Classical and quantum aspects of ultradiscrete...
Embed Size (px)
Transcript of Classical and quantum aspects of ultradiscrete...
-
Classical and quantum aspects ofultradiscrete solitons
Atsuo Kuniba (Univ. Tokyo)
2 April 2009, Glasgow
-
Tau function of KP hierarchy
τi(x) = 〈i|eH(x) exp( N∑
j=1
cjψ(pj)ψ∗(qj)
)|i〉
(eH(x) = time evolution op. involving β1, β2, . . .)
τi(x) = det(1 + F )
= 1 +∑
1≤j≤NFjj +
∑
1≤j1
-
Ultradiscrete (tropical) limit
lim²→+0
² log τi(x)
with an elaborate ²-tuning of the parameters
cj, pj, qj, βm
leads to a tropical tau function associated withcombinatorial data called Rigged Configuration in Bethe ansatz.
Solitons in tau function ↔ Strings in Bethe ansatzcjψ(pj)ψ
∗(qj)
-
Example from sln=4
λ
02
3
µ(1)
10
µ(2)
0
µ(3)Rigged configuration
(µ, r) = (λ, (µ(1), r(1)), . . . , (µ(n−1), r(n−1)))
µ(a): configuration (Young diagram)
r(a): rigging (integers attached to µ(a))
(+ selection rule)
Charge of rigged configuration
c(µ, r) :=1
2
n−1∑
a,b=1
Cab min(µ(a), µ(b)) − min(λ, µ(1)) +
n−1∑a=1
|r(a)|
min(λ, µ) =∑
ij min(λi, µj), |r| =∑
i ri
(Cab) = Cartan matrix of sln)
Regard rigged conf. = {strings}, string = row attached with rigging.
-
Tropical tau function
τi(λ) = − min(ν,s)
{c(ν, s) + |ν(i)|} (1≤ i≤n)
min(ν,s)
extends over the power set of (µ, r). e.g.,
µ(1)
02
3
µ(2)
10
µ(3)
0
Proposition ([K-Sakamoto-Yamada 2007] “Tropical Hirota eq”. )
τ̄k,i−1 + τk−1,i = max(τ̄k,i + τk−1,i−1, τ̄k−1,i−1 + τk,i − λk),
where
τk,i = τi(λ1, . . . , λk), τ̄k,i = τk,i|r(a)→r(a)+δa1µ(1)
-
Rigged configuration originates in string hypothesis in Bethe ansatz
Example from sl2 (Heisenberg chain)
H =L∑
k=1
(σxkσxk+1 + σ
ykσ
yk+1 + σ
zkσ
zk+1)
Bethe equation for length L = 6 chain with 3 down spins.
(u1 + i
u1 − i
)6=
(u1 − u2 + 2i)(u1 − u3 + 2i)(u1 − u2 − 2i)(u1 − u3 − 2i)
,
(u2 + i
u2 − i
)6=
(u2 − u1 + 2i)(u2 − u3 + 2i)(u2 − u1 − 2i)(u2 − u3 − 2i)
,
(u3 + i
u3 − i
)6=
(u3 − u1 + 2i)(u3 − u2 + 2i)(u3 − u1 − 2i)(u3 − u2 − 2i)
.
-
• 0.859•• −0.859
000
•2.02i
••−2.02i
0
•−0.472 − i
•−0.472 + i
• −0.944
00
•−i
• •i
01
•0.472 − i
•0.472 + i
• 0.944
02
-
Kerov-Kirillov-Reshetikhin (1986) gave a canonical bijection
“Bethe root” “Bethe vector”
{rigged configurations} KKR←→ {highest paths}000
121212 (1 =↑, 2 =↓)
0 111222
00
121122
01
112212
02
112122
which may viewed as a combinatorial analogue of Bethe ansatz.
-
Higher rank example (sl4)
{rigged configurations} 1:1←→ {highest paths}
λ
02
3
µ(1)
10
µ(2)
0
µ(3)
←→ 111 122 22 13 23 4 3
“Bethe roots” “Bethe vectors”
highest path = b1 b2 . . . bL
bi = row shape (λi) semistandard tableau.
(+ highest condition)
-
Example of KKR algorithm from sl3
00
1
0 021
0 01
0
01
0 11
0 1 ∅
∅ ∅ ∅ ∅ ∅ ∅∅
-2 -3
-1 -2 -3
-2 -1 -1
Top left rigged configurationKKR7−→ 11232132
-
Theorem.([KSY])
Image of the KKR map
(λ, (µ(1), r(1)), . . . , (µ(n−1), r(n−1)))KKR7−→ b1 . . . bL
bk = (
xk,1︷ ︸︸ ︷1 . . . 1, . . . ,
xk,n︷ ︸︸ ︷n . . . n)︸ ︷︷ ︸
λk
(semistandard tableau),
is given by
xk,i = τk,i − τk−1,i − τk,i−1 + τk−1,i−1
We will see that this is an analogue of
u = −2∂2 log τ
∂x2
for KdV eq.
-
Crystals for Uq(ŝln)
Bl = { i1, . . . , il | semistandard}
equipped with crystal structures.
ul := 11. . . 1 ∈ Bl is the (classically) highest element.
An element of Bλ1 ⊗ Bλ2 ⊗ · · · is called a path.
-
Combinatorial R
R : Bl ⊗ Bm ∼→ Bm ⊗ Bl, x ⊗ y 7→ ỹ ⊗ x̃
x̃i − xi = yi − ỹi = Qi(x ⊗ y) − Qi−1(x ⊗ y) (i mod n),
xi = ] of letter i in tableau x (yi : similar),
Qi(x ⊗ y) = min1≤k≤n
{k−1∑
j=1
xi+j +n∑
j=k+1
yi+j} · · · i th local energy.
Example : 1233 ⊗ 124 ' 133 ⊗ 1224
will be denoted by
1233
124
133
1224 or simply 1233
124
133
1224
-
Energy Ei of path b1 ⊗ · · · ⊗ bk (i mod n)
Ei(b1 ⊗ · · · ⊗ bk) := Sum of Qi(x ⊗ y) attached to all vertices in
bkb2b1u∞
Theorem.([KSY] “Tropical fermionic formula”)
Suppose b1 ⊗ · · · ⊗ bL KKR←→ (µ, r) −→ {τk,i}. Then,
Ei(b1 ⊗ · · · ⊗ bk) = τk,i (1 ≤ k ≤ L)
-
Uq(ŝln) vertex model at q = 0
Tl : B1 ⊗ B1 ⊗ B1 ⊗ · · · −→ B1 ⊗ B1 ⊗ B1 ⊗ · · ·b1 ⊗ b2 ⊗ b3 ⊗ · · · 7−→ b′1 ⊗ b′2 ⊗ b′3 ⊗ · · ·
· · ·Bl 3 ulb1 b2 b3 b4
b′1 b′2 b
′3 b
′4
T1, T2, . . . : commuting family of time evolutions(deterministic transfer matrices)
-
Example of time evolution T2 :
11 11 11 11 11 11 11 11 1114 24 12 11 131 4 2 1 1 3 1 1 1 1 1 1 1
1 1 1 4 2 1 3 1 1 1 1 1 111 11 11 11 11 11 11 11 11 1114 24 12 13
1 1 1 1 1 4 2 3 1 1 1 1 111 11 11 11 11 11 11 11 11 1114 24 34 13
1 1 1 1 1 1 1 2 4 3 1 1 111 11 11 11 11 11 11 11 11 1112 14 34 13
1 1 1 1 1 1 1 1 2 1 4 3 1
The dynamics on vertical edges reproduces Box-ball systemwith carrier (Takahashi, Satsuma, Matsukidaira).
· · · 1421131111111 · · ·· · · 1114213111111 · · ·· · · 1111142311111 · · ·· · · 1111111243111 · · ·· · · 1111111121431 · · ·
1= empty box, 2, 3, 4 = colored balls.
-
Theorem.([KSY])
(1) Tropical tau function
= Energy of crystal (math) · · · previous theorem= Baxter’s corner transfer matrix for box-ball system (phys)
Let b1 b2 · · · bL KKR←→ (µ, r) −→ {τk,i}. Then,
b1 b2 · · · bk
τk,i = ] of “balls” in
?
time evolution T∞
(2) Tropical Hirota equation = eq. of motion of box-ball system.
-
Bethe ansatz Corner transfer matrix
main combinatorial object rigged configurationenergy (charge)
in crystal
role in box-ball system action-angle variable tau function
dynamics linear bilinear
-
Dynamics of box-ball system in terms of rigged configuration
t = 0: 111122221111133211431111111111111111111111111111
t = 1: 111111112222111133214311111111111111111111111111
t = 2: 111111111111222211133243111111111111111111111111
t = 3: 111111111111111122221132433111111111111111111111
t = 4: 111111111111111111112221322433111111111111111111
t = 5: 111111111111111111111112211322433211111111111111
t = 6: 111111111111111111111111122111322143321111111111
t = 7: 111111111111111111111111111221111322114332111111
(148)
λ
4t6 + 3t
11 + 2t
µ(1) µ(2)
10
µ(3)
0
configuration · · · conserved quantity (action variable)rigging · · · linear flow (angle variable)
KKR bijection · · · direct/inverse scattering map (separation of variables)
-
Summary so far
KP tau
Tropical tau
Charge
classical
quantum
Ultradiscretization (top down)
Comb. Bethe ansatz (bottom up)
(energy of crystal)
• KKR theory = inverse scattering scheme of box-ball systemon ∞ lattice [K-Okado-S-Takagi-Y 2006]
• Initial value problem solved and General N -soliton solutionconstructed for ŝln symmetric tensor reps. [KSY 2007]
(ŝl2 2-dim. rep. case also by [Mada-Idzumi-Tokihiro 2008])
-
Periodic generalization (sl2 case)
Tl : B1 ⊗ B1 ⊗ · · · ⊗ B1 −→ B1 ⊗ B1 ⊗ · · · ⊗ B1b1 ⊗ b2 ⊗ · · · ⊗ bL 7−→ b′1 ⊗ b′2 ⊗ · · · ⊗ b′L
· · ·Bl 3 ub1 b2 b3 b4
b′1 b′2 b
′3 b
′4
bL
b′L
u′ ∈ Bl
Choice s.t. u=u′: periodic box-ball system (Yura-Tokihiro 2002)
Example of T3 : ( B1 = { 1 , 2 } )
1 1 2 2 2 1 1 1 1 2 2
2 2 1 1 1 2 2 2 1 1 1
122 112 111 112 122 222 122 112 111 111 112 122
-
Action-angle variables
any path highest path rigged conf.
cyclic shift KKR
b1......bL 7−→ bd+1...bLb1...bd 7−→ (µ, I) (not unique)
Iµg
Iµg−1
Iµ1¾ µ1
-
···¾ µg−1 -
¾ µg-
µ = (µ1, . . . , µg)
I = (Iµ1, . . . , Iµg)
pi := L − 2∑
j∈µ min(i, j)
Lemma. (For simplicity assume µ1 > · · · > µg)
• µ is unique and invariant under {Tl} (action variable)
• (I + d h1)/AZg is unique (angle variable), where
hl = (min(l, i))i∈µ ∈ Zg, A =(δijpi + 2 min(i, j)
)i,j∈µ
-
P(µ) := {paths whose action variable = µ} iso-level set
J (µ) := Zg/AZg set of angle variables
Φ : P(µ) −→ J (µ) by Φ(b1 . . . bL) := (I + d h1)/AZg
Theorem. ([KT-Takenouchi 2006] “Tropical Abel-Jacobi” map)
Φ is a bijection and
P(µ) Φ−→ J (µ)Tl
yyTl
P(µ) Φ−→ J (µ)is commutative.
where Tl(J) = J + hl on J (µ).
Nonlinear dynamics becomes straight motion in
J (µ) = Zg/AZg,which is an tropical analogue of Jacobi variety.
-
Solution of initial value problem (inverse method)
22121111222111direct scattering Φ
- 36
2
?
linear flow T 10003
30032006
1002
mod AZ3
54
10
inverse scattering Φ−1¾
?
12211122111122(answer)
T 10003
-
Tropical Riemann theta (z ∈ Rg):Θ(z) := − min
n∈Zg{tnAn/2 + tnz}
Theorem. ([K-Sakamoto 2006] “Tropical Jacobi inversion”)
J (µ) → P(µ)(µ, I) 7→ b1 b2 . . . bL (∈ {1, 2}L)
is given by
bk = 1 + Θ(J − kh1
) − Θ(J − (k−1)h1)
− Θ(J − kh1 + h∞)+ Θ
(J − (k−1)h1 + h∞
),
with Ji = Ii − 12pµi.
• Also obtained in [Mada-Idzumi-Tokihiro 2008].
• Higher spin generalization, Θ-formula for Carrier [KS2008].
-
• Tropical period matrix A originates in Bethe ansatz at q = 0.(KKR is q = 1.)
Uq(ŝl2) Bethe equation at q = 0 under string hypothesis:
Ax ≡ constant vector mod AZg · · · linear!x ∈ (R/Z)g : Bethe root
Bethe root x1:1←→ J ∈ J (µ) = Zg/AZg via Ax = J.
• Generic dynamical period is the minimum N s.t.
N ×(velocity vector) ∈ AZg → N = LCM(1,
⋃
j
det A
det A[j]
).
A is known for ∀affine g [K-Nakanishi 2002].∃Conjectures for generic dyamical period, etc.
-
A(1)2 path = 121121213322111133211 ∈ B⊗211
l LCM of = period under Tl1 1, 21, 21, 21, 21 212 1, 822
29, 822
95, 411
46, 411
37822
3 1, 95922
, 959176
, 959169
, 959127
9594 1, 2877
50, 2877
400, 2877
820, 2877
4632877
A(1)3 path = 134·34·1·134·23·1·13 ∈ B3⊗B2⊗B1⊗B3⊗B2⊗B1⊗B2
(r, l) LCM of = period under T(r)l
(1,1) 1, 38039
, 956, 95
6, 380
31, 380
27, 380
29380
(1,2) 1, 19039
, 9512
, 9512
, 19031
, 19027
, 19029
190(2,1) 1, 190
13, 95
4, 95
4, 190
137, 190
9, 190
73190
(2,2) 1, 765, 38
3, 38
3, 76
41, 76
21, 76
3176
(2,3) 1, 956, 95
11, 95
11, 95
34, 95
48, 95
4195
(3,1) 1, 38013
, 952, 95
2, 380
137, 380
9, 380
263380
-
“I haven’t a slightest idea of what people did with it.”
· · · H. Bethe