Code for calculation of Thermophysical, Transport and ... · Fluid Work Bench functionality...

21
Fluid Work Bench Code for calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Transcript of Code for calculation of Thermophysical, Transport and ... · Fluid Work Bench functionality...

Fluid Work Bench–

Code for calculation of

Thermophysical, Transport and Optical properties

of gases, fluids and plasmas

Fluid Workbench (FWB) is designed to calculate:

- radiation

- transport

-thermophysical

properties of gases, fluids and plasmas

• Optical properties:-Absorption coefficient kabs(T,P)-Net Emission Coefficient εnet(T,P)-Radiative heat conductivity λrad-Refraction index-Radiation spectrum

• Thermodynamic properties:-Equilibrium composition, ni-Constant pressure heat capacity Cp(T,P)-Enthalpy H(T,P)-Entropy, S(T,P)

• Transport properties:-Viscosity coefficient μ(T,P)-Binary diffusion coefficients Dij(T,P)-Thermal conductivity coefficient λ(T,P)-Electrical conductivity σ(T,P)

Applicability range:

- Pressure: up to 1000 bar

- Temperature: up to 100000 K

Calculated properties

Applications:

- combustion

- high pressure discharge

- high temperature chemical technologies

- metallurgy

FWB Highlights

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Format of Data generation and data transfer to other codes

• Look-up tables in ASCII format

• Direct interface to commercial CFD codes

Transport properties Optical properties

FWB

UDF

read data

UDF

data

transferLook-up

tables

CFD codes

Fluent,

OpenFoam,

Comsol

DB

Elementary

properties of

atoms and

molecules

Parallelization by multiprocessor structure

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Fluid Work Bench functionality

Substances

Data Base

10000 20000 30000 40000 500000

40

80

120

160

200

240

280

320

360 H2O

P=1000 atm

Vis

cosity, x10

-6, P

a*s

Temperature,K

P=1 atm

Kerosene

• Thermo properties

• Electr. levels structure

• Interaction potentials

dat

a

Equilibrium

composition

calc.(ni)

Transport

properties

calc.(Cp, μ,σ..)

Radiative

properties

calc.(kabs)

Ray Tracing:

Spectrum generation

Integral radiative. charact.Post

ProcessingHeat & Mass Transport

Heat Flow

Mass Flow

-Equilibrium composition, ni

-Heat capacity Cp(T,P)

-Enthalpy H(T,P)

-Viscosity coefficient μ(T,P)

-Binary Diffusion coefficient D(T,P)

-Heat conduction coefficient λ(T,P)

-Electrical conductivity σ(T,P)

-Absorption coefficient kabs(T,P)

-Net Emission Coefficient εnet(T,P)

-Radiative heat conductivity λrad

-Refraction index

-Radiated spectrum

Look-up tables

Calculated Properties

Processes

Data Base

• Broadening

• Cross sections

• Rate constant

Transport properties Optic properties

Fluid Workbench functionality and data flow

data

CFD

codes

Fluent

OpenFOAM

Comsol

40

50

60

70

80

90

100

200

300

400

500

600

700

800

900

1000

2000

10-6

10-5

10-4

10-3

10-2

10-1

100

101

B.B,T=12300 KB.B,T=20000 K

P=1000 atm

P=100 atm

P=10 atm

Ra

dia

tio

n,

W/n

m

,nm

Tmax

=20000 K, R=0.01 cm, Kerosine

P=1 atm

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Extended set of models and modules

for properties calculation and postprocessing

Absorption coefficient calculation

Refraction index calculation

Thermo prop. for non-equilibrium

Thermo prop. for equilibrium

Transport properties calculation

Average absorption coef. calculation

Fitting of absorption coefficient

Net Emission calculation

Rosseland conductivity calculation

Spectrum calculation

Many parametric calculations

Optimization of wavelength mesh

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Determine initial composition

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Load species and processes data

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Calculate composition

in LTE

Transfer

thermodynamic data

Transfer

initial composition

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Calculate

absorption coefficient

Multiprocessors

calculations

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Calculate

spectrum

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Easy to use interface & parallelization of massive calculations

Analysis of the results

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Collection of properties of more than 5000 species

Electronic levels

energy structure

Interaction potential

data

Thermodynamic dataThermophysical data

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Data of more than 20000 elementary optic and 120000 kinetic processes

Transition parameters for

• atoms

• molecules

Broadening characteristics:

• resonance,

• Van der Vaalse

• Stark,

• Quasistatic

• .....

More than 20000 electronic

transitions

more than 120000 elementary

electronic and heavy particle

elementary reactions

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Ar C C2 C3 C4 C5 C2H C2H2 CH CH2 CH4 CN CO CO2 F H H2 H2O He Kr N N2 N2O Ne NO O O2 Xe

Ar + + + + + + +

C + + + + + + + + + + + + + + + + +

C2 + + + + + + + + + + + + + + + +

C3 + + + + + + + + + + + +

C4 + + + + + + + + + + + +

C5 + + + + + + + + + + + +

C2H + + + + +

C2H2 + + + + + +

CH + + + + + + +

CH2 +

CH4 + +

CN + + + + + + + + + + + +

CO + + + + + + + + + + + +

CO2 + + + + + + + + + + + + + + + + +

F + + + + +

H + + + + + + + + + + + + +

H2 + + + + + + + +

H2O +

He + + + + + + +

Kr + + + + +

N + + + + + + + + + + + + +

N2 + + + + + + + + + + + + + + +

N2O + + + + + +

Ne + + + + +

NO + + + + + + + + + + + +

O + + + + + + + + + + + + + + + + + + +

O2 + + + + + + + + + + + + + +

Xe + + + + + Ar C C2 C3 C4 C5 C2H C2H2 CH CH2 CH4 CN CO CO2 F H H2 H2O He Kr N N2 N2O Ne NO O O2 Xe

Pairs of particles that have Born-Mayer potential parameters provided by Kintech

Database Al; Al2; Al2S; AlBr; AlBr2; AlCl; AlCl2; AlCl3; AlI; AlI2; AlS; AlS2; Ar; B; B2; B2C; B2O; B2O2; B2O3; B2S; Ba;

Ba2; BBr; BBr2; BC; BC2; BCl; BCl2; BCl3; Be; Be2; Be2O; Be2O2; Be3O3; BeBr; BeBr2; BeC2; BeCl; BeCl2; BeF;

BeF2; BeI; BeI2; BeN; BeO; BeS; BF; BF2; BF3; BFCl; Bi; BI; Bi2; BI2; BI3; BN; BO; BO2; BOCl; BOF; Br; Br2; Br2Ba; Br2Cd; Br2Sr; BrBa; BrCd; BrCs; BrI; BrRb; BrSr; BS; BS2;

C; C2; C2Al; C2Cl; C2Cl2; C2Cl4; C2Cl6; C2Cr; C2F; C2F2; C2F3; C2F3Cl; C2F4; C2N; C2N2; C2O; C2Si; C2V;

C3; C3O2; Ca; Ca2; CaBr; CaBr2; CaI; CaI2; CAl; CBr; CBr2; CBr4; CCl; CCl2; CCl3; CCl4; Cd; CdI; CdI2; Ce; CF;

CF2; CF2Br2; CF2Cl2; CF2ClBr; CF3; CF3Br; CF3Cl; CF4; CFCl; CFCl3; CI; CI2; Cl; Cl2; Cl2Ba; Cl2Ca; Cl2Cd;

Cl2Co; Cl2Cr; Cl2Cs2; Cl2Cu; Cl2Eu; Cl2Fe; Cl2Ga; Cl2Ge; Cl2Hf; Cl2In; Cl2K2; Cl2Mn; Cl2Mo; Cl2Nb; Cl2Ni;

Cl2Pb; Cl2Pd; Cl2Sn; Cl2Sr; Cl2Th; Cl2Ti; Cl2U; Cl2W; Cl2Zn; Cl2Zr; Cl4Hf; Cl4Sn; Cl4Ti; Cl4Zr; Cl5Nb; ClBa;

ClBi; ClBr; ClCa; ClCd; ClCo; ClCr; ClCs; ClCu; ClEu; ClFe; ClGa; ClGe; ClHf; ClI; ClIn; ClK; ClMn; ClMo; ClNi;

ClPb; ClRb; ClSb; ClSn; ClSr; ClTh; ClTi; ClTl; ClU; ClW; ClZn; ClZr; CN; CN2; CNCl; CNF; CNO; CO; Co; CO2;

CO3K2; CoBr; CoBr2; COCl; COCl2; COF; COF2; COFCl; CoI; CoI2; COS; CP; Cr; Cr2; CS; Cs; CS2; Cs2; CSi;

CSi2; Cu; Cu2; Eu;F; F2; F2Al; F2Ba; F2Ca; F2Cd; F2Co; F2Cr; F2Cs2; F2Cu; F2Eu; F2Fe; F2Ga; F2Ge; F2Hf; F2In;

F2K2; F2Kr; F2Mg; F2Mn; F2Mo; F2Na2; F2Ni; F2P; F2Pb; F2PCl; F2Pd; F2S; F2Si; F2Sn; F2Sr; F2Th; F2Ti; F2U;

F2W; F2Xe; F2Zn; F2Zr; F3Al; F3Br; F3Cl; F3P; F3Si; F4Si; F5Cl; F6S; F6U; F6W; FAl; FAlCl; FBa; FBi; FBr; FCa;

FCd; FCl; FCo; FCr; FCs; FCu; Fe; FEu; FFe; FGa; FGe; FHf; FHg; FI; FIn; FK; FMg; FMn; FMo; FNa; FNi; FP; FPb; FPCl; FPCl2; FRb; FS; FSb; FSi; FSiCl; FSn; FSr; FTh; FTi; FTl; FU; FW; FZn; FZr; Ga; Ge; Ge2;

H; H2; H2Al; H2B; H2Be; H2BeO2; H2BO2; H2C; H2C2; H2C2Cl2; H2C2F2; H2CBr2; H2CCl2; H2CClBr; H2CF;

H2CF2; H2CFCl; H2CI2; H2CO; H2N; H2O; H2O2; H2O2Cs2; H2O2K2; H2O2Mg; H2P; H2S; H2Se; H2Si; H2Te;

H3B; H3BO3; H3C; H3C2Cl; H3C2F; H3CBr; H3CCl; H3CF; H3CI; H3N; H4C; H4C2; H4CO; H4N2; H4Si; H6B2;

H6C2; H6C2O; HAl; HAlCl; HB; HBa; HBCl; HBe; HBeO; HBF; HBO; HBO2; HBr; HC; HC2; HC2Cl3; HC2F;

HC2F2Cl; HC2F3; HCa; HCBr3; HCCl; HCCl2Br; HCCl3; HCd; HCF; HCF2; HCF2Cl; HCF3; HCFCl2; HCl; HCN;

HCo; HCO; HCOF; HCs; HCu; He; HF; Hf; HFAl; HFSi; Hg; HGa; HI; HIn; HK; HLi; HLiO; HMg; HN; HNa; HNF;

HNF2; HNi; HNO; HO; HO2; HOAl; HOBa; HOCa; HOCl; HOCs; HOF; HOFe; HOGa; HOIn; HOK; HOMg; HONa;

HONi; HOP; HORb; HOS; HOSr; HOTi; HOTl; HOZr; HP; HPb; HRb; HS; HSe; HSi; HSiCl; HSn; HSr; HTe; HTl;

HZn; HZr; I; I2; I2Ba; IBa; ICs; In; K; K2; KBr; KCs; KI; Kr; KRb; La; Li; Li2; Li2Cl2; Li2F2; Li2O; Li2O2; Li3;

LiBr; LiCl; LiCs; LiF; LiI; LiK; LiN; LiNa; LiNO; LiO; LiRb; Mg; Mg2; MgBr; MgBr2; MgCl; MgCl2; MgI; MgI2;

MgS; Mn; Mo; N; N2; N2F4; N2O; N2O4; N2O5; N3; Na; Na2; Na2Cl2; NaBr; NaCl; NaCs; NaI; NaK; NAl; NaRb;

Nb; NCr; NCs; Ne; NF; NF2; NF3; NHf; Ni; NiBr; NiBr2; NiI; NiI2; NK; NMg; NNa; NNb; NO; NO2; NOCl; NOCs;

NOF; NOF3; NOK; NONa; NORb; NP; NRb; NS; NSi; NTa; NTi; NV; NZr; O; O2; O2Al; O2Al2; O2Cl; O2Cr;

O2Cs2; O2Fe; O2Ge; O2Hf; O2K2; O2La; O2Mo; O2Na2; O2Nb; O2P; O2Pb; O2Pu; O2S; O2Sc; O2Se; O2Si; O2Sn;

O2Ta; O2Te; O2Th; O2Ti; O2U; O2V; O2W; O2Y; O2Zr; O3; O3Al2; O3S; OAl; OAl2; OAlCl; OBa; OBi; OBr; OCa;

OCd; OCe; OCl; OCl2; OClFe; OClTi; OCo; OCr; OCs; OCs2; OCu; OEu; OF; OF2; OFAl; OFe; OFS; OFU; OGa;

OGa2; OGe; OHf; OI; OIn; OIn2; OK; OK2; OLa; OLa2; OMg; OMn; OMo; ONa; ONa2; ONaP; ONb; ONi; OP; OPb;

OPd; OPu; ORb; ORb2; OS; OS2; OSb; OSc; OSc2; OSi; OSn; OSr; OTa; OTe; OTh; OTi; OTl; OTl2; OU; OV; OW;

OY; OY2; OZn; OZn2; OZr; P; P2; P3; P4; Pb; Pb2; PCl; PCl2; PCl3; Pd; Pd2; PS; Pu; Rb; Rb2; RbCs; RbI; Rn; S; S2;

S2Ge; S2Pb; S2Sn; S3; Sb; Sb2; SBa; Sc; SCa; Se; Se2; SeTe; SGe; Si; Si2; Si3; SiBr; SiBr2; SiBr4; SiCl; SiCl2; SiCl3;

SiCl4; SiI; SiI2; SiI4; SiS; SiS2; Sn; Sn2; SPb; Sr; Sr2; SrI; SrI2; SSe; SSn; SSr; STe; Ta; Te; Te2; Th; Ti; Ti2; TiBr; Tl; U; V; W; Xe; Y; Zn; Zr; ZrI4

List of substances with Lennard-Jones potential parameters

Data for other potentials:

• Modified LJ (m-6)

• Buckingham – Corner

• Stockmayer

• HFD-B potential (Aziz)

Extended DB for Potential and Collision integrals

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Approaches for transport properties calculations

Accurate formulas of Chapman-Enskog method with account for higher approximations are

implemented in FWB and used in all calculations under LTE conditions.

Viscosity μ is calculated in the second

approximation (ξ=2).

Translational thermal conductivity λtr(ξ),

electrical conductivity σ(ξ) are calculated in

the second or third nonvanishing

approximations, depending on data available

for interaction potentials.

Binary diffusion coefficients BDik(ξ=1).

Multicomponent diffusion coefficients Dik(ξ),

ξ=2 or 3, are calculated just to use them in the

formula for σ(ξ).

Total thermal conductivity eff = tr + int + r

Effective heat capacity Cpeff = Cp + Cpr

Potentials & Data Bases:Approximation:

Pirani

Potential

(neutral,

neutral-ion)

Polarization

Potential

(elastique)

Screened

Coulomb

Potential

Devoto for

Charge

exchange

Collision Integrals

Tables for

e-neutral

L-J,

Buckingham-

Corner,

Stockmayer,

Aziz

Potential

(neutral-

neutral)

Tabulated

Potentials

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Example: Thermal conductivity, viscosity and electrical conductivity of Air

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Example: Thermal conductivity, viscosity and electrical conductivity of Argon

Approaches for optic properties calculations

Atoms: generalized approach of bond-bound

transitions

Atoms: Photoionization continuum: Kramers-

Unsold-Biberman model, tabulated cross

section

Molecules: Born-Oppenheimer+ Frank-Condon

approximations for bound-bound transitions

Molecules: Quasi-classical approximation of

wave functions for vibrational spectrum.

Molecules: Hönl-London factor approximation

for rotational spectrum

Broadening: resonance, Doppler, quasistatic,

impact, Stark, Van der Vaalse, ...

Approximation:

2'''0

3

2

0

2

)'',()12(3

2)''',(

ln

nlRllClRymc

elnnlW

32

3 2

,v, ; ,v', ' ,v, ; ,v ', ' '

4| v(i) ( ) v'(j) | ,

3i J j J i J i J ij JJ

i

eA D R S

g c

, ' , ' '

(2 1)(2 1)JJ 0, + '

p p J

S (2 ) S J

kTNGN

kTm

Zek ie

0

33

245H

int exp33

216)(

1/4( ) ( ) ( ) ( ) ( ) ( )

v v v v v,I v,I

1/4( ) ( ) ( ) ( ) ( ) ( ) ( )

v v v v v,II v,II

( ) ( ) ( ) ( ) ( ) ( )

v v v v v,III

, ( ) / ( ) ( ) Airy ( ) ,

, ( ) / ( ) ( ) Airy ( ) ,

, ( ) / ( )

i i i i i i

i i i i i i i

e

i i i i i i

e

R R R C k R Z R Z R

R R R R C k R Z R Z R

R R R R C k R Z

1/4

( )

v,III

1/4( ) ( ) ( ) ( ) ( ) ( )

v v v v v,IV v,IV

( ) Airy ( ) ,

, ( ) / ( ) ( ) Airy ( ) .

i

i i i i i i

R Z R

R R R C k R Z R Z R

A convolution of a Gaussian and a Lorentzian, Voigt:

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Examples: optical properties of Air

Mean absorption coefficient

of Air, 75 atm

Net emission coefficient

of Air, 1 atm

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Examples: Absorption coefficient & Refraction index

140 160 180 200 220 240

0.000

0.001

0.002

0.003

0.004

0.005

fNIST

n-1Kintech

fik(NIST)

Refr

action index,n

-1,nm

n-1, T=273 K, P=1atm, Kintech calc.

n-1, T=273 K, P=760 Torr, Bideau paper

fik(Bideau)

146.9 nm

125.6+129.5nm

0.268

0.295

0.273

0.196

, nm

n-1Bideau

~ f

Bideau = 1.6

0 1x1015

2x1015

3x1015

4x1015

1E-3

0.01

0.1

1

10

100

1000

10000

Absorp

tion

coe

ffic

ien

t, 1

/cm

Frequency, Hz

Klock paper, Continuum

Total, Klock pape

Calculation

Absorption coefficient of CuRefraction index of Xe

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas

Other products of Kintech Lab

Chemical Workbench KintechDB Mechanism Workbench®

Contacts +7 (499) 704-25-81

Kintech Lab, Ltd., +7 (499) 704-25-81

12, 3-ya Khoroshevskaya str., [email protected]

Moscow, Russia www.kintechlab.com

• Comprehensive library of reactor models for simulation of

multi-phase thermodynamic equilibriua, homogeneous gas

phase, heterogeneous and non-equilibrium chemicaly

active plasma kinetics

• Model explorer for building multi-stage process workflow

flow as a chain of reactors with recycles

• Extensive set of tools for manipulation and analysis of

kinetic mechanisms: comparison, analysis, reduction

• Multiple options for reaction-rate approximations in

kinetic simulations, including user-defined expressions

• Customizable and flexible post-processing tools: units

conversion, user-defined results processing, plot templates

• Integration with databases on thermodynamic

properties of substances, kinetic data, individual chemical

mechanisms

• Thermodynamic property data for 4500 substances

• Physical properties for 1700 species

• Molecular data for 800 species

• Rate coefficients for 6500 gas phase and liquid phase

reactions

• Automatic data transfer from Database to Chemical

Workbench calculations

• Saving data from Chemical Workbench to the

Database for future use

• •Fully automated – no background in mechanism

reduction methods is required. Fully automatic

mechanism reduction procedure based on proprietary

algorithms and modern mechanism reduction techniques

• •Less work for most popular applications – templates of

mechanism reduction for IC engines and GT combustion

and emissions applications

• •Fits the power user requirements – customization of the

mechanism reduction and analysis Interactive Model

explorer for building a workflow of mechanism reduction,

Wide set of reduction targets, Multi-target multi-point

reduction of kinetic mechanisms

• •Seamless integration with existing computational

infrastructure – supports widely accepted kinetic

mechanism file formats for direct import into engineering

analysis software (CFD)

FWB: calculation of Thermophysical, Transport and Optical properties of gases, fluids and plasmas