Chapter 4: Dynamics in the equatorial...

37
GFD4 V Zeitlin - GFD Equatorial dynamics in the RSW model Equations of motion and scaling Kelvin waves Yanai waves Rossby and inertia-gravity waves Two-layer RSW model on the equatorial β- plane Equatorial waves in the primitive equations Tropical cyclones Chapter 4: Dynamics in the equatorial region V. Zeitlin Course GFD M2 OACOS

Transcript of Chapter 4: Dynamics in the equatorial...

Page 1: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Chapter 4: Dynamics in the equatorial region

V. Zeitlin

Course GFD M2 OACOS

Page 2: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Plan

Equatorial dynamics in the RSW modelEquations of motion and scalingKelvin wavesYanai wavesRossby and inertia-gravity waves

Two-layer RSW model on the equatorial β- plane

Equatorial waves in the primitive equations

Tropical cyclones

Page 3: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

RSW model on the equatorial β- plane

∂tv + v · ∇v + βy z ∧ v + g∇h = 0 . (1)

∂th +∇ · (vh) = 0 , (2)

B.C.: decay at y → ±∞

Page 4: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Equatorial scalingCharacteristic scales:

I Spatial scale - equatorial deformation radius:

L ∼(√

gHβ

) 12

I Time-scale - T ∼ (βL)−1

I Velocity scale - U ∼ g∆HβL2 , where ∆H - typical deviation

of h with respect to HEquatorial Rossby number:

Ro = ε =UβL2 =

∆HH

. (3)

Non-dimensional equations

∂tv + εv · ∇v + y z ∧ v +∇η = 0 , (4)

∂tη +∇ · v + ε∇ · (vη) = 0 , (5)

Page 5: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Linearisation

ut − yv + hx = 0, (6)vt + yu + hy = 0, (7)ht + ux + vy = 0. (8)

Change of variables

f =12

(u + h); g =12

(u − h). (9)

Equations (6) - (8) are simplified:

ft + fx +12

(vy − yv) = 0, (10)

gt − gx −12

(vy + yv) = 0, (11)

vt + y(f + g) + (f − g)y = 0. (12)

Page 6: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Parabolic cylindre (Gauss - Hermite) functions

Functional basis φn(y) en −∞ ≤ y ≤ +∞ with decay b.c.:

φ′′n(y) + (2n + 1− y2)φn(y) = 0, (13)

φn(y) =Hn(y)e−

y22√

2nn!√π, (14)

Hn Hermite polynomials:

H0 = 1, H1 = 2y , H2 = 4y2 − 2, . . . . (15)

φ′n + yφn =√2nφn−1, φ′n − yφn = −

√(2n + 1)φn+1 (16)

Page 7: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Kelvin waves

Particular solution with v ≡ 0 ⇒:

ft + fx = 0, gt−gx = 0, ⇒ f = F (x− t, y), g = G (x + t, y).(17)

y(f + g) + (f − g)y = 0, ⇒ F ∝ e−y22 , G ∝ e+ y2

2 (18)

C.l. à y ±∞ ⇒ G ≡ 0⇒

u = F0(x − t)e−y22 ; h = F0(x − t)e−

y22 ; v = 0. (19)

Page 8: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Velocity and pressure distribution in a Kelvin wave

Page 9: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Yanai waves

Particular solution with g = 0, f 6= 0, v 6= 0. From (6) - (8)we get:

ft + fx +12

(vy − yv) = 0, (20)

vy + yv = 0, (21)vt + yf + fy = 0, (22)

Solution by separation of variables:

v = v0(x , t)φ0(y), f = F1(x , t)φ1(y). (23)

Page 10: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Equations x − t:

F1t + F1x −1√2v0 = 0, v0t +

√2F1 = 0. (24)

Dispersion relation:

ω =k2±√

k2

4+ 1, (25)

Page 11: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Velocity and pressure distribution in a Yanai wave;eastward propagation

Page 12: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Rossby and inertia-gravity waves

General case: elimination of u and h (or f and g) in favourof v :

∂t(∇2v − y2v − ∂ttv

)+ ∂xv = 0. (26)

Expansion of v in a series in φn, v =∑

n vn(x , t)φn(y); ⇒

∂t[∂2

xxvn − (2n + 1)vn − ∂2ttvn]

+ ∂xvn = 0. (27)

Fourier - transformation vn(k , t) =∫

dxe−ikxvn(x , t)

∂3ttt vn + (k2 + 2n + 1)∂t vn − ikvn = 0. (28)

Page 13: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Hence

vn = vn1(k)e−iωn1 t + vn2(k)e−iωn2 t + vn3(k)e−iωn3 t (29)

where ωnα , α = 1, 2, 3 are 3 roots of the dispersion relation:

ω3nα − (k2 + 2n + 1)ωnα − k = 0. (30)

Lowest eigenvalue of ω - Rossby wave. Two others -inertia-gravity waves.

Page 14: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Velocity and pressure distribution in a Rossbywave; propagation uniquely westward

Page 15: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Twin equatorial cyclones - Rossby waves

Page 16: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Velocity and pressure distribution in aninertie-gravity wave, eastward propagation

Page 17: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Remarques

I Formal application of the dispersion relation at n = −1:

ω3−(k2−1)ω−k = 0,⇒ (ω−k)(ω2+ωk+1) = 0. (31)

Positive root ω = k : Kelvin wave,I Formal application of the dispersion relation at n = 0:

ω3−(k2+1)ω−k = 0,⇒ (ω+k)(ω2−ωk−1) = 0. (32)

Positive root ω2 − ωk − 1 = 0: Yanai wavesI ωn = − k

2n+1+k2 - excellent approximate formula(precision 2%) for the Rossby branch.

Page 18: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Dispersion and spectral separation of equatorialwaves

−3 −2 −1 0 1 2 30

1

2

3

Relation de dispersion des ondes equatoriales

k(c/2β)1/2

ω/(2β c)1/2

Gravity

Kelvin

Yanai

Rossby

Page 19: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Adjustement of geopotential anomaly in teequatorial region

Page 20: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Exercises

I Obtain formula (26),I Demonstrate that for equatorial Rossby waves

(u, v , η) = (U(y),V (y),H(y)) e i(kx−ωt), (33)

V (y) = φn(y), U(y) = −ikφ′n(y)− ωnyφn(y)

ω2n − k2 ,

H(y) = iωnφ

′n(y)− kyφn(y)

ω2n − k2 . (34)

Page 21: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Equations of the model

∂tvi + vi · ∇vi + βy z ∧ vi +1ρi∇πi = 0 , i = 1, 2; (35)

∂thi +∇ · (hivi ) = 0 (36)

(ρ2 − ρ1)gη = π2 − π1, h1 + h2 = H. (37)

Simplifying hypotheses:

I ρ1 → ρ2, π2 = π1 + ρ1g ′h1, g ′ = g ρ2−ρ1ρ1

I H1 = H2

Page 22: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Scaling

I Spatial scale - baroclinic equatorial deformation radius :

L ∼(√

g ′Hβ

) 12

I Time-scale - T ∼ (βL)−1

I Velocity scale - U ∼ g ′∆HβL2

I Pressure scale - Pi ∼ ρiUβL2

Barotropic and baroclinic velocities:

vbt =h1v1 + h2v2

H, vbc = v1 − v2 (38)

Barotropic streamfunction:

h1+h2 = const⇒ ∇·(h1v1+h2v2) = H∇·vbt = 0⇒ vbt = z∧∇ψ

Page 23: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Non-dimensional equations forψ, vbc ≡ v = (u, v), η

∇2ψt + ψx = O(ε) (39)

vt +∇η + y z× v = O(ε) (40)

ηt +∇ · v = O(ε), (41)

where ε = ∆HH - Rossby number.

Page 24: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Linearised equations

∇2ψt + ψx = 0,vt +∇h + y z× v = 0,

ht +∇ · v = 0. (42)

Page 25: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Wave solutionsI "Free" barotropic Rossby waves

ψ0 = Aψe i(θ+ly) + c .c .; θ = kx − ωt, (43)

with dispersion

ω = −k/(k2 + l2), (44)

I "Trapped" baroclinic waves:

(u, v , h) = (iUn,Vn, iHn) Ae iθn + c .c .; θn = kx − ωnt(45)

with dispersion

ω3n− (k2 + 2n + 1)ωn− k = 0; n = −1, 0, 1, 2, ... , (46)

- Kelvin, Yanai, Rossby, Inertia-Gravity

Waveguide transparent for barotropicwaves

Exercise: Derive the equations (39 - 41)

Page 26: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Equatorial waveguide and planetary waves

Interaction free planetary waves ­trapped equatorial waves

           

Incoming free planetary wave 

Secondary (radiated) planetary wave

Trapped equatorial wave (Rossby and/or Yanai)

Equatorial waveguide

Ω

Ω

equator

Page 27: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Linearised primitive equations on the equatorial β-plane

ut − βyv + φx = 0,vt + βyu + φy = 0, (47)

ux + vy −(N(z)−2φzt

)z = 0, (48)

Separation of variables 1(u, v , φ) = (u, v , φ)(y , z)e i(kx−ωt):

− iωu − βy v + ikφ = 0,−iωv + βy u + φy = 0, (49)

iku + vy + iω(N(z)−2φz

)z = 0, (50)

Page 28: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Elimination of u, φ:

(βkω + ω2k2) v + ω2

[(ω2 − β2y2)( vz

N2(z)

)z− vyy

]= 0.

(51)

Separation of variables 2v = χ(z)ν(y)⇒

I

(χ′

N2(z)

)′= −κ2 = const, (52)

I

−ν′′

ν+ k2 +

βkω

+ (β2y2 − ω2)κ2 = 0 (53)

Page 29: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Particular case: N = constκ2N2 = l2 = const, vertical modes -harmonic functions

Renormalisation: y →(

Nβl

) 12 y ,

(Nβl

) 12 - equivalent height ⇒

ν ′′(y) +

(ω2lNβ− y2 − k2N

βl− kNωl

)ν(y) = 0 (54)

Expansion in φn(y) ⇒Dispersion relation :

ω3 −[

(2n + 1)Nβl

+k2N2

l2

]ω − βkN2

l2= 0. (55)

Page 30: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Equatorial waves in Primitive EquationsI Kelvin waves, n = −1:(

ω − kNl

)[ω

(ω +

Nkl

)+βNl

]= 0, (56)

Positive roots: ω = Nl k .

I Yanai waves, n = 0:(ω +

kNl

)[ω

(ω − Nk

l

)− βN

l

]= 0, (57)

Positive roots: ω = N2l k ±

√N2k2

4l2 + βNl .

I Rossby waves, n > 0, lower branch :

ω ≈ − βk

(2n + 1)βlN + k2

. (58)

I Inertia-gravity waves: n > 0, upper branches.

Page 31: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Extracting equatorial waves from data

top - vertical section along the equator of the eastwardpropagating meridional velocity anomaly, with averagetropopause. Short black line - section of the lower right plot.bottom left - horizontal section of wind and geopotentialanomaly of E0GW, as predicted by shallow water theory;bottom right - horizontal section at 70 hPa.

Page 32: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Tropical cyclone

Page 33: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Hydrodynamic characteristics of TC

I Radius of max wind (RMW): 20− 50kmI Max velocity Vmax : 40− 60m/sI Typical value of f (at 20◦N) : 5 · 10−5

I Relative vorticity ζ: up to 100f , typical Rossbynumbers: 10− 40

I Vertical wind distribution: ≈ barotropicI Barotropic Froude number:

Fr = Vmax√gH0

= Ro/√

Bu = O(10−1)

I Radial wind profile: U-shape in the core, decreasing as1/r in the outer region → ≈ constant vorticity coresurrounded by higher vorticity ring, zero vorticity in theouter region.

Page 34: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Category 3 cyclone’s profile

0 1 2 3 4 5−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

v

radius

0.92

0.94

0.96

0.98

1

h

12

3

(a) V, H

0 0.5 1 1.5 2 2.5−20

0

20

40

60

80

100

120

radius

ζ

d1 d2

Wr

(b) ζ

Parameters: ratio of relative vorticities ring/core ζrζc

= 105/7,

Roloc = ζrf = 105, Ro = Vmax/fL = 32, Fr = 0.3.

Page 35: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Simple RSW modelling, polar coordinates

d~vdt

+(f +

vr

)~ez × ~v + g ~∇h = 0, (59)

∂th +1r

(∂r (rhu) + ∂θ(hv)) = 0 (60)

~v = (u~er , v ~eθ). Lagrangian derivative: ddt = ∂

∂t + u∂r + vr ∂θ.

Non-dimensional axisymmetric vortex solution -cyclo-geostrophic equilibrium:(

Ro−1 +V (r)

r

)V (r) =

λ

Fr2 H ′(r) (61)

Page 36: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Typical evolution of vorticity of a cyclone -barotropic instability

Page 37: Chapter 4: Dynamics in the equatorial regiongershwin.ens.fr/zeitlin/lectures/lectures_GFD_M2/beamer... · 2016-10-17 · Equatorial dynamics in the RSW model Equations of motion and

GFD4

V Zeitlin - GFD

Equatorialdynamics in theRSW modelEquations ofmotion andscalingKelvin wavesYanai wavesRossby andinertia-gravitywaves

Two-layer RSWmodel on theequatorial β-plane

Equatorial wavesin the primitiveequations

Tropical cyclones

Mesovortices as observed in the hurricane Isabel