Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1...

5
Cascade Control of DC machines Permanent magnet dc motor Armature circuit: () () ( ) () + + = t E dt t di L R t i t v () () ( ) () t K dt t di L R t i t v E φω + + = (1) Mechanical dynamics: () () () i K T e T B T F L e T e L F dt t d J B T dt t d J T T T dt t d J T φ ω ω ω ω ω = = = = = = 0 () () () dt t d J t B t i K T ω ω φ = (2) Laplace transform of (1) and (2): () () ( ) ( ) () () () s Js s B s I K s K s LsI R s I s V T E = + + = φ φ (3) Solve (3a) for I(s): () () ( )() () () () ( ) Ls R s K s V s I s I Ls R s K s V E E + = + = φ φ and replace it in (3b):

Transcript of Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1...

Page 1: Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1 s Integrator1 50 Gain1 30 Gain 1 Constant1 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 But

Cascade Control of DC machines Permanent magnet dc motor Armature circuit:

( ) ( ) ( ) ( )⇒++= tEdt

tdiLRtitv

( ) ( ) ( ) ( )tKdt

tdiLRtitv Eφω++= (1)

Mechanical dynamics:

( )

( )

( ) iKT

e

T

BTFLe

Te

L

F

dttdJBT

dttdJTTT

dttdJT

φ

ω

ωω

ω

ω

=

=

=

⇒=−

⇒=−−

⇒=∑0

( ) ( ) ( )dt

tdJtBtiKTωωφ =− (2)

Laplace transform of (1) and (2): ( ) ( ) ( ) ( )

( ) ( ) ( )sJssBsIKsKsLsIRsIsV

T

E

Ω=Ω−Ω++=

φφ

(3)

Solve (3a) for I(s): ( ) ( ) ( ) ( )

( ) ( ) ( )( )LsR

sKsVsI

sILsRsKsV

E

E

+Ω−

=

⇒+=Ω−φ

φ

and replace it in (3b):

Page 2: Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1 s Integrator1 50 Gain1 30 Gain 1 Constant1 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 But

( ) ( )( ) ( ) ( )

( )( )

( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( )( )( )( )

( )

( )( ) φφφ

φφφ

φφφ

φφφ

φφ

ET

T

ETT

ETT

ETT

ET

KKJsBLsRK

sVs

sJsBLsRKKsVK

sJsBLsR

KKLsRsVK

sJssBLsR

sKKLsRsVK

sJssBLsR

sKsVK

+++=

Ω⇒Ω+++=

⇒Ω⎟⎠

⎞⎜⎝

⎛++

+=

+

⇒Ω+Ω++Ω

=+

⇒Ω=Ω−+

Ω−

It is possible to simulate that using the following numerical values:

Nms/rad0001.0Kgm5

mH1052.0

rad/Vs65.3Nm/A65.3

2

==

=Ω=

==

BJ

LRKK

E

T

φφ

0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

Step Response

Time (sec)

Ampl

itude

Also we can use a PI controller to improve the motor’s performance:

Page 3: Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1 s Integrator1 50 Gain1 30 Gain 1 Constant1 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 But

num(s)

den(s)T ransfer Fcn1 Scope1

1s

Integrator1

50

Gain1

30

Gain1

Constant1

0 0.05 0.1 0.15 0.20

0.5

1

1.5

But this system has a peculiar property which can be seen if we slightly change the model: ( ) ( ) ( )( )LsRsIsKsV E +=Ω− φ

( ) ( ) ( )sJsBsIKT Ω+=φ

1

w*

J.s+B

1

T ransfer Fcn3L.s+R

1

Transfer Fcn2

Scope3

Scope2

1s

Integrator1Kt

Gain5

Ke

Gain4

50

Gain3

30

Gain2 w

w

w

w

So let’s see the current:

Page 4: Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1 s Integrator1 50 Gain1 30 Gain 1 Constant1 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 But

0 0.05 0.1 0.15 0.2-200

-100

0

100

200

300

This is happening because the electrical time constant (L/R=0.0192) is much smaller (i.e. faster) than the mechanical one (i.e. J/B=50000). But we can use that difference to break the system into 2 smaller and separated subsystems, i.e. the electrical (A) and the mechanical (B) part and hence to use 2 PI controllers:

L.s+R

1

T ransfer Fcn4 Scope4

1s

Integrator21

I* 10

Gain7

5

Gain6 I

0 0.5 1 1.5 2x 10-3

0

0.2

0.4

0.6

0.8

1

Page 5: Cascade Control of Dc machines - Newcastle University Control...num(s) den(s) Transfer Fcn1 Scope1 1 s Integrator1 50 Gain1 30 Gain 1 Constant1 0 0.05 0.1 0.15 0.2 0 0.5 1 1.5 But

J.s+B

1

Transfer Fcn6L.s+R

1

Transfer Fcn4

Scope7

Scope6

Scope4

1s

Integrator4

1s

Integrator2

10

Gain7

5

Gain6

40

Gain13

20

Gain12

Ke

Gain11

Kt

Gain101

Constant3

E_IE_II*

ITe

w

w

wV

E

w*

0 0.1 0.2 0.3 0.40

0.5

1

1.5

Current:

0 0.1 0.2 0.3 0.4-10

0

10

20

30

40

This type of control is called cascade control and is very popular in electric drives as we first tune the current loop and then we separately tune the speed loop.