CMOS Comparators - ece.tamu.edujose-silva-martinez/courses/ECEN610/Comparat… · CMOS Comparators....

61
1 CMOS Comparators 1

Transcript of CMOS Comparators - ece.tamu.edujose-silva-martinez/courses/ECEN610/Comparat… · CMOS Comparators....

1

CMOS Comparators

1

2

Comparator

Transfer characteristic(ideal)

Circuit symbol

Detects the polarity of the analog input signal and produces a digitaloutput (1 or 0) correspondingly – zero-crossing detector

Vi

Vo

“1”

“0”

Vth

Φ

Vi Vo (“Digital”)Vth

2

3

Applications

• Voltage/current level comparison (A/D conversion)

• Digital communication receivers (“slicer” or decision circuit)

• Memory sense amplifier• DC-DC converter with digital control

3

4

Design Considerations• Accuracy (offset, resolution)• Sensitivity (gain)• Metastability (gain)• Settling time (small-signal BW, slew rate)• Overdrive recovery (memory)• CMRR• Power consumption

4

5

Comparator

Amplification Clipping

• Precise gain and linearity are unnecessary → simple, low-gain, open-loop,wideband amplifiers + latch (positive feedback).

• More gain can be derived by cascading multiple gain stages.• Built-in sampling function with latched comparators.

Vth

Vi

Vth

Vm

Vth

Vo

5

6

A Typical CMOS Comparator

Vos derives from:

• Preamp diff. pairmismatch (Vth,W,L)

• PMOS loads andcurrent mirror

• Latch mismatch• CI / CF imbalance

of M9

• Clock routing• Parasitics

M1 M2

Vi

Vos

M3 M4

VDD

M5 M6

M8M7

M9

VSS

ΦVo

+ Vo-

Preamp Latch

7

Latch Regeneration

Exponential regeneration due to positive feedback of M7 and M8

VDD

VSS

Vo

Φ PA tracking Latch reseting

Latchregenrating

Vo+

Vo-

VDD

M5 M6

M8M7

M9

VSS

ΦVo

+ Vo-

CL CL

8

Latching Speed – Linear Model

M8M7

CL CL

Vo+ Vo

-

Vo-

Vo+

CL gmVo-

-1

If a small differential current ∆I is injected at each terminal, then considering transistor output impedance

It can be shown that

Then

9

Resolving Speed – Linear Model

( )( )

=

⋅=0

lntV

tVgCt

o

o

m

L

M8M7

CL CL

Vo+ Vo

-

Vo = 1VVo(t=0) t

Vo Vo(t=0) t/(CL/gm)

1V 100mV 2.31V 10mV 4.61V 1mV 6.91V 100μV 9.2

0.0E+0

5.0E-2

1.0E-1

1.5E-1

2.0E-1

2.5E-1

3.0E-1

3.5E-1

4.0E-1

4.5E-1

5.0E-1

0.0E+0 1.0E+0 2.0E+0 3.0E+0 4.0E+0

Out

put v

olta

ge (V

)

Time/τ

V0(to)=0.1V

V0(to)=0.01V

V0(to)=0.001V

10

Comparator Metastability

Comparator fails to produce valid logic outputs within T/τ = 6 when input signal is very small; e.g. <5mV. 10 bits resolution ADC with FS=1V demands an LSB=1mV! LSB for 8 bits ADC is 4mV. Be aware that these values areaccount for the latch only

( ) ( ) ( )LmVVio CgtAAVtV /exp0 21 ⋅⋅⋅=

Curve AV1AV2 Vi(t=0) 10 10mV 10 1mV 10 100μV 10 10μV

Vo+

Φ

Vo-

1 2 3 4

T/2

11

Metastability

• Cascade preamp stages (typical flash comparator has 2-3 PA stages).• Use pipelined multi-stage latches; PA can be pipelined too.• Avoid branching off the comparator logic output.

LSB1ΔBER =

( ) ( ) ( )LmVVio CgtAAVtV /exp0 21 ⋅⋅⋅=

Vi

DoΔ

j

Vos

j+1

12

Reg. Speed – Linear Model

gain. positive for 2<−

= 97m97m

95m2V Rg

Rg2RgA ,

M5 M6

M8M7

M9

Φ=1Vo

+ Vo-

Vm+ Vm

-

M1 M2Vi

M3 M4

Vm+ Vm

-

Vo+ Vo

-R92

R92

-1gm7

-1gm7

gm5Vm+ gm5Vm

-

X

3

11

m

mV g

gA =

( ) ( ) ( ) 2V1ViVio AA0VA0V0V ⋅=⋅=

( ) ( ) ( )LmVVio CgtAAVtV /exp0 21 ⋅⋅⋅=

x

13

Reg. Speed – Resolution

M8M7

CL CL

Vo+ Vo

-

Vo = 1VVo(t=0) t

M5 M6

M8M7

M9

Φ=1Vo

+ Vo-

Vm+ Vm

-

Discuss in class the most critical issues:i) Role of Initial conditions (Reset)ii) Role of reset transistor R9iii) Role of signal speediv) Resolution issue

14

Hysteresis: It should be < LSB/2

Vin

•Hysteresis: What the origin is?•Why this is relevant?•Design issues?•Design strategy (if any)?

I can anticipate that this is one of the most relevant issues when designing comparators

15

16

17

CI and CF in Latches

M5 M6

M8M7

Φ

Vo+ Vo

-

CL CLM9

CgdCgs

Vo+

Vo-

Φ

CM jump

• Charge injection and clock feedthrough introduce CM jump in Vo

+ and Vo-.

• Dynamic latches are more susceptible to CI and CF errors.

18

Dynamic Offset of Latches

Dynamic offset derives from:

• Imbalanced CI and CF• Imbalanced load capacitance• Mismatch b/t M7 and M8

• Mismatch b/t M5 and M6

• Clock routing

Φ

Vo+

Vo-

offset50mV imbalance 10%

jump CM0.5V ⇒

Dynamic offset is usually the dominant offset in latches.

19

Typical CMOS Comparator

• Input-referred latchoffset gets divided bythe gain of PA.

• Preamp introducesits own offset (mostlystatic due to Vth, W,and L mismatches).

• PA also reduceskickback noise.

M1 M2

Vi

Vos

M3 M4

VDD

M5 M6

M8M7

M9

VSS

ΦVo

+ Vo-

Preamp Latch

Kickback noise disturbs the reference voltages, must settle before next T.

Fall 2009 S. Hoyos-ELEN-610 20

CMOS Preamplifier

21

Pull-Up

• NMOS pull-up suffers from body effect, affecting gain setting accuracy.• PMOS pull-up has no body effect, but is subject to P/N matching.• Gain accuracy is the worst for resistive pull-up as resistors (poly, diffusion,

well, and etc.) don’t track transistors.

M1 M2Vi+ Vi

-

Vo+ Vo

-

Pull-up( )( )LmL

mV LW

LWggA 11 −=−=

−• :uppull diode NMOS

( )( )Lp

n

mL

mV LW

LWggA 11

µµ

−=−=

−• :uppull diode PMOS

LmV RgA ⋅−=−•

1

:uppull Resistor

22

To Obtain More Gain

M1 M2

M3 M4

Vi+ Vi

-

Vo+ Vo

-Ip Ip

I

( )( )3

1

3

1

22

LWLW

III

ggA

pp

n

m

mV

−−≈−=

µµ

• Ip diverts current awayfrom PMOS diodes (M3

& M4), reducing (W/L)3.• Higher gain, no CMFB• Needs biasing for Ip• M3 & M4 may cut off for

large Vin, resulting inlong recovery time.

23

Bult’s Preamp

• NMOS diff. pair loadedwith PMOS diodes andPFB PMOS pair

• High DM gain, low CMgain, good CMRR

• Simple, no CMFB• (W/L)34 > (W/L)56 needs

to be ensured forstability.

Ref: K. Bult and A. Buchwald, "An embedded 240-mW 10-b 50-MS/s CMOS ADC in1-mm2," IEEE Journal of Solid-State Circuits, vol. 32, pp. 1887-1895, issue 12,1997.

M1 M2

M7

M3 M4

Vi+ Vi

-

Vo+ Vo

-M5 M6

24

Bult’s Preamp (DM)

Vid gm1Vid ro1

1gm3

ro3-1

gm5ro5

Vod

3//////1//1 11

53153

1om

ooomm

mdm

Vrgrrr

gggA −≈

−⋅−= :gain DM

M1 M2

M7

M3 M4

Vi+ Vi

-

Vo+ Vo

-M5 M6

Be careful when using these results that apply to small signal only! Remember that this is a large signal guy!

25

Bult’s Preamp (CM)

( ) 7535371

1

211//1

21 ommmmom

mcmV rggggrg

gA+

−≈

+−= :gain CM

Vic

gm1Vgs1

2ro7

1gm3

1gm5

Voc

Vgs1M1 M2

M7

M3 M4

Vi+ Vi

-

Vo+ Vo

-M5 M6

26

Song’s Preamp: very nice properties!

Ref: B.-S. Song et al., "A 1 V 6 b 50 MHz current- interpolating CMOS ADC," inSymposium on VLSI Circuits Digest of Technical Papers, 1999, pp. 79-80.

M1 M2

M5

M4M3

Vi+ Vi

-

Vo+ Vo

-RL RL

X

• X is a common-mode node: M3-M4 do not see any differential signal

• NMOS diff. pair loaded with PMOS diodes and a pair of resistors

• Cgs capacitors are decoupled from output!

• Diff Gain depends on RL while common-mode gain is function of gm1/gm3

• High DM gain, low CMgain, good CMRR

• Simple, no CMFB• Easy to interface it with next stage

27

Song’s Preamp (CM)

53

351

1

21

121

om

mom

mcmV

rg

grggA

−≈

⋅+

−=

Vid gm1Vid ro1

ro3 RL

VodVic

gm1Vgs1

2ro5

1gm3

Voc

Vgs1

DM CM

( )Lm

Loomdm

V

RgRrrgA

1

311 ////−≈

⋅−=

• Notice in previous slide that at low and medium frequencies, Vxfollows the common-mode output variations

28

CMOS Latch

29

Static Latch (?) Huge amount of power may be used! Specially during the reset

phase• Active pull-up and

pull-down → full CMOSlogic levels

• Very fast!• Q+ and Q- are not well

defined in reset mode(Φ = 1).

• Large short-circuitcurrent in reset mode.

• Zero DC current afterfull regeneration

• Very noisy

M6M5

M7Q+ Q-

Φ

Vi+ Vi

-M1 M2

M3 M4

30

Semi-Dynamic Latch

• Diode divider disabledin reset mode → lessshort-circuit current

• Pull-up not as fast• Q+ and Q- are still not

well defined in resetmode (Φ = 1).

• Zero DC current afterfull regeneration

• Still very noisy

M6M5

M7

Φ

Φ

M8

Vi+ Vi

-M1 M2

M3 M4

Q+ Q-

31

Current-Steering LatchMost popular one (M8 may operate as a

current source)

• Constant current→ very quite

• Modest gain intracking mode

• Cannot producefull logic levels

• Fast• Trip point of the

inverters

M1 M2

M5

Vi+

M6

Vi- M4M3

M7

Φ

M8

Φ Φ

RL RLQ+ Q-

32

Dynamic Latch

• Zero DC current inreset mode

• Q+ and Q- are bothprecharged to “0”.

• Full logic level afterregeneration stability.

• Slow

Ref: A. Yukawa, "A CMOS 8-Bit High-Speed A/D Converter IC," IEEE Journal of Solid-

State Circuits, vol. 20, pp. 775-779, issue 3, 1985.

M4M3

Φ

Vi+ Vi

-

M7 M8M5 M6

M1

Q+ Q-

M2

M9 M10 Φ

ΦΦ

33

Modified Dynamic Latch

Ref: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,“IEEE Journal of Solid-State Circuits, vol. 30, pp. 166-172, issue 3, 1995.

Φ

Vi+ Vi

-

M7 M8M5 M6

M1

Q+ Q-

M2

M9 M10 Φ

ΦΦ

M4M3

• Zero DC current inreset mode

• Q+ and Q- are bothprecharged to “0”.

• Full logic level afterregenerationstability.

• Slow

34

Cho’s Comparator

M1R and M2R added to set the decision threshold

( ) ( )

( ) ( )

−+−′=

−+−′=

+−

−+

thRR

thii

thRR

thii

VVL

WVVL

WkG

VVL

WVVL

WkG

2

1

( )−+ −⋅= RRi

R VVWWThreshold

M2RM1R

Φ

Vi+ Vi

-

M7 M8M5 M6

M1

Q+ Q-

M2

M9 M10 Φ

ΦΦ

M4M3

VR- VR

+

35

Regenerative Sense Amplifier (RSA)

Ref: J.-T. Wu and B. A. Wooley, "A 100-MHz pipelined CMOS comparator," IEEE

Journal of Solid-State Circuits, vol. 23, pp. 1379-1385, issue 6, 1988.

• Offset cancellation• Fast• AC coupling reduces

signal gain.• CM feedback?

Vi+ Vi

-

M1 M2

M4 M3

M6M5

Φ Φ

Φ Φ

X Y

Vo+ Vo

-

Do this make sense for fast input signals?

36

DM Equivalent Circuit

M1

M3

M5

X

Vo+

-1Y

Vi+

M5

X

Vo+

M1

M3

Vo+

-1Y

Sensing Resetting

DM loopgain in resetting mode is less than 1.

37

CM Equivalent Circuit

Vic

M5

X

M1

M3

Voc • M3 degenerated• Loopgain < 1 ?• Needs CMFB

38

RSA Common-Mode FeedbackVi

+ Vi-

M1 M2

M4 M3

M6M5

Φ Φ

Φ Φ

M7

M10M9

Vo+ Vo

-

M8

39

Comparator Offset

M1 M2

Vi

Vos

M3 M4

VDD

M5 M6

M8M7

M9

VSS

ΦVo

+ Vo-

Preamp Latch

( )

∆+

∆+∆=

22222

41

LL

WWVVV ovthos

97

952 2 Rg

RgAm

mV −

=3

11

m

mV g

gA =

22

21

2,

22

21

278,

21

256,

234,2

12,2

VV

dynos

VV

os

V

osososos AA

VAA

VA

VVVV ++

++=

Differential pair mismatch:

Total input-referredcomparator offset:

40

Matching Properties

( ) ,222

2 DSWLAP P

P +=∆σ

The variance of parameter ΔP b/t two rectangular devices:

where, W and L are the effective width and length, Sp stands for the technology sensitivity to distance and orientation; D is distance between the devices.

Ref: M. J. M. Pelgrom, et al., "Matching properties of MOS transistors,"IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433-1439, issue 5, 1989.

( )

( ) .

,

222

2

2

220

20

02

DSWLA

DSWLAV VT

VTT

ββ

ββσ

σ

+=

+=

:factor Current

:Threshold

1st term dominatesfor small devices.

41

Why Large Devices Match Better?

., 11 RS WLRR σ std with⋅=

X X X X X X X X…W

L10 identical resistors

R1 R2

.11101

1010

1

1

1

1

2

2

WLARRRRRRRR =∝⇒

==

σσσσ

.1010

,,1010

122

1

10

1

222

212

RRRj

RR

RS

j

RWLRR

σσσσσ

σ

=⇒==

=

⋅=

∑=

std with

“Spatialaveraging”

42

ADC Input Capacitance

( ) 22

00

2 /10 mfFCWLAV g

VTT µσ ==

• N = 6 bits• VFS = 1V• σ = LSB/4• AVT0 = 10mV·μm

→ 63 comparators→ 1 LSB = 16mV→ σ = 4mV→ L = 0.24μm,

W = 26μm

N (bits) # of comp. Cin (pF)

6 63 3.98 255 250

10 1023 ??!

• Small Vos leads to large device sizes, hence large area and power.• Large comparator leads to large input capacitance, difficult to drive and

difficult to maintain bandwidth.

43

Multi-Stage Preamp

A(ω)

Vi

A(ω) A(ω)

… Vo

Vi

CL gmVi CLRL gmVi+1

Vi+1

… …

( )

./,/1

,/1

000

0

0

0

LLu

LL

CRAACRjAA

===

+=

ωωω

ωωω

( )( )

( )

03

1

030

3

20

0

0

0

5103

122

11

ωω

ωωωω

ωωωωω

*).(:NFor

.,A

A

,/

A/j

AA

dB

NdB

N

dBN

NN

N

==

−===

+=

+

=

−−

N stages:

44

Step Response

( )( )

tCgV

CRtRgV

tfortAVeAVV

L

min

LLLmin

in

tin

⋅=

⋅⋅=

<<⋅≈−⋅= −

ττ

τ

,/1

0

/01

.!

1,

,211,1

01

22

012

01

in

N

L

mNt

NmL

NN

inL

mt

mL

inL

mt

inmL

VCg

NtdtVg

CVV

tVCgdtVg

CVtV

CgdtVg

CV

==

==⋅==

∫∫

− smal for

Ignore RL in all stages:

Vin gmVin CLRL gmV1

V1

V2

45

Optimum N: Follow the rules for digital Buffers

i

N

L

mN

o

o

VCg

NtV

,V

=

!

small For

1 2 3 4 5 6 7 8 9 10100

101

102

N

t/(C

L/gm

)

Vo/Vi=10Vo/Vi=100Vo/Vi=1000

N

i

o

m

L

VVN

gCt

1

!

⋅=

• Given A0 = Vo/Vi, Nopt can be determined with the above equation.• For A0 < 100, typical N value ranges between 2 and 4.

46

Comparison

• A higher A0 (= Vo/Vi) requires a larger N.• In comparison, latches regenerate (PFB) faster than preamp.

⋅=

i

o

m

L

VV

gCt ln :latch

N

i

o

m

L

VVN

gCt

1

!

⋅=

100 101 102 1030

2

4

6

8

10

Vo/Vi

t/(C

L/gm

)

N=1N=3N=5Latch

47

Multi-Stage PA Offset

Total input-referred

Individual stage

A1

Vos1

A2

Vos2

A3

Vos3

A1

Vos

A2 A3

.

,

21

3

1

21

321

AAV

AVVV

AAAA

osososos

T

⋅++=

⋅⋅=

48

Input Offset Cancellation

A

VosΦ1

Φ2

Φ2'

Vi Vo

C

• AC coupling at input with input-referred offset stored in C.• Two-phase operation, one phase (Φ2) is used to store offset.

49

Offset Storage – Φ2

( )

os

os

oscc

V

VA

AVVAV

⋅+

=

−−=

1A

Vos

Φ2

Φ2'

Vo

Vc

Closed-loop stability (amplifier in unity-gain feedback)

Ref: J. L. McCreary and P. R. Gray, "All-MOS charge redistribution analog-to-digitalconversion techniques. I," IEEE Journal of Solid-State Circuits, vol. 10, pp. 371-379, issue 6, 1975.

50

Amplifying Phase – Φ1

( )

+−−=

−+−=

AVVA

VVVAV

osin

oscino

1

• Offset cancellation is incomplete if A is finite.• AC coupling at input attenuates signal gain.

AVos

+=−

1 offset referredInput

A

VosΦ1

Vi Vo

Vc

51

CF and CI of Switches

A

Vos

Φ2

Φ2'

Vo

Vc

• What’s the optimum phase relationship between Φ2 and Φ2'?• Bottom-plate sampling → Φ2' switches off slightly before Φ2.

Φ2'

Φ1

Φ2

Vin

52

Multi-Stage Input Offset Cancellation

A1

Vos1Φ1

Φ2

Φ3

Vi

C1

A2

Vos2

Φ4

Vo

C2

Φ1

Φ2

Φ3

Φ4

• Multi-stage AC coupling• Φ3 switches off first

→ ΔV1 on C1 will beabsorbed by C2.

• Φ4 switches off next, Φ2

last.

53

Output Offset Cancellation

• AC coupling at output with offset stored in C.• A must be small and well controlled (independent of Vo).• Does not work for high-gain op-amps.

A

VosΦ1

Φ2

Vi Vo

C Φ1

Φ2'

54

Offset Storage – Φ2

( ) ososc AVVAV −=−=

• Closed-loop stability is not required.• CF and CI of Φ2' gets divided by A when referred to input.

Ref: R. Poujois and J. Borel, “A low drift fully integrated MOSFET operational amplifier,”IEEE Journal of Solid-State Circuits, vol. 13, pp. 499-503, issue 4, 1978.

Vos

Φ2

Vc

Φ2'A

55

Amplifying Phase – Φ1

( )

in

ososio

AVAVVVAV

=+−=

• Cancellation is complete if A is constant (independent of Vo).• AC coupling at output attenuates signal gain.

0=− offset referredInput

VosΦ1

Vi Vo

Vc Φ1

A

56

Multi-Stage Output Offset Cancellation

Φ1

Φ2

Φ3

Φ4

• Multi-stage AC coupling• Φ3 switches off first

→ ΔV1 on C1 will beabsorbed by C2.

• Φ4 switches off next, Φ2

last.

A1

Vos1Φ1

Φ2

ViVo

C1

Φ3 A2

Vos2 C2

Φ4

57

Overdrive Recovery

58

Overdrive Recovery Test

A small input (±0.5 LSB) is applied to the comparator input in a cycle rightafter a FS input (the largest possible input) was applied; the comparator

should be able to resolve to the right output in either case.

Φ

Vo+

Vo-

Vi

Vo

Vi = VFS Vi = -LSB/2

Φ

Vo+

Vo-

Vi

Vo

Vi = VFS Vi = LSB/2

“0” “1”

Case I Case II

59

Passive Clamp

• Limit the output swingwith diode clamps atoutput.

• Signal-dependent Ro

• Clamps add parasiticsto the PA output.

M1 M2

M3 M4

Vi+ Vi

-

M6

M5Vo+ Vo

-

60

Active Reset

• Kill PA gain with aswitch (M5).

• Time-dependent Ro

• M5 adds parasitics tothe PA output.

M1 M2

M3 M4

Vi+ Vi

-

M5

Vo+ Vo

-

Φ

61

PA Autozeroing

A

VosΦ1

Φ2

Φ2'

Vi Vo

C

• Two-phase operation, Φ2 phase is used for offset storage.• Autozeroing switch Φ2' also resets and removes the memory of PA.

M1 M2

M3 M4

Vi+ Vi

-

M5

Vo+ Vo

-

Φ2'

M6