CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf ·...

41
CMB Observables and their Cosmological Implications Wayne Hu Maryland, October 2002 frequency (cm –1 ) B ν (× 10 –5 ) GHz error × 50 5 0 2 4 6 8 10 12 10 15 20 200 400 600 l ΔP (μK) cross (μK 2 ) W. Hu 9/02 E TE B 0.1 1 10 10 100 1000 -100 0 100 Tegmark Compilation DASI Crew 10 100 1000 20 40 60 80 100 l ΔT (μK) W. Hu 9/02 anisotropy spectrum polarization

Transcript of CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf ·...

Page 1: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

CMB Observables

and their Cosmological Implications

Wayne HuMaryland, October 2002

frequency (cm–1)

(× 1

0–5 )

GHz

error × 50

50

2

4

6

8

10

12

10 15 20

200 400 600

l

∆P (µ

K)

cros

s (µK

2 )

W. Hu 9/02

E

TE

B

0.1

1

10

10 100 1000

-1000

100

Tegmark Compilation DASI Crew

10 100 1000

20

40

60

80

100

l

∆T (µ

K)

W. Hu 9/02

anisotropy

spectrum

polarization

Page 2: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

CMB Milestones• Blackbody spectrum COBE FIRAS '92 • Large-scale anisotropy COBE DMR '92 • Degree-scale anisotropy many '93-'99

• First acoustic peak Toco, Boom, Maxima '99-'00• Secondary acoustic peak(s) DASI, Boom '01• Damping tail CBI '02

• Polarization DASI '02• Secondary anisotropy? CBI '02 Spectrum?

Page 3: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Power Spectra of Maps•Original

•Band Filtered

64º

Page 4: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Anisotropy Power Spectrum

Page 5: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Sound Physics

Page 6: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Photon-Baryon Plasma• Before z~1000 when the CMB was T>3000K, hydrogen ionized

• Free electrons act as "glue" between photons and baryons by Compton scattering and Coulomb interactions• Nearly perfect fluid

Page 7: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Acoustic Basics• ContinuityEquation: (number conservation)

Θ = −1

3kvγ

whereΘ = δργ/4ργ is thetemperature fluctuationwith nγ ∝ T 3

• EulerEquation: (momentum conservation)

vγ = k(Θ + Ψ)

with force provided bypressure gradients3kδpγ/4 = kδργ/4 = kΘργ and potential gradientskΨ.

• Combine these to form thesimple harmonic oscillatorequation

Θ + c2sk

2Θ = −k2

wherec2s ≡ p/ρ is thesound speedsquared

Page 8: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Harmonic Peaks• Adiabatic (Curvature) Mode Solution

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

where thesound horizons ≡∫

csdη andΘ + Ψ is also theobserved temperature fluctuationafter gravitational redshift

• All modes arefrozenin at recombination

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in theextremaof their oscillation will haveenhanced fluctuations

kns∗ = nπ

yielding afundamental scaleor frequency, related to the inversesound horizon

Page 9: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Extrema=Peaks•First peak = mode that just compresses

•Second peak = mode that compresses then rarefies

Θ+Ψ

∆T/T

−|Ψ|/3 SecondPeak

Θ+Ψ

time time

∆T/T

−|Ψ|/3

Recombination RecombinationFirstPeak

k2=2k1k1=π/ soundhorizon

•Third peak = mode that compresses then rarefies then compresses

Page 10: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Peak Location• Fundmental physical scale, the distance sound travels, becomes an

angular scaleby simple projection according to the angulardiameter distanceDA

θA = λA/DA

`A = kADA

Page 11: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Peak Location• Fundmental physical scale, the distance sound travels, becomes an

angular scaleby simple projection according to the angulardiameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA= D ≡ η 0− η∗ ≈ η0, thehorizon distance, andkA = π/s∗ =

√3π/η∗ so

θA ≈η∗η0

Page 12: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Peak Location• Fundmental physical scale, the distance sound travels, becomes an

angular scaleby simple projection according to the angulardiameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA= D ≡ η 0− η∗ ≈ η0, thehorizon distance, andkA = π/s∗ =

√3π/η∗ so

θA ≈η∗η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2 or

`A ≈ 200

Page 13: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Angular Diameter Distance Test

500 1000 1500

20

40

60

80

l (multipole)

DT

(mK

)

Boom98CBI

DASIMaxima-1

l1~200

Page 14: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Curvature• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distance DA= R sin(D/R) 6= D

DA

D=Rθ

λ

α

• Objects in aclosed universearefurtherthan they appear!gravitationallensingof the background...

Page 15: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Curvature in the Power Spectrum•Angular location of harmonic peaks

•Flat = critical density = missing dark energy

Page 16: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Dark Energy in the Power Spectrum• Fundamental observable is sound horizon / ang. distance

Page 17: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Baryon Photon Ratio

Page 18: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Baryon Loading• Baryons add extramassto the photon-baryon fluid

• Controlling parameter is themomentum density ratio:

R ≡ pb + ρb

pγ + ργ

≈ 30Ωbh2

(a

10−3

)of orderunity at recombination

Θ = −k

3vγb

vγb = − R

1 + Rvγb +

1

1 + RkΘ + kΨ

Baryons addmassbut notpressure

• In the slowly varyingR limit

[Θ + (1 + R)Ψ](η) = [Θ + (1 + R)Ψ](0) cos(ks)

Page 19: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Baryon & Inertia•Baryons add inertia to the fluid

•Equivalent to adding mass on a spring

•Same initial conditions

•Same null in fluctuations

•Unequal amplitudes of extrema

Page 20: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

time ∆

T

Low Baryons

A Baryon-meter•Low baryons: symmetric compressions and rarefactions

Page 21: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

time ∆

T

Baryon Loading

A Baryon-meter•Load the fluid adding to gravitational force

•Enhance compressional peaks (odd) over rarefaction peaks (even)

Page 22: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

time|

| ∆

T

A Baryon-meter

•Enhance compressional peaks (odd) over rarefaction peaks (even)

e.g. relative suppression of second peak

Page 23: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Baryons in the Power Spectrum

Page 24: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

BBN Baryon-Photon Ratio

500 1000 1500

20

40

60

80

l (multipole)

DT

(mK

)

Boom98CBI

DASIMaxima-1

l2~550

Page 25: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Matter-Radiation Ratio

Page 26: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Radiation Driving• Matter-to-radiation ratio

ρm

ρr

≈ 24Ωmh2(

a

10−3

)of orderunity at recombination in a lowΩm universe

• Radiation is not stress free and soimpedesthe growth of structure

k2Φ = 4πGa2ρ∆

∆ ∼ 4Θ oscillatesaround a constant value,ρ ∝ a−4 so theNetwoniancurvature decaysΦ ≈ −Ψ.

• Decay is timed precisely todrive the oscillator – 5× the amplitudeof the Sachs-Wolfe effect!

• Effect goes away as expansion becomesmatter dominated.Fundamentally tests whether energy density driving expansion issmoothat recombination.

Page 27: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Radiation and Dark Matter•Radiation domination:

potential wells created by CMB itself

•Pressure support ⇒ potential decay ⇒ driving

•Heights measures when dark matter dominates

Page 28: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Dark Matter in the Power Spectrum

Page 29: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Dark Matter in the Data

500 1000 1500

20

40

60

80

l (multipole)

DT

(mK

)

Boom98CBI

DASIMaxima-1

l3

Page 30: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Damping Tail

Page 31: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Damping• Tight coupling equations assume aperfect fluid: noviscosity, no

heat conduction

• Fluid imperfections are related to themean free path of thephotons in the baryons

λC = τ−1 where τ = neσT a

is the conformal opacity toThompson scattering

• Dissipation is related to thediffusion length: random walkapproximationλD =

√ηλC

• Fundamentalconsistency check, e.g.expansion rateatrecombination,fine structure constant.

Page 32: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Maxima

BOOM

DASI

VSA

CBI

Damping Tail Measured

10 100 1000

20

40

60

80

100

l

∆T (µ

K)

W. Hu 9/02

Page 33: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Further Implications of Damping• CMB anisotropies∼ 10% polarized

dissipation→ viscosity→ quadrupole

quadrupole→ linear polarization

• Secondary anisotropiesare observable at arcminute scales

dissipation→ exponential suppression of primary anisotropy→uncovery of secondary anisotropy from CMB photons traversingthelarge scale structureof the universe

Page 34: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Polarization

Page 35: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Polarization from Thomson Scattering • Quadrupole anisotropies scatter into linear polarization

aligned withcold lobe

Page 36: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

First Detection of Polarization!

l

∆P (µ

K)

cros

s (µK

2 )

W. Hu 9/02

DASIE

TE

B

0.1

1

10

10 100 1000

-1000

100

Page 37: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Mapping the Dark Sector• Cosmic variance of CMB fields sets ultimate limit

• Polarization allows mapping to finer scales (~10')

Hu & Okamoto (2001)

100 sq. deg; 4' beam; 1µK-arcmin

mass temp. reconstruction EB pol. reconstruction

Page 38: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Secondary Anisotropies

Page 39: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Maxima

BOOM

DASI

VSA

CBI

Secondary Anisotropy?

10 100 1000

20

40

60

80

100

l

∆T (µ

K)

W. Hu 9/02

BIMA

Page 40: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Sensitivity of SZE Power Amplitude of fluctuations•

Page 41: CMB Observables - University of Chicagobackground.uchicago.edu/~whu/Presentations/maryland.pdf · 1~200. Curvature • In a curved ... • Tight coupling equations assume a perfect

Sensitivity of SZE Power Dark energy•