CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

28
CMB?

Transcript of CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Page 1: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

CMB?

Page 2: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 3: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 4: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 5: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 6: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

1. Espectro de la RCF

2. Anisotropías de la RCF

Page 7: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 8: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 9: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 10: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

CMB anisotropy

Page 11: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Anisotropies

T(θ,φ), Q(θ,φ), U(θ,φ), V(θ,φ)

X=T,E,B

X(θ,φ)=Σlm almX Ys

lm(θ,φ)

spherical harmonics

s=0 for T, 2 for Q and U

E and B modes have opposite parity

Page 12: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Angular power spectrum

T(θ,φ), Q(θ,φ), U(θ,φ), V(θ,φ)

aXlm, X=T,E,B

Cl=Σm [(almX)(alm

Y)*]/(2l+1)

spherical harmonics

informationcompression

Page 13: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 14: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Use Ripples in CMB to Measure Composition of the Universe

• The Basic Idea: Hit it and listen to the cosmic sound.– Analogy: Brass and ceramic can be discriminated by hitting them and

listening to the sound created by them.– We can use sound waves to determine composition.

• When CMB was emitted the Universe was a dense and hot soup of photons, electrons, protons, Helium nuclei, and dark matter particles.– Ripples in CMB propagate in the cosmic soup: the pattern of the ripples,

the cosmic sound wave, can be used to determine composition of the Universe!

Page 15: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

How do we “hear” the cosmic sound from this?

Page 16: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 17: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 18: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

• metric perturbations

•Decomposition into scalar, vector and tensor components

Linear cosmological perturbation theory

Page 19: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 20: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

The cartoon

• At early times the universe was hot, dense and ionized. Photons and matter were tightly coupled by Thomson scattering.– Short m.f.p. allows fluid approximation: baryon-photon fluid

• Initial fluctuations in density and gravitational potential drive acoustic waves in the fluid: compressions and rarefactions.

• A sudden “recombination” decouples the radiation and matter, giving us a snapshot of the fluid at “last scattering”.

[harmonic wave]

Page 21: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Approximate Equation System in the Strong Coupling Regime

SOUND WAVE!

Page 22: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 23: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

Cosmic Sound Wave!

Page 24: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 25: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 26: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 27: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.
Page 28: CMB?. 1. Espectro de la RCF 2. Anisotropías de la RCF.

• It is the nature of things that they are ties to each other. —Chuang-tzu (300BC)

It is the nature of things that they are ties to each other. —Chuang-tzu (300BC)