i , i s i

• penment) .I ~ TI x Aachen ~ Padua [1] +Gargamelle[2] 4~"t' " • CHARM.L3].. • SKAT (CC) [4] ./~ ¢, SKAT (NC) [4] • BEBC[7]

, , I , , I , , , I ,O,F~A~-[~],, I , ,qF~/~LI9], I , 20 40 60 80 100 120 140

E v [GeV]

I i I I I I I I i l l I I I I I I l l i I I I i l l I

400 ~ _

300 i ~ :

b 200

J, )~LJT/"1~. ' .L ~ d u a [1] + Gargamelle [2] 100 • CHARM [3] T

i , I i i i I M t , I R M , I r , , I i m r I i i i I i

0 20 40 60 80 100 120 140

E~ [GeV]

Fig. 6. Compilation of experiments on coherent single p]on producUon. Shown are the results from both neutral current

[ 1-4] and charged current [4-9] data, for neutrino and antmeutrmo reduced interactions. The FNAL [8,9 ] values from

combined neutrino and antmeutrmo data have been included m the upper dxagram For this experiment the results for the

visible cross section were corrected for the selecUon of En >/ 5 GeV according to the Bel'kov-Kopellov~ch approach. Data

from other experiments have been scaled, where necessary, to allow comparison The pred]cuons of the Rem-Sehgal model

(full hne) and of the Bel 'kov-Kopeliovlch model (dashed hne) are mdxcated.

274

Plots from Phys.Lett. B313, 267-275 (1993)

ν

ν

Page 5: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Recent resultsat low energy (~1GeV)

5

ν CC coherent π+

K2K-SciBarPhys.Rev.Lett. 95,252301 (2005)

ν NC coherent π0

MiniBooNE,Phys.Lett. B664,41 (2008)

• <Eν>=1.1GeV• Target: Mineral oil (CH2)

• Cherenkov detector

• Experimental signature:• Two e-like ring (π→γγ) events

• Higher production rate than prediction at low π0 momentum ➜ weighting factor for MC

• <Eν>=1.3 GeV• Target: Scintillator (CH)

• Tracking detector• Experimental signature:• Two MIP-like (µ+π) tracks • By looking at recoil proton

(vertex activity) isolate coh-π

Coherent π (MC)

Resonant π (MC)

Vertex activity (recoil proton)

πμ

π

μ+: data+: MC

data/MC

Page 6: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Recent resultsat low energy (~1GeV)

6

ν CC coherent π+

K2K-SciBarPhys.Rev.Lett. 95,252301 (2005)

ν NC coherent π0

MiniBooNE,Phys.Lett. B664,41 (2008)

(coherent π)

CoherentResonant

Background

Coherent fraction in NC-1π0:

Ncoh/(Ncoh + Nres) = (19.5±1.1± 2.5)%= (0.04 ± 0.29 (stat.) +0.32

- 0.35 (sys.)) x 10-2

Cross section ratio: σ(CC coh-π) / σ (CC)

No evidence of CC coherent π prod.

➜ 65% of R&S model prediction

Clear evidence of NC coherent π prod.

Page 7: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

More NC-π0 from MiniBooNE

7

Data

0.65!Rein"SehgalHernandez, et al

Alvarez"Ruso, et alNo Coherent

0.6 0.7 0.8 0.9 1.0

2000

3000

4000

5000

6000

7000

Reconstructed cos#$0

Events!1!1E

20POT

% Mode NC $0 Box Rate, Coherent Models

Data

0.65!Rein"SehgalHernandez, et al

Alvarez"Ruso, et alNo Coherent

0.4 0.5 0.6 0.7 0.8 0.9 1.00

500

1000

1500

2000

Reconstructed cos#$0

Events!1!1E

20POT

% Mode NC $0 Box Rate, Coherent Models

C.E. Anderson at NuInt09 • New NC-π0 results for both ν and ν beam modes.

• Demonstrated comparison between data and models

• ν and ν data suggest:

• Clear evidence of non-zero NC coh-π

• Forward angular distribution is sensitive to model predictions

ν

ν

NOTE: MC distributions are absolutely normalized

Page 8: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

CC coh-π results from SciBooNE

8

MRD stopped sample<Eν>= 1.1 GeV

MRD penetrated sample<Eν>= 2.2 GeV

No evidence of CC coherent pion produc2on was found.➜ Confirmed K2K results

Phys . Rev. D78 112004, 2008

Page 9: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Upper limit on cross sectionMeasured upper limits on σ(CC coherent π)/σ(CC) raGos are converted to upper limits on absolute cross secGons by using σ(CC) predicted by MC simulaGon.

Rein-Sehgalw/ lepton mass correction(Our default model)

Alvarez-Ruso et al.

Kartavtsev et al.

SciBooNE 90% C.L.

9

New theoretical models:[1] Phys.Rev.D79:013002,2009.[2] arXiv:0812.2653 [hep-ph][3] arXiv:0901.2837 [nucl-th][4] arXiv:0901.2366 [nucl-th][5] ...

Recently proposed CC coherent π models predict production of CC coherent π events just below our upper limit.

➜ Search for ν CC coherent pion production, since ν data is expected to be more sensitive to look at CC coherent π production than ν data.

Page 10: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Mon May 11 11:02:50 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245

, fwd, nQE nuCOMBO)!+µ (MRD stop 2trk, µ

P

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, 2

Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50

60

70

80

90 Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Search for ν CC coherent π at SciBooNE

ν coherent π sample also show data deficit at low Q2 region.

Preliminary

ν Coherent-π sample(µ+π w/o activity)

Qrec2 (GeV/c)2

Used the same selection criteria as ν coherent π (NOTE: no syst. error included, no MC tuning yet)

+: dataWed May 6 17:07:54 2009

! CC coherent "

! CC coherent "

(wrong sign)"

CC other"

! CC resonant "

CC QE"

NC"

BG (EC/MRD events)

coherent-π

But data suggest non-zero CC coherent π component.π track length π track angle

Mon May 11 11:02:48 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

40

45 Entries 245

nonQE, w/ activity)!+µ (2track µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

40

45 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 245

nonQE, w/ activity)!+µ (2track µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

30

35

40 Entries 245

nonQE, w/ activity)!+µ (2track #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

35

40 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

Entries 245

nonQE, w/ activity)!+µ (2track 2

Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

80

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν Coherent π counter sample

(µ+π w/ activity)

Preliminary

Qrec2 (GeV/c)2

10

Page 11: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Mon May 11 11:02:50 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245

, fwd, nQE nuCOMBO)!+µ (MRD stop 2trk, µ

P

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, 2

Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50

60

70

80

90 Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Search for ν CC coherent π at SciBooNE

Preliminary

ν Coherent-π sample(µ+π w/o activity)

Qrec2 (GeV/c)2

coherent-π

π track length π track angle

Define signal region: Q2<0.1- 139 events observed- 80 non-cohπ evts (BG)

➜ Data - BG: 59±14 (stat)R&S prediction: 151 (ν :130 ν:21)➜ 33% of R&S: 50 (ν+ν)

4σ level “data excess”.

But consistent with ν CC coh-π upper limit (33% of R&S) within stat error.

Preliminary & stat. error only

11

Page 12: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

ν CC coherent π sample in θπ vs θµ

12

Data MC (no coh-π)

“Data excess” insmall θπ && small θµ

θπ(deg)

1030

5070

Preliminary Preliminary

1030

5070

θπ(deg)

10 30 50 70 θµ (deg)

10 30 50 70 θµ (deg)

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

10 30 50 7010305070

Preliminary

θπ(deg)

θµ (deg)

θπθµ ν beam

direction

µ

π

coherent-π

θπ <35o

θπ >35o

Mon May 11 11:02:50 2009

Entries 146

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35 Entries 146

< 35)!" sample, ! (MRD stop coh-µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35 Entries 146 Entries 146

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 146

< 35)!" sample, ! (MRD stop coh-

µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 146 Entries 146

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

30

Entries 146

< 35)!" sample, ! (MRD stop coh-#E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

Entries 146 Entries 146

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50Entries 146

< 35)!" sample, ! (MRD stop coh-2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50Entries 146

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mon May 11 11:02:51 2009

Entries 99

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

Entries 99

> 35)!" sample, ! (MRD stop coh-µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

Entries 99 Entries 99

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35 Entries 99

> 35)!" sample, ! (MRD stop coh-

µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35 Entries 99 Entries 99

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

Entries 99

> 35)!" sample, ! (MRD stop coh-#E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

Entries 99 Entries 99

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

Entries 99

> 35)!" sample, ! (MRD stop coh-2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

Entries 99

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pµ θµ

θµ

Data suggest coherent-π interaction produce πs more forward than prediction

[Data-MC(no coh)] / stat. err

Page 13: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Significance

13

Mon Jul 6 12:48:54 2009

Entries 140

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

45

Entries 140

< 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

45

Entries 140 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40 Entries 94

> 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν coh-π, θπ < 35

Mon Jul 6 12:48:54 2009

Entries 140

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

45

Entries 140

< 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

45

Entries 140 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40 Entries 94

> 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν coh-π, θπ > 35

Signal region: Q2<0.1- 87 events observed- 31 non-cohπ evts (BG)

➜ Data - BG: 56±11 (stat)R&S prediction: 92 (ν+ν)

Q2

Q2

Signal region: Q2<0.1- 52 events observed- 49 non-cohπ evts (BG)

➜ Data - BG: 2.6±8.5 (stat)R&S prediction: 59 (ν+ν)

Preliminary & stat. error only

Page 14: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

ν CC coherent π

14

θπ < 35 deg θπ > 35 deg

Δφ Δφ

• Similar enhancement in ν data

➜ Pions from CC coh-π production tend to be produced more forward than prediction.

• Pion kinematics can be a responsible to improve coherent pion model.

π angle

ν

coherent-π

K. Hiraide at NuInt09

Page 15: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Future prospect• MINERvA has excellent capability for CC and

NC coherent π productions

• Wide energy range: Eν ~2-20 GeV • Several nuclear targets: H, He, C, Fe, Pb• Data taking starts soon.

• Have been running with the full Tracking Prototype in the ν beam since mid April 2009!

15

CC Coherent Pion Production Cross Section

0

100

200

300

400

500

0 2.5 5 7.5 10 12.5 15 17.5 20E! (GEV)

" (1

0-40 C

M2 )/12

C N

UC

LEU

S

A-Dependence of 5 GeV CC Coherent Cross-Section

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 25 50 75 100 125 150 175 200

A

!(1

0-3

8 c

m2/n

uc

leu

s)

Figure 13: Left: Coherent cross-sections measured by MINER!A compared with existing publishedresults. MINER!A errors here are statistical only. Right: Measurement of the coherent cross-section asa function of atomic number in MINER!AThe shaded band indicates the range of previous measure-ments. Error bars indicate the size of the experimental errors in a single 1-GeV bin. The curve showsthe prediction from the Rein-Seghal model. Crosses are the prediction of the Rein-Seghal model forscattering from carbon, iron, and lead, circles are the predictions of the Paschos-Kartavtsev model.

Applying this set of cuts to our signal sample we find that 7698 signal events pass all cuts, whichgives an overall efficiency of 31%. Applying the factor 0.65 to account for the fact that we have notused fully reconstructed quantities for our kinematic cuts gives us a final event sample of 5004 events.Applying these cuts to the background sample we find that 12 events out of 20k pass all cuts. Nor-malized to the total event rate, this gives an expected background of 4400 events. We note that in thisanalysis other important variables for background rejection, related to associated activity around thevertex, were not used. Figure 13 shows the expected precision of the MINER!A measurement as afunction of neutrino energy. Here we have only included the statistical error on the signal and assumedthat the measured value is that predicted by Rein-Seghal. No attempt has not been made to quantifythe systematic errors on this measuerment other than that resulting from the background subtraction.Previous measurements of the coherent cross-section were statistics limited.

3.3.2 A-dependence of the coherent cross-section

Another task for MINER!A will be comparison of reaction rates for lead and carbon. The expectedyield from lead will be! 1800 charged-current events, assuming the same efficiency. The A-dependenceof the cross-section depends mainly on the model assumed for the hadron–nucleus interaction, andserves as a crucial test for that component of the predictions. No experiment to date has been ableto perform this comparison. For reference, the predicted ratio of carbon to lead neutral-current cross-sections at 10 GeV in the Rein-Sehgal and Paschos models are 0.223 and 0.259, respectively [57].Figure 13 shows the predicted A-dependence according to the model of Rein and Sehgal.

26

A-range of current measurements

Expected MINERvA statistics

A-dependence of CC coh-π

Page 16: Coherent-π production ~Experiments~ · Coherent-π production ~Experiments~ Hide-Kazu TANAKA MIT. ... [2] 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i

Summary• Several measurements on coherent pion

production.

• Recent results on CC/NC coherent π at low energy, ~1GeV.

• Although good agreement between high energy results and R&S model, the results at low energy do not.

• Data suggest: pions from coherent π (CC and NC) tend to be produced more forward than R&S model prediction.

• A variety of models has been proposed.

• New experimental results will be published shortly.

• Experimental & theoretical studies are in progress. 16