Chapter 11 polar coordinate - National Tsing Hua...

43
Chapter 11 polar coordinate Speaker: Lung-Sheng Chien Book: Lloyd N. Trefethen, Spectral Methods in MATLAB

Transcript of Chapter 11 polar coordinate - National Tsing Hua...

Page 1: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Chapter 11 polar coordinate

Speaker: Lung-Sheng Chien

Book: Lloyd N. Trefethen, Spectral Methods in MATLAB

Page 2: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Discretization on unit diskConsider eigen-value problem on unit disk

2u uλ∆ = − with boundary condition ( )1, 0u r θ= =

We adopt polar coordinate cossin

x ry r

θθ

=⎧⎨ =⎩

, then

22

1 1rr ru u u u u

r r θθ λ∆ = + + = − ( ]0,1r∈ [ ]0,2θ π∈, on and

, and non-periodic Chebyshev grid in rUsually we take periodic Fourier grid in θ

[ ]0,1r∈1

Chebyshev grid in [ ]1,1x∈ −

12

xr +=

Chebyshev grid in [ ]0,1r∈

Observation: nodes are clustered near origin 0r = , for time evolution problem,

we need smaller time-step to maintain numerical stability.

[ ]1,1r∈ −2

( )( )

cos cos

sin sin

x r r

y r r

θ θ π

θ θ π

⎧ = = − +⎪⎨

= = − +⎪⎩( ) ( ), 0,0x y ≠

1 to 2 mapping ( ),r θ

Page 3: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Asymptotic behavior of spectrum of Chebyshev diff. matrix

2NDIn chapter 10, we have showed that spectrum of Chebyshev differential matrix

(second order) approximates

with eigenmode2

2

4k kπλ = −( ), 1 1, B.C. 1 0xxu u x uλ= − < < ± =

2ND1 4

max 0.048Nλ ≈ −Eigenvalue of is negative (real number) and2

2

4k kπλ = −Large eigenmode of does not approximate to2ND2

Since ppw is too small such that

resolution is not enough

Mode N is spurious and localized near boundaries 1x = ±

Page 4: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Grid distribution

[ ]0,1r∈ [ ]1,1r∈ −1 2

Page 5: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: Chebyshev node and diff. matrix [1]

Consider 1N + Chebyshev node on [ ]1,1− , cosjjxNπ⎛ ⎞= ⎜ ⎟

⎝ ⎠for 0,1,2, ,j N=

x0x1x2x3x/ 2NxNx

1− 1

6N =

0 1x =1x2x3 0x =4x5x61 x− =x

Even case:

Uniform division in arc

Odd case:

0 1x =1x2x03x4x51 x− =x

5N =

Page 6: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: Chebyshev node and diff. matrix [2]

Given 1N + Chebyshev nodes , cosjjxNπ⎛ ⎞= ⎜ ⎟

⎝ ⎠and corresponding function value jv

We can construct a unique polynomial of degree N , called ( ) ( )0

N

j jj

p x v S x=

=∑

( ) 1 0 j k

k jS x

k j=⎧

= ⎨ ≠⎩is a basis.

( ) ( ) ( )1

0 0

N NN

i j j i ij jj j

p x v S x D v= =

′ = =∑ ∑ where differential matrix ( )NN ijD D is expressed as

2

002 1,

6N ND +=

22 1,6

NNN

ND += − ( )2

,2 1

jNjj

j

xD

x−

=−

for 1,2, , 1j N= −

( )1,

i jN iij

j i j

cDc x x

+−=

− for , , 0,1,2, ,i j i j N≠ = where2 0,1 otherwisei

i Nc

=⎧= ⎨⎩

with identity 0,

NN Nii ij

j j iD D

= ≠

= − ∑

Second derivative matrix is 2N N ND D D= ⋅

Page 7: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: Chebyshev node and diff. matrix [3]

Let ( )p x be the unique polynomial of degree with N≤ ( )1 0p ± = and ( )j jp x v=

define 0 j N≤ ≤( )j jw p x′′= and ( )j jz p x′= for

, then impose B.C. We abbreviate 2Nw D v= ⋅ ( )1 0p ± = ,that is, 0 0Nv v= =

In order to keep solvability, we neglect 0 Nw w= ( )2 2 1: 1,1: 1N ND D N N= − −,that is,

0w

1w

2w

1Nw −

Nw

0v

1v

2v

1Nv −

Nv

zero

2ND

neglect

neglect

=

zero

( )1: 1,1: 1N ND D N N= − −Similarly, we also modify differential matrix as

Page 8: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: DFT [1]

Given a set of data point { }1 2, , , NNv v v R∈ with 2N m= is even,

2hNπ

=

Then DFT formula for { }jv

( )1

2ˆ expN

k j jj

v v ikxNπ

=

= −∑ for , 1, , 1,k m m m m= − − + −

( )1

1 ˆ exp2

m

j k jk m

v v ikxπ =− +

= ∑ for 1,2, ,j N=

Definition: band-limit interpolant of functionδ − , is periodic sinc function ( )NS x

( ) ( )( ) ( )

( )( )

sin / sin12 2 / tan / 2 2 tan / 2

mikx

Nk m

x h mxhS x P eh x m xπ

π π=−

= =∑

If we write 1

N

j k j kk

v v vδ δ−=

= = ∗∑ , then ( ) ( )1

1 ˆ2

m Nikx

k k N kk m k

p x P e v v S x xπ =− =

= = −∑ ∑

Also derivative is according to ( ) ( ) ( )1

1

N

j j k N j kk

w p x v S x x=

′= = −∑

Page 9: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: DFT [2]

Direct computation of derivative of ( ) ( )( ) ( )

sin /2 / tan / 2N

x hS x

h xπ

π=

( ) ( )

, we have

( )

( ) ( )1

0 0 mod

1 1 cot , 0 mod2 2

jN j

j NS x jh j N

⎧ =⎪= ⎨ ⎛ ⎞− ≠⎜ ⎟⎪

⎝ ⎠⎩

( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 15 5 5 5

1 1 1 15 5 5 5

1 1 1 1 15 5 5 5 5 5

1 1 1 15 5 5 5

1 1 1 15 5 5 5

0 2 3 4

0 2 3

2 0 2

3 2 0

4 3 2 0

j k

S h S h S h S h

S h S h S h S h

D S x x S h S h S h S h

S h S h S h S h

S h S h S h S h

⎛ ⎞− − − −⎜ ⎟

− − −⎜ ⎟⎜ ⎟

= − = − −⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

Example:

is a Toeplitz matrix.

Second derivative is ( ) ( )( )

( )( ) ( )

2

22

2

1 0 mod 6 3

1, 0 mod

2sin / 2

jN j

j Nh

S xj N

jh

π⎧− − =⎪⎪= ⎨ −⎪− ≠⎪⎩

Page 10: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Preliminary: DFT [3]

( ) ( )( )

( )( ) ( )

2

22

2

1 0 mod 6 3

1, 0 mod

2sin / 2

jN j

j Nh

S xj N

jh

π⎧− − =⎪⎪= ⎨ −⎪− ≠⎪⎩

For second derivative operation ( ) ( ) ( ) ( )2 2

1 1,

N N

j j k N j k N kk k

w p x v S x x D j k v= =

′′= = − ≡∑ ∑

second diff. matrix is explicitly defined by using Toeplitz matrix (command in MATLAB)

( ) ( )( )

( )( )

( )( )

( )( )( )

2

22:2

22 22 2

2

2

2

csc 2 / 2 / 2csc / 2 / 2

11 ,1 6 3 2sin 1: 1 / 26 3

csc / 2 / 2csc 2 / 2 / 2

N

N N j k

hh

D S x x toeplitzh N h

hh

h

ππ

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟ ⎛ ⎞−⎜ ⎟ ⎜ ⎟= − = = − −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠

Page 11: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Fornberg’s idea : extend radius to negative image [1]

[ ]1,1r∈ − [ ]0, 2θ π∈( ), x y unit disk∈ and

5rN = (odd): to avoid singularity of coordinate transformation 0r =1

( ) ( )( )( ), , mod 2u r u rθ θ π π= − +6Nθ = (even): to keep symmetry condition2

θ

r

01 r=

1r

2r

3r

4r

51rNr r− = =

0θ 1θ 2θ 3θ 4θ 5θ 6θ0 π 2Nθ

θ π=

0r =

coordinater θ− x y− coordinate

y1θ2θ

4θ 5θ

6θ x

Page 12: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

In general

θ

r

01 r=

1r

kr

1kr +

1rNr −

1rNr− =

0θ 1θ 2θ mθ 1mθ +

0 π 2Nθθ π=

0r =

r θ− coordinate

2r

1Nθθ −

x

y

1mθ +

x y− coordinate

Nθθ

1Nθθ −

2 1rN k= + 2N mθis odd, and is even, then=

Fornberg’s idea : extend radius to negative image [2]

: non-unifr∆ 2Nθ

πθ∆ =

1 : 1 1i rr i r i N

and

= − ∆ ≤ ≤ −

: 1j j j Nθθ θ= ∆ ≤ ≤( )1rN Nθ−Active variable , total number is

Page 13: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Redundancy in coordinate transformation [1]

( ) ( )( )( ) ( ), , , mod 2 ,r r x yθ θ π π− + ↔2 to 1 mapping

θ

r

01 r=

1r

2r

3r

4r

51rNr r− = =

0θ 1θ 2θ 3θ 4θ 5θ 6θ0 π 2Nθ

θ π=

x

y1θ2θ

4θ 5θ

x y− coordinatecoordinater θ−

redundant

0r =

y1θ2θ

4θ 5θ

6θ x

Page 14: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Redundancy in coordinate transformation [2]

( ) ( )( )( ) ( ), , , mod 2 ,r r x yθ θ π π− + ↔2 to 1 mapping

x y− coordinatecoordinater θ−y

1θ2θ

4θ 5θ

θ

r

01 r=

1r

2r

3r

4r

51rNr r− = =

0θ 1θ 2θ 3θ 4θ 5θ 6θ0 π 2Nθ

θ π=

x

0r =

y1θ2θ

4θ 5θ

redundant

x

Page 15: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

8.5

2.6180

-0.7236

0.3820

-0.2764

0.5

-10.4721

-1.1708

2

-0.8944

0.6180

-1.1056

2.8944

-2

-0.1708

1.618

-0.8944

1.5279

-1.5279

0.8944

-1.6180

0.1708

2

-2.8944

1.1056

-0.618

0.8944

-2

1.1708

10.4721

-0.5

0.2764

-0.382

0.7236

-2.618

-8.5

rND =

0r

0r

1r

1r

2r

2r

3r

3r

4r

4r

5r

5r

Redundancy in coordinate transformation [3]2 1 5rN k= + = is odd, then Chebyshev differential matrix

rND is expressed as

rND =

-1.1708

2

-0.8944

0.6180

-2

-0.1708

1.618

-0.8944

0.8944

-1.6180

0.1708

2

-0.618

0.8944

-2

1.1708

neglect

Page 16: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Redundancy in coordinate transformation [4]

( ) ( ), ,N Ni j N i N jD D

− −= −Symmetry property of Chebyshev differential matrix :

-1.1708

2

-0.8944

0.6180

-2

-0.1708

1.618

-0.8944

0.8944

-1.6180

0.1708

2

-0.618

0.8944

-2

1.1708

rND =

-1.1708

2

-0.8944

0.6180

-2

-0.1708

1.618

-0.8944

0.8944

-1.6180

0.1708

2

-0.618

0.8944

-2

1.1708

-1.1708

2

-2

-0.1708

Permute column by

r

TND P =

( )1, 2, 4,3P =

is symmetric

0.8944

-1.6180

-0.618

0.8944

1E =

2E =

( )1

21 2

3

4

uu

E Euu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

is NOT symmetric

is faster ?

Page 17: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

41.6

21.2859

-1.8472

0.7141

-0.9528

-8

-68.3607

-31.5331

7.3167

-1.9056

2.2111

17.5724

40.8276

12.6833

-10.0669

5.7889

-3.6944

-23.6393

-23.6393

-3.6944

5.7889

-10.0669

12.6833

40.8276

17.5724

2.2111

-1.9056

7.3167

-31.5331

-68.3607

-8

-0.9528

0.7141

-1.8472

21.2859

41.6

2r r rN N ND D D= ⋅ =

0r

0r

1r

1r

2r

2r

3r

3r

4r

4r

5r

5r

Redundancy in coordinate transformation [5]2 1 5rN k= + = is odd, then Chebyshev differential matrix 2

rND is expressed as

2rND =

-31.5331

7.3167

-1.9056

2.2111

12.6833

-10.0669

5.7889

-3.6944

-3.6944

5.7889

-10.0669

12.6833

2.2111

-1.9056

7.3167

-31.5331

neglect

Page 18: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Redundancy in coordinate transformation [6]

( ) ( )2 2

, ,N Ni j N i N jD D

− −=Symmetry property of Chebyshev differential matrix :

2rND =

-31.5331

7.3167

-1.9056

2.2111

12.6833

-10.0669

5.7889

-3.6944

-3.6944

5.7889

-10.0669

12.6833

2.2111

-1.9056

7.3167

-31.5331-31.5331

7.3167

12.6833

-10.06691D = is NOT sym.

Permute column by ( )1, 2, 4,3P =-3.6944

5.7889

2.2111

-1.9056is NOT sym.

2D =

2r

TND P =

-31.5331

7.3167

-1.9056

2.2111

12.6833

-10.0669

5.7889

-3.6944

-3.6944

5.7889

-10.0669

12.6833

2.2111

-1.9056

7.3167

-31.5331

Page 19: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Row-major indexing: remove redundancy [1]

( ),ij i ju u r θ

( ) ( )( ),1 ,2 , , 1 , 2 ,, , , , , , ,T

i i i i m i m i m i Nu u u u u u uθ+ +

1 1ri N j Nθ≤ ≤≤ ≤ − 1Define active variable for and

total number of active variables is 2 6 12k Nθ⋅ = ⋅ =11

12

13

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

14

15

16

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1

NOT ( )1 4 6 24rN Nθ− ⋅ = ⋅ = 2

31u =

θ

r

01 r=

1r

2r

3r

4r

51rNr r− = =

0θ 1θ 2θ 3θ 4θ 5θ 6θ0 π 2Nθ

θ π=

0r =

4

51 2 3 4 5 67 8 9 10 11 12

6

Index order21

22

23

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

24

25

26

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

78redundant 9

2u =10

1112

Index order

Page 20: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

2 1rN k= + is odd, and

Row-major indexing: remove redundancy [2]

0 j k≤ ≤ , then 1 0k j k jr r− + ++ =

cos : 0i rr

ir i NNπ⎛ ⎞

= ≤ ≤⎜ ⎟⎝ ⎠

suppose since

( ) ( ) ( )2 11

1cos cos cosrN k

k j k jr r r

k j k j k jr r

N N Nπ π π

π = +− + +

⎛ ⎞ ⎛ ⎞− − + += = − − ⎯⎯⎯⎯→− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 ,N mθ

π πθ∆ = = : 1j j j Nθθ θ= ∆ ≤ ≤2N mθ = is even, and

( )( )mod 2m j jθ π π θ+ + =Hence for andj m jθ π θ ++ =1 ,j m≤ ≤

0 1r =1rkr01kr +1rNr −1rNr− =

rk jr −1k jr + +

1 0k kr r ++ =

1 0k j k jr r− + ++ =

1 1 0rNr r− + =

Page 21: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Row-major indexing: remove redundancy [3]

( ) ( )( )( )1 1, , mod 2k i j k i ju r u rθ θ π π+ + + += − +From symmetry condition, we have

( ) ( )1 , ,k i j k i m ju r u rθ θ+ + − +=

0 i k≤ ≤for 0 j m≤ ≤ , symmetry condition impliesand( ) ( )1 , ,k i m j k i ju r u rθ θ+ + + −=

Therefore, we have two important relationships

1, , 1,

2, 1, 2,

1, 1, ,

11

1r

k j k m j m j

k j k m j m j

N j m j k m j

u u uu u u

u u u

+ + +

+ − + +

− + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

1

1, , 1,

2, 1, 2,

1, 1, ,

11

1r

k m j k j j

k m j k j j

N m j j k j

u u uu u u

u u u

+ +

+ + −

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

2

Page 22: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ 3θ π=

Kronecker product [1]

1 2 3

4 5 6

11

12

13

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

21

22

23

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1u =

2u =

1

2( ),ij i ju u r θ

1 2i≤ ≤ 1 3

Define active variable 3

4j≤ ≤andfor

56

Separation of variable: assume matrix A acts on r-dir and matrix B acts on dirθ −

( )( )( )

1 1,11 12

2,21 222

,

,

j j

jj

r ua aAu

ua ar

θ

θ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠is independent of j

( )( )( )( )

1 11 12 13 ,1

2 21 22 23 ,

3 31 32 33 ,3

,,,

i i

i i

i i

r b b b uBu r b b b u

r b b b u

θθθ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

i

Let 1 6

2

uX R

u⎛ ⎞

= ∈⎜ ⎟⎝ ⎠

be row-major

index of active variable 2 is independent of

Page 23: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Kronecker product [2]

11 12 6 6

21 22

a B a BA B R

a B a B×⎛ ⎞

⊕ ≡ ∈⎜ ⎟⎝ ⎠

Kronecker product is defined by

( ) 11 12 1 11 1 12 2

21 22 2 21 1 22 2

a B a B u a Bu a BuA B X

a B a B u a Bu a Bu+⎛ ⎞⎛ ⎞ ⎛ ⎞

⊕ = =⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

Case 1: A I=

( )( )( )( )

1 11 12 13 ,1

2 21 22 23 ,2

3 31 32 33 ,3

,,,

i i

i i

i i

r b b b uBu r b b b u

r b b b u

θθθ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

( ) 1

2

BuI B X

Bu⎛ ⎞

⊕ = ⎜ ⎟⎝ ⎠

Case 2: B I=

( )

11 21

11 12 12 22

13 2311 1 12 2

21 1 22 2 11 21

21 12 22 22

13 23

u ua u a u

u ua u a uA I X

a u a u u ua u a u

u u

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟+⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎜ ⎟⊕ = =⎜ ⎟+ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( )( )( )

1 1,11 12

2,21 221

,

,

j j

jj

r ua aAu

ua ar

θ

θ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

Page 24: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Kronecker product [3]

Case 3: permutation, if permute 2 3θ θ↔

θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ 3θ π=

1 2 3

4 5 6θ

r

01 r=

1r

2r

31 r− =

00 θ= 1θ 2θ π=3θ

1 2 3

4 5 6

11

12

13

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

21

22

23

uuu

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

11

13 1

12

uu P uu

θ

⎛ ⎞⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟⎝ ⎠

21

23 2

22

uu P uu

θ

⎛ ⎞⎜ ⎟ = ⋅⎜ ⎟⎜ ⎟⎝ ⎠

( )1,3, 2Pθ = 1

2

uX

u⎛ ⎞

= =⎜ ⎟⎝ ⎠

1

2

uX

u⎛ ⎞

= =⎜ ⎟⎝ ⎠

( ) 1

2

P uI P X X

P uθ

θθ

⎛ ⎞⊕ = =⎜ ⎟

⎝ ⎠

Page 25: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Kronecker product [4]

Case 4: ( )1 2,A diag a a=

( ) 1 1

2 2

a BuA B X

a Bu⎛ ⎞

⊕ = ⎜ ⎟⎝ ⎠

( )( )( )( )

1 1 11 12 13 1,1

1 1 2 1 21 22 23 1,2

1 3 31 32 33 1,3

,,,

r b b b ua Bu r a b b b u

r b b b u

θθθ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

( )( )( )( )

2 1 11 12 13 2,1

2 2 2 2 21 22 23 2,2

2 3 31 32 33 2,3

,,,

r b b b ua Bu r a b b b u

r b b b u

θθθ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠2

2

1 1 rr ru u u ur r θθ λ+ + = −

2,2 2 2

1 2

1 1 1, , , Nk

diag Dr r r θθ

⎛ ⎞⊕⎜ ⎟

⎝ ⎠

1i =

2i =

Page 26: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

22

1 1rr ru u u u

r r θθ λ+ + = − , on [ ]1,1r∈ − [and ]0,2θ π∈

2 1rN k= + 2N mθ = is even, thenis odd, and

cos : 1ir

ir i kNπ⎛ ⎞

= ≤ ≤⎜ ⎟⎝ ⎠

: 1j j j Nθθ θ= ∆ ≤ ≤Active variable is

Total number is ,kNθ NOT ( )1rN Nθ− ⋅

Non-active variable active variable [1]

0, 0 2i jr, that is θ π> < ≤

2 22

1 1r rN N r ND u D u D u u

r r θλ+ + = −

x

y1θ2θ

4θ 5θ

6θ( )1 0u r = ± =

Note that differential matrix rND ( )1rN +is of dimension

0,

1,

1,

,

r

r

j

j

N j

N j

uu

u

u−

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Neglect due to B.C.,acts on

Page 27: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [2]

2rND

rND

1,

2,

,

j

j

k j

uu

u

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

1,r

k j

k j

N j

uu

u

+

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

However and act on

NOT active variable, how to deal with?

From previous discussion, we have following relationships which can solve this problem

( )

1, , 1,

2, 1, 2,

1, 1, ,

: 1:1

r

k j k m j m j

k j k m j m j

N j m j k m j

u u uu u u

k

u u u

+ + +

+ − + +

− + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

( )

1, , 1,

2, 1, 2,

1, 1, ,

: 1:1

r

k m j k j j

k m j k j j

N m j j k j

u u uu u u

k

u u u

+ +

+ + −

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎟ and

( ): 1:1k −where is a permutation matrix

Page 28: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [3]

( ),ij i ju u r θ 1 1ri N j Nθ≤ ≤≤ ≤ − 1Recall for and

and evaluate at ( ),i jr θConsider Chebyshev differential matrix , rr ND acts on u

( )( ) ( ) ( ), ,, row of ,r rr N i j r N jD u r i D uθ θ= − ⋅ i

We write in matrix notation

( )( ) ( ), ,1 ,2 , , 1 , 2 , 1,r rr N i j i i i k i k i k i ND u r d d d d d dθ + + −=

0r > 0r <

1,

2,

,

j

j

k j

uu

u

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

1,r

k j

k j

N j

uu

u

+

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

0r >

0r <

Question: How about if we arrange equations on ( ), i jr iθ ∀ when fixed j

Page 29: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [4]

( )

( )( )

( )( )( )

( )

111 12 1, 1, 1 1, 2 1, 1

221 22 2, 2, 1 2, 2 2, 1

,1 ,2 , , 1 , 2 , 1

1,1 1,2 1,1

2

1

,

,

,

,

,

,

r

r

r

r

r

jk k k N

jk k k N

k j k k k k k k k k k NN

k k k kk j

k j

N j

rd d d d d d

r d d d d d d

r d d d d d dD u

d d d dr

r

r

θ

θ

θ

θ

θ

θ

+ + −

+ + −

+ + −

+ + ++

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1, 1 1, 2 1, 1

2,1 2,2

1,1 1,2 1, 1, 1 1, 1

r

r r r r r r

k k k k k N

k k

N N N k N k N N

d d

d d

d d d d d

+ + + + + −

+ +

− − − − + − −

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

,

j

j

k j

uu

u

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

1,r

k j

k j

N j

uu

u

+

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

,

1,

1,

k m j

k m j

m j

uu

u

+

− +

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

0r >

0r >

0r <

0r <

We only keep operations on active variable ( )0,u r θ>

( ), ju r θ

That is, only consider equation ( )( ),rN i jD u r θ for 0ir >

1 2

3 4rN

E ED

E E⎛ ⎞

= ⎜ ⎟⎝ ⎠

abbreviate

( )1 2rND E E=Later on, we use the same symbol

Page 30: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [5]

Define permutation matrix ( ) ( )( ) 11: , 1: 1: 1

1

r

I

P k N k

⎛ ⎞⎜ ⎟⎜ ⎟= − − + =⎜ ⎟⎜ ⎟⎝ ⎠

k

k

1,

2,

,

j

j

k j

uu

u

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

1,r

k j

k j

N j

uu

u

+

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

( )( ), jP u r θ

1,

2,

,

j

j

k j

uu

u

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

1,

2,

,

m j

m j

k m j

uu

u

+

+

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

,

1,

1,

k m j

k m j

m j

uu

u

+

− +

+

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

( ), ju r θ ≡Let

Active variable with the same indexing in r-direction

Page 31: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [6]

Moreover, we modify differential matrix according to permutation P by

( )( ) ( ) ( )( ), ,r r

TN j N jD u r D P Pu rθ θ=

( )11 12 1, 1, 1 1, 2 1, 1

21 22 2, 2, 1 2, 2 2, 11 2

,1 ,2 , , 1 , 2 , 1

r

r

r

r

k N k k

k N k kTN

k k k k k N k k k k

d d d d d d

d d d d d dD P E E

d d d d d d

− + +

− + +

− + +

⎛ ⎞⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

0r > 0r <

where

such that for 1 j m≤ ≤

( )( )1, 1,

2, 2,, 1 2

, ,

,r

j m j

j m jr N j

k j k m j

u uu u

D u r E E

u u

θ

+

+

+

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( )( )1, 1,

2, 2,, 1 2

, ,

,r

m j j

m j jr N m j

k m j k j

u uu u

D u r E E

u u

θ

+

++

+

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

and

( ) ( ) ( )( )1 2, , , , , ,j j k jr r rθ θ θEvaluated at

Page 32: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [7]

( ) ( ) ( ) ( )( )1,1 1,2 1, 1, 1 1, 2 1,2

2,1 2,2 2, 2, 1 2, 2 2,2, 1 2 1 2

,1 ,2 , , 1 , 2 ,2

, , , , , ,r

m m m m

m m m mr N m

k k k m k m k m k m

u u u u u uu u u u u u

D u r r r E E

u u u u u u

θ θ θ

+ +

+ +

+ +

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( ) ( ) ( )( )1, 1 1, 2 1,2 1,1 1,2 1,

2, 1 2, 2 2,2 2,1 2,2 2,, 1 2 2 1 2

, 1 , 2 ,2 ,1 ,2 ,

, , , , , ,r

m m m m

m m m mr N m m m

k m k m k m k k k m

u u u u u uu u u u u u

D u r r r E E

u u u u u u

θ θ θ

+ +

+ ++ +

+ +

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

,1

,2

,

,

i

ii

i m

uu

U

u

⎛ ⎞⎜ ⎟⎜ ⎟≡ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

, 1

, 2

,2

i m

i mi

i m

uu

V

u

+

+

⎛ ⎞⎜ ⎟⎜ ⎟≡ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

( )1 1

2 21 2 1 2, ,

T T

T T

T Tk k

U VU V

X X X X X

U V

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

define and active variable

( ) ( ) ( )( ) ( ) ( ), 1 2 1 1 2 2 2 1, , , , | |rr N mD u r r E X X E X Xθ θ = +To sum up

Page 33: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [8]

( )1 1

2 21 2

T T

T T

T Tk k

U VU V

X X X

U V

⎛ ⎞⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠( ) ( )1 1 2 2| | | | | | | | |

TT T T T T T T Tj j k kmem X U V U V U V U V=

Note that under row-major indexing, memory storage of

is

( ) ( )2 1 1 1 2 2| | | | | | | | | |TT T T T T T T T

j j k kmem X X V U V U V U V U=but

( ) ( )2 1| mk

m

Imem X X I mem X

I⎧ ⎫⎛ ⎞⎪ ⎪= ⊕ ⋅⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

If we adopt Kronecker products, then

( ) ( ) ( )( ) ( ), 1 2 1 2, , , ,r

m mr N m

m m

I ID u r r E E mem X

I Iθ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

11 12 1

12 22 2

1 2

n

n

m m mn

a B a B a Ba B a B a B

A B

a B a B a B

⎛ ⎞⎜ ⎟⎜ ⎟⊕ =⎜ ⎟⎜ ⎟⎝ ⎠

Definition: Kronecker product is defined by

Page 34: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [9]

The same reason holds for second derivative operator

1 22,

3 4rr N

D DD

D D⎛ ⎞

= ⎜ ⎟⎝ ⎠

( ) ( ) ( )( ) ( )2, 1 2 1 2, , , ,

r

m mr N m

m m

I ID u r r D D mem X

I Iθ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

( )2, 1 2rr ND D D=

0r

neglect equation on

<( )2

, 1 2r

Tr ND P D D=

then

( ) ( ) ( ), ,1 1, row of matrix

r r

Tr N i j r N

i

D u r i D Pr r

θ⎡ ⎤ = × −⎢ ⎥⎣ ⎦collect equations on each :1ir i k≤ ≤

1 21 m m

m m

I IR E E

I Ir r⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪→ ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

we have

1

2

1 2

1/1/ 1 1 1, , ,

1/k

k

rr

R diagr r r

r

⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠

where

Page 35: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [10]

directionθ −We write second derivative operator on as

( ) ( )( )

( )( ) ( )

2

22

2

1 0 mod 6 3

1, 0 mod

2sin / 2

jN j

j Nh

S xj N

jh

π⎧− − =⎪⎪= ⎨ −⎪− ≠⎪⎩

( ) ( )( )22,N N k jD S x x

θθ ≡ − where

( )1 , 1 2 0ii k j m r≤ ≤ ≤ ≤ >for

( )( ),1

,22 2 2, , ,

,2

, row of row of

i

i iN i j N N

i

i m

uu U

D u r j D j DV

u

θ θ θθ θ θθ

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟ ⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟= − = −⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎪ ⎪⎝ ⎠⎩ ⎭⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

( )( )

,1

,22 2 2, , ,

,2

,

i

i iN i N N

i

i m

uu U

D u r D DV

u

θ θθ θ θθ

⎛ ⎞⎜ ⎟

⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

( )2 2, ,2 2

1 1, iN i N

ii

UD u r D

Vr rθ θθ θθ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠so

θimplies

Page 36: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [11]

( )( )

( )

1 12 2,2 ,2

1 11 11

22 22,,2 22 2

2, 2 222

22 ,2,2

1 1

,11,1

,11

N N

NNN

kk

NNkkk

U UD DV Vr r

rU U

DDrrD u V Vr

rr

U DD rVr

θ θ

θθ

θ

θθ

θ θ

θθθ

θθ

θθ

θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ = =⎜ ⎟⎝ ⎠ ⎝⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

k

k

UV

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎞⎜ ⎟⎟⎜ ⎟⎠⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

If we adopt Kronecker products, then

( )( )

( )

( ) ( )

1

22 2 2, ,2

,,1

,

N N

k

rr

D u R D mem Xr

r

θ θθ θ

θθ

θ

⎛ ⎞⎜ ⎟

⎛ ⎞⎜ ⎟ = ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

Page 37: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [12]

summary

( ) ( ) ( )( ) ( )2, 1 2 1 2, , , ,

r

m mr N m

m m

I ID u r r D D mem X

I Iθ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

1

( ) ( )( ) ( ), 1 2 1 21 1 , , , ,

r

m mr N m

m m

I ID u r r R E E mem X

I Ir r rθ θ

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪⎛ ⎞→ = ⊕ + ⊕⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

( )( )

( )

( ) ( )

1

22 2 2, ,2

,,1

,

N N

k

rr

D u R D mem Xr

r

θ θθ θ

θθ

θ

⎛ ⎞⎜ ⎟

⎛ ⎞⎜ ⎟ = ⊕⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

2

3

Note that

( ) ( ) ( )( )( )( )

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 2 1 2

2 2 1 2 2 2 21 2 2

1 2 2

, , , ,, , , ,

, , ,

, , , ,

m

mm

k k k k m

r r r rr r r r

r r r

r r r r

θ θ θ θθ θ θ θ

θ θ θ

θ θ θ θ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

so that all three system of equations are of the same order.

Page 38: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Non-active variable active variable [13]

22

1 1rr ru u u

r r θθ[ ]1,1r∈ −u , on andλ+ + = − [ ]0,2θ π∈

Discretization on ( )mem X

( ) ( )2L mem X mem Xλ⋅ = −

( )

( ) ( ) ( )

1 2 1 2

2 2,

2 21 1 2 2 ,

m m m m

m m m m

N

m mN

m m

I I I IL D D R E E

I I I I

R D

I ID RE D RE R D

I I

θ

θ

θ

θ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪= ⊕ + ⊕ + ⊕ + ⊕⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

+ ⊕

⎛ ⎞ ⎛ ⎞= + ⊕ + + ⊕ + ⊕⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

then

1

2

1 2

1/1/ 1 1 1, , ,

1/k

k

rr

R diagr r r

r

⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠

where

Page 39: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Example: program 28

2u uλ∆ = − with boundary condition ( )1, 0u r θ= =

25rN = ( ),k kVλis even, let eigen-pair beis odd and 20Nθ =

( ) ( ) ( )2 21 1 2 2 ,

m mN

m m

I IL D RE D RE R D

I I θθ⎛ ⎞ ⎛ ⎞

= + ⊕ + + ⊕ + ⊕⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

sparse structure of

Dimension : 1 12 20 240

2rN Nθ−

= × =

Page 40: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Example: program 28 (mash plot of eigenvector)

1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

1 2 nλ λ λ≤ ≤ ≤ ≤

Eigenvector is normalized by supremum norm, kk

k

VVV

←2

1 5.7832λ = 2 3 14.682λ λ= = 4 5 26.3746λ λ= = 6 30.4713λ = 7 8 40.7065λ λ= = 9 10 42.2185λ λ= =

Page 41: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Example: program 28 (nodal set)

Page 42: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Exercise 1

2u uλ∆ = − with boundary condition ( )1,2 0u r = =

25rN = is odd and 20Nθ = is even, let eigen-pair be ( ),k kVλ

{ }1 2r< <on annulus

{ }1 2r< <[ ]1,1x∈ −Chebyshev node on Chebyshev node on

112

xr += +

( ) ( )2 2 2, , ,r rr N r N N NL D RD I R D

θ θθ= + ⊕ + ⊕

Page 43: Chapter 11 polar coordinate - National Tsing Hua Universityoz.nthu.edu.tw/~d947207/spectral_method/chap11_ppt.pdf · 2008-10-23 · Asymptotic behavior of spectrum of Chebyshev diff.

Exercise 1 (mash plot of eigenvector)1 Eigenvalue is sorted, monotone increasing and normalized to first eigenvalue

1 2 nλ λ λ≤ ≤ ≤ ≤

Eigenvector is normalized by supremum norm, kk

k

VVV

←2