Classical and quantum aspects of ultradiscrete...

of 28 /28
Classical and quantum aspects of ultradiscrete solitons Atsuo Kuniba (Univ. Tokyo) 2 April 2009, Glasgow

Embed Size (px)

Transcript of Classical and quantum aspects of ultradiscrete...

  • Classical and quantum aspects ofultradiscrete solitons

    Atsuo Kuniba (Univ. Tokyo)

    2 April 2009, Glasgow

  • Tau function of KP hierarchy

    τi(x) = 〈i|eH(x) exp( N∑

    j=1

    cjψ(pj)ψ∗(qj)

    )|i〉

    (eH(x) = time evolution op. involving β1, β2, . . .)

    τi(x) = det(1 + F )

    = 1 +∑

    1≤j≤NFjj +

    1≤j1

  • Ultradiscrete (tropical) limit

    lim²→+0

    ² log τi(x)

    with an elaborate ²-tuning of the parameters

    cj, pj, qj, βm

    leads to a tropical tau function associated withcombinatorial data called Rigged Configuration in Bethe ansatz.

    Solitons in tau function ↔ Strings in Bethe ansatzcjψ(pj)ψ

    ∗(qj)

  • Example from sln=4

    λ

    02

    3

    µ(1)

    10

    µ(2)

    0

    µ(3)Rigged configuration

    (µ, r) = (λ, (µ(1), r(1)), . . . , (µ(n−1), r(n−1)))

    µ(a): configuration (Young diagram)

    r(a): rigging (integers attached to µ(a))

    (+ selection rule)

    Charge of rigged configuration

    c(µ, r) :=1

    2

    n−1∑

    a,b=1

    Cab min(µ(a), µ(b)) − min(λ, µ(1)) +

    n−1∑a=1

    |r(a)|

    min(λ, µ) =∑

    ij min(λi, µj), |r| =∑

    i ri

    (Cab) = Cartan matrix of sln)

    Regard rigged conf. = {strings}, string = row attached with rigging.

  • Tropical tau function

    τi(λ) = − min(ν,s)

    {c(ν, s) + |ν(i)|} (1≤ i≤n)

    min(ν,s)

    extends over the power set of (µ, r). e.g.,

    µ(1)

    02

    3

    µ(2)

    10

    µ(3)

    0

    Proposition ([K-Sakamoto-Yamada 2007] “Tropical Hirota eq”. )

    τ̄k,i−1 + τk−1,i = max(τ̄k,i + τk−1,i−1, τ̄k−1,i−1 + τk,i − λk),

    where

    τk,i = τi(λ1, . . . , λk), τ̄k,i = τk,i|r(a)→r(a)+δa1µ(1)

  • Rigged configuration originates in string hypothesis in Bethe ansatz

    Example from sl2 (Heisenberg chain)

    H =L∑

    k=1

    (σxkσxk+1 + σ

    ykσ

    yk+1 + σ

    zkσ

    zk+1)

    Bethe equation for length L = 6 chain with 3 down spins.

    (u1 + i

    u1 − i

    )6=

    (u1 − u2 + 2i)(u1 − u3 + 2i)(u1 − u2 − 2i)(u1 − u3 − 2i)

    ,

    (u2 + i

    u2 − i

    )6=

    (u2 − u1 + 2i)(u2 − u3 + 2i)(u2 − u1 − 2i)(u2 − u3 − 2i)

    ,

    (u3 + i

    u3 − i

    )6=

    (u3 − u1 + 2i)(u3 − u2 + 2i)(u3 − u1 − 2i)(u3 − u2 − 2i)

    .

  • • 0.859•• −0.859

    000

    •2.02i

    ••−2.02i

    0

    •−0.472 − i

    •−0.472 + i

    • −0.944

    00

    •−i

    • •i

    01

    •0.472 − i

    •0.472 + i

    • 0.944

    02

  • Kerov-Kirillov-Reshetikhin (1986) gave a canonical bijection

    “Bethe root” “Bethe vector”

    {rigged configurations} KKR←→ {highest paths}000

    121212 (1 =↑, 2 =↓)

    0 111222

    00

    121122

    01

    112212

    02

    112122

    which may viewed as a combinatorial analogue of Bethe ansatz.

  • Higher rank example (sl4)

    {rigged configurations} 1:1←→ {highest paths}

    λ

    02

    3

    µ(1)

    10

    µ(2)

    0

    µ(3)

    ←→ 111 122 22 13 23 4 3

    “Bethe roots” “Bethe vectors”

    highest path = b1 b2 . . . bL

    bi = row shape (λi) semistandard tableau.

    (+ highest condition)

  • Example of KKR algorithm from sl3

    00

    1

    0 021

    0 01

    0

    01

    0 11

    0 1 ∅

    ∅ ∅ ∅ ∅ ∅ ∅∅

    -2 -3

    -1 -2 -3

    -2 -1 -1

    Top left rigged configurationKKR7−→ 11232132

  • Theorem.([KSY])

    Image of the KKR map

    (λ, (µ(1), r(1)), . . . , (µ(n−1), r(n−1)))KKR7−→ b1 . . . bL

    bk = (

    xk,1︷ ︸︸ ︷1 . . . 1, . . . ,

    xk,n︷ ︸︸ ︷n . . . n)︸ ︷︷ ︸

    λk

    (semistandard tableau),

    is given by

    xk,i = τk,i − τk−1,i − τk,i−1 + τk−1,i−1

    We will see that this is an analogue of

    u = −2∂2 log τ

    ∂x2

    for KdV eq.

  • Crystals for Uq(ŝln)

    Bl = { i1, . . . , il | semistandard}

    equipped with crystal structures.

    ul := 11. . . 1 ∈ Bl is the (classically) highest element.

    An element of Bλ1 ⊗ Bλ2 ⊗ · · · is called a path.

  • Combinatorial R

    R : Bl ⊗ Bm ∼→ Bm ⊗ Bl, x ⊗ y 7→ ỹ ⊗ x̃

    x̃i − xi = yi − ỹi = Qi(x ⊗ y) − Qi−1(x ⊗ y) (i mod n),

    xi = ] of letter i in tableau x (yi : similar),

    Qi(x ⊗ y) = min1≤k≤n

    {k−1∑

    j=1

    xi+j +n∑

    j=k+1

    yi+j} · · · i th local energy.

    Example : 1233 ⊗ 124 ' 133 ⊗ 1224

    will be denoted by

    1233

    124

    133

    1224 or simply 1233

    124

    133

    1224

  • Energy Ei of path b1 ⊗ · · · ⊗ bk (i mod n)

    Ei(b1 ⊗ · · · ⊗ bk) := Sum of Qi(x ⊗ y) attached to all vertices in

    bkb2b1u∞

    Theorem.([KSY] “Tropical fermionic formula”)

    Suppose b1 ⊗ · · · ⊗ bL KKR←→ (µ, r) −→ {τk,i}. Then,

    Ei(b1 ⊗ · · · ⊗ bk) = τk,i (1 ≤ k ≤ L)

  • Uq(ŝln) vertex model at q = 0

    Tl : B1 ⊗ B1 ⊗ B1 ⊗ · · · −→ B1 ⊗ B1 ⊗ B1 ⊗ · · ·b1 ⊗ b2 ⊗ b3 ⊗ · · · 7−→ b′1 ⊗ b′2 ⊗ b′3 ⊗ · · ·

    · · ·Bl 3 ulb1 b2 b3 b4

    b′1 b′2 b

    ′3 b

    ′4

    T1, T2, . . . : commuting family of time evolutions(deterministic transfer matrices)

  • Example of time evolution T2 :

    11 11 11 11 11 11 11 11 1114 24 12 11 131 4 2 1 1 3 1 1 1 1 1 1 1

    1 1 1 4 2 1 3 1 1 1 1 1 111 11 11 11 11 11 11 11 11 1114 24 12 13

    1 1 1 1 1 4 2 3 1 1 1 1 111 11 11 11 11 11 11 11 11 1114 24 34 13

    1 1 1 1 1 1 1 2 4 3 1 1 111 11 11 11 11 11 11 11 11 1112 14 34 13

    1 1 1 1 1 1 1 1 2 1 4 3 1

    The dynamics on vertical edges reproduces Box-ball systemwith carrier (Takahashi, Satsuma, Matsukidaira).

    · · · 1421131111111 · · ·· · · 1114213111111 · · ·· · · 1111142311111 · · ·· · · 1111111243111 · · ·· · · 1111111121431 · · ·

    1= empty box, 2, 3, 4 = colored balls.

  • Theorem.([KSY])

    (1) Tropical tau function

    = Energy of crystal (math) · · · previous theorem= Baxter’s corner transfer matrix for box-ball system (phys)

    Let b1 b2 · · · bL KKR←→ (µ, r) −→ {τk,i}. Then,

    b1 b2 · · · bk

    τk,i = ] of “balls” in

    ?

    time evolution T∞

    (2) Tropical Hirota equation = eq. of motion of box-ball system.

  • Bethe ansatz Corner transfer matrix

    main combinatorial object rigged configurationenergy (charge)

    in crystal

    role in box-ball system action-angle variable tau function

    dynamics linear bilinear

  • Dynamics of box-ball system in terms of rigged configuration

    t = 0: 111122221111133211431111111111111111111111111111

    t = 1: 111111112222111133214311111111111111111111111111

    t = 2: 111111111111222211133243111111111111111111111111

    t = 3: 111111111111111122221132433111111111111111111111

    t = 4: 111111111111111111112221322433111111111111111111

    t = 5: 111111111111111111111112211322433211111111111111

    t = 6: 111111111111111111111111122111322143321111111111

    t = 7: 111111111111111111111111111221111322114332111111

    (148)

    λ

    4t6 + 3t

    11 + 2t

    µ(1) µ(2)

    10

    µ(3)

    0

    configuration · · · conserved quantity (action variable)rigging · · · linear flow (angle variable)

    KKR bijection · · · direct/inverse scattering map (separation of variables)

  • Summary so far

    KP tau

    Tropical tau

    Charge

    classical

    quantum

    Ultradiscretization (top down)

    Comb. Bethe ansatz (bottom up)

    (energy of crystal)

    • KKR theory = inverse scattering scheme of box-ball systemon ∞ lattice [K-Okado-S-Takagi-Y 2006]

    • Initial value problem solved and General N -soliton solutionconstructed for ŝln symmetric tensor reps. [KSY 2007]

    (ŝl2 2-dim. rep. case also by [Mada-Idzumi-Tokihiro 2008])

  • Periodic generalization (sl2 case)

    Tl : B1 ⊗ B1 ⊗ · · · ⊗ B1 −→ B1 ⊗ B1 ⊗ · · · ⊗ B1b1 ⊗ b2 ⊗ · · · ⊗ bL 7−→ b′1 ⊗ b′2 ⊗ · · · ⊗ b′L

    · · ·Bl 3 ub1 b2 b3 b4

    b′1 b′2 b

    ′3 b

    ′4

    bL

    b′L

    u′ ∈ Bl

    Choice s.t. u=u′: periodic box-ball system (Yura-Tokihiro 2002)

    Example of T3 : ( B1 = { 1 , 2 } )

    1 1 2 2 2 1 1 1 1 2 2

    2 2 1 1 1 2 2 2 1 1 1

    122 112 111 112 122 222 122 112 111 111 112 122

  • Action-angle variables

    any path highest path rigged conf.

    cyclic shift KKR

    b1......bL 7−→ bd+1...bLb1...bd 7−→ (µ, I) (not unique)

    Iµg

    Iµg−1

    Iµ1¾ µ1

    -

    ···¾ µg−1 -

    ¾ µg-

    µ = (µ1, . . . , µg)

    I = (Iµ1, . . . , Iµg)

    pi := L − 2∑

    j∈µ min(i, j)

    Lemma. (For simplicity assume µ1 > · · · > µg)

    • µ is unique and invariant under {Tl} (action variable)

    • (I + d h1)/AZg is unique (angle variable), where

    hl = (min(l, i))i∈µ ∈ Zg, A =(δijpi + 2 min(i, j)

    )i,j∈µ

  • P(µ) := {paths whose action variable = µ} iso-level set

    J (µ) := Zg/AZg set of angle variables

    Φ : P(µ) −→ J (µ) by Φ(b1 . . . bL) := (I + d h1)/AZg

    Theorem. ([KT-Takenouchi 2006] “Tropical Abel-Jacobi” map)

    Φ is a bijection and

    P(µ) Φ−→ J (µ)Tl

    yyTl

    P(µ) Φ−→ J (µ)is commutative.

    where Tl(J) = J + hl on J (µ).

    Nonlinear dynamics becomes straight motion in

    J (µ) = Zg/AZg,which is an tropical analogue of Jacobi variety.

  • Solution of initial value problem (inverse method)

    22121111222111direct scattering Φ

    - 36

    2

    ?

    linear flow T 10003

    30032006

    1002

    mod AZ3

    54

    10

    inverse scattering Φ−1¾

    ?

    12211122111122(answer)

    T 10003

  • Tropical Riemann theta (z ∈ Rg):Θ(z) := − min

    n∈Zg{tnAn/2 + tnz}

    Theorem. ([K-Sakamoto 2006] “Tropical Jacobi inversion”)

    J (µ) → P(µ)(µ, I) 7→ b1 b2 . . . bL (∈ {1, 2}L)

    is given by

    bk = 1 + Θ(J − kh1

    ) − Θ(J − (k−1)h1)

    − Θ(J − kh1 + h∞)+ Θ

    (J − (k−1)h1 + h∞

    ),

    with Ji = Ii − 12pµi.

    • Also obtained in [Mada-Idzumi-Tokihiro 2008].

    • Higher spin generalization, Θ-formula for Carrier [KS2008].

  • • Tropical period matrix A originates in Bethe ansatz at q = 0.(KKR is q = 1.)

    Uq(ŝl2) Bethe equation at q = 0 under string hypothesis:

    Ax ≡ constant vector mod AZg · · · linear!x ∈ (R/Z)g : Bethe root

    Bethe root x1:1←→ J ∈ J (µ) = Zg/AZg via Ax = J.

    • Generic dynamical period is the minimum N s.t.

    N ×(velocity vector) ∈ AZg → N = LCM(1,

    j

    det A

    det A[j]

    ).

    A is known for ∀affine g [K-Nakanishi 2002].∃Conjectures for generic dyamical period, etc.

  • A(1)2 path = 121121213322111133211 ∈ B⊗211

    l LCM of = period under Tl1 1, 21, 21, 21, 21 212 1, 822

    29, 822

    95, 411

    46, 411

    37822

    3 1, 95922

    , 959176

    , 959169

    , 959127

    9594 1, 2877

    50, 2877

    400, 2877

    820, 2877

    4632877

    A(1)3 path = 134·34·1·134·23·1·13 ∈ B3⊗B2⊗B1⊗B3⊗B2⊗B1⊗B2

    (r, l) LCM of = period under T(r)l

    (1,1) 1, 38039

    , 956, 95

    6, 380

    31, 380

    27, 380

    29380

    (1,2) 1, 19039

    , 9512

    , 9512

    , 19031

    , 19027

    , 19029

    190(2,1) 1, 190

    13, 95

    4, 95

    4, 190

    137, 190

    9, 190

    73190

    (2,2) 1, 765, 38

    3, 38

    3, 76

    41, 76

    21, 76

    3176

    (2,3) 1, 956, 95

    11, 95

    11, 95

    34, 95

    48, 95

    4195

    (3,1) 1, 38013

    , 952, 95

    2, 380

    137, 380

    9, 380

    263380

  • “I haven’t a slightest idea of what people did with it.”

    · · · H. Bethe