Calculus I 5

download Calculus I 5

of 40

Transcript of Calculus I 5

  • . 1 : a > 0, na

    n 1

    . 2 : nn

    n 1

    . 3 : xn > 0, xn n x

    kxn

    nkx

    . 4 : P (n) = a0np + a1np1 + + ap1n+ ap,Q(n) = b0n

    q + b1nq1 + + aq1n+ aq

    p = q P (n)

    Q(n)n

    a0b0

    p < q P (n)

    Q(n)n 0

  • pi {yk}kN = {xnk}kN pi pi , n1 < n2 < n3 < pi {xn}nN

    (x1, x2, x3, x4, x5, x6, x7, x8, x9, . . .

    ) (6x1 x2, x3, 6x4 6x5 x6, x7, 6x8 x9, . . .

    ) (xn1 , xn2 , xn3 , xn4 , xn5 , . . .

    ) (y1, y2, y3, y4, y5, . . .

    ) : k nk

  • pi.1:

    xn x

    pi

    yk = xnk x

    : { nn 1} {

    n2n2 1

    } Bolzano Weierstrass

    ( ) pi A

    pi. 2:

    ( ) pi

  • pi {yk}kN = {xnk}kN pi pi , n1 < n2 < n3 < pi {xn}nN

    (x1, x2, x3, x4, x5, x6, x7, x8, x9, . . .

    ) (6x1 x2, x3, 6x4 6x5 x6, x7, 6x8 x9, . . .

    ) (xn1 , xn2 , xn3 , xn4 , xn5 , . . .

    ) (y1, y2, y3, y4, y5, . . .

    ) : k nk

    k N m N : {k m} {nk m}m N k N : {m nk}

    k m nk m

  • pi.1:

    xn x

    pi

    yk = xnk x

    : { nn 1} {

    n2n2 1

    }

  • pi.1:

    xn x

    pi

    yk = xnk x

    : { nn 1} {

    n2n2 1

    } pi: {

    xn n

    x}{ > 0, N() > 0 :k > N() |xk x| <

    }pi nk k > N() |xnk x| <

    { > 0, N() > 0 :nk > N() |xnk x| <

    }

  • BolzanoWeierstrass

    ( ) pi A

    pi. 2 ( ) -

    pi-

    pi:I pi pi pi pi I pi pi pi x

    n N, xkn : x1

    n< xkn < x+

    1

    n

    xkn n

    x.

  • xn xn xn+1xn xn xn+1xn xn

    . 1

    xn xn n sup{xk}kN

    pi: xn xn+1 K. pi pipi, pi pi ` n ` xn = L R, pipi

    L = limk

    xk = max{x1, x2, . . . , xm} pi . R 3M = sup{xk}kN(pi R !) pi sup

    > 0, k N : m < xk mxn n > k xk xn m < m+

    pi > 0, k = N() : n > N() m < xn < m+

    xn n

    m

    . 1

    xn xn n inf{xm}mN

    . 2xn pilimk

    xnk = x xn xn n x

    pi.

    pi xnk (pi ) ,pi x = sup

    kN{xnk}. x pi supremum

    pi xnk (. . 1). A = {xnk , k N} B = {xn, n N}, z A z B pi z sup B x = sup A sup B. sup A < sup B ` : x` > x pi pi m xnm x` > x pi pi. pisup A = sup B.

  • xn xn xn+1

    xn xn xn+1

    xn . 1: xn

    xn n sup{xk}kN

    . 1: xn xn

    n inf{xm}mN. 2: xn -

    pi limk

    xnk = x xn xn

    n x

  • I . xn =(1 +

    1

    n

    )n

    xn =

    (1 +

    1

    n

    )n=

    n`=0

    (n

    `

    )1

    n`= 1 +

    n

    n+n(n 1)2!n2

    +n(n 1)(n 2)

    3!n3+ + 1

    nn

    =n`=0

    n(n 1)(n 2) (n `+ 1)`!n`

    =n`=0

    1

    `!

    (1 1

    n

    )(1 2

    n

    )(1 3

    n

    ) (1 ` 1

    n

    )I xn+1 > xn

    xn+1 =

    n+1`=0

    1

    `!

    (1 1

    n+ 1

    )(1 2

    n+ 1

    )(1 3

    n+ 1

    ) (1 ` 1

    n+ 1

    )

    =n`=0

    1

    `!

    (1 1

    n+ 1

    )(1 2

    n+ 1

    )(1 3

    n+ 1

    ) (1 ` 1

    n+ 1

    )+

    +1

    (n+ 1)n+1(1 k

    n+ 1

    )>

    (1 k

    n

    ) xn+1 > xn

    I . yn =n`=0

    1

    `!

    I yn+1 > yn

  • I xn ynI yn xn

    1

    `!=

    1

    2 3 4 ` 1

    2`1

    xn < yn = 1 + 1 +1

    2+

    1

    3!+ + 1

    n!=

    = 1 +

    (1 + 12 + +

    1

    2n1

    ) 0

  • I . xn =(1 +

    1

    n

    )n, xn+1 > xn

    I . yn =n`=0

    1

    `!, yn+1 > yn ,

    I xn ynI yn xn I xn

    n e yn n e e e

    I n,k =k`=0

    1

    `!

    (1 1

    n

    )(1 2

    n

    )(1 3

    n

    ) (1 ` 1

    n

    )I n,k xn e n,k

    n yk I yk e lim

    kyk = e

    e

    I e = e ! limn

    (1 +

    1

    n

    )n=k=0

    1

    k!

  • I(1 1

    n

    )nn e

    1

    I(1 +

    k

    n

    )nn e

    k

    I(1 +

    k

    ` n

    )nn e

    k/`

    I(1 +

    n

    )n n e

    = sup {eq, q Q, q }, > 0

  • CAUCHY

    {xn Cauchy

    }

    > 0 N() :

    n > m > N() |xn xm| <

    {xn

    n x}{xn Cauchy

    }{xn Cauchy

    }

    {xnk

    kx

    }

    {xn

    n x}

    {xn Cauchy

    }{xn

    n x}

    pi{xn Cauchy

    }{xn

    n x}

  • pi

    pi{xn Cauchy

    }{xn

    n x}

    {xn

    }{xn Cauchy

    } , N > 0 : n > m > N |xn xm| >

    pi.

    xn = 1 +1

    2+

    1

    3+ + 1

    n

    xn = 1 +1

    22+

    1

    32+ + 1

    n2

    |xn+1 xn| < k|xn xn1| k < 1 ! xn xn Cauchy

  • CAUCHY

    {xn Cauchy

    }

    > 0 N() :

    n > m > N() |xn xm| <

    {xn

    n x}{xn Cauchy

    }pi.{

    xn n x

    }{ > 0 N() > 0 :m > N() |x xm| <

    }

    n > m |xn x| < |xn xm| |xn x|+ |x xm| < 2 =

    > 0 N () = N(2

    ):

    n > m > N () |xn xm| <

    {xn Cauchy

    }

  • {xn Cauchy

    }

    {xnk

    kx

    }

    {xn

    n x}

    pi.

    {xn Cauchy

    }

    > 0 N1() :

    n > m > N1() |xn xm| <

    {xnk

    kx

    }

    > 0 N2() :

    k > N2() |xnk x| <

    = 2 N () = max

    {N1(), N2()

    } n > nk > N ()

    |xn x| |xn xnk |+ |xnk x| < 2 =

    { > 0 N () > 0 :n > N () |x xn| <

    }{xn

    n x}

    {xn Cauchy

    }{xn

    n x}

    pi.{xn Cauchy

    }

    = 1 n0 > N(1) : n > n0

    |xn| |xn xn0 |+ |xn0 | < 1 + |xn0 | xn

    Bolzano pi pi

    xn

    .

  • {xn Cauchy

    }{xn

    n x}

    {xn

    }{xn Cauchy

    } , N > 0 : n > m > N |xn xm| >

    pi.

    xn = 1 +1

    2+

    1

    3+ + 1

    n

    pi.

    x2n xn = 1n+ 1

    +1

    n+ 2+ + 1

    n+ n>

    n

    n+ n=

    1

    2

    xn = 1 +1

    22+

    1

    32+ + 1

    n2

    pi.

    xn xm = 1(m+ 1)2

    +1

    (m+ 2)2+ + 1

    n2

    1m(m+1) + 1(m+1)(m+2) + + 1n(n1) == 1m 1m+1 + 1m+1 1m+2 + + 1n1 1n= 1m upslope1m+1 +upslope1m+1 upslope1m+2 + + 6 1n1 1n= 1m 1n < 1m

    > 0 N() = 1

    :

    n > m > N() |xn xm| < 1m<

  • Cauchy

    I R pi I Q pi pi. x1 = 2, xn+1 =

    12

    (xn +

    2xn

    )xn Q xn

    n2 6 Q

    Q pi pi Cauchy pi/pi R.R= Cauchy- pi Q

  • Constructive Axiomatic

    PeanomN

    pi Z

    pipiQ

    Cauchy- piR

    , , mR

    1-hereditarymN

    pi Z

    pipiQ

  • . (Stolz)anbnn `

    bk > 0 nk=1

    bk n

    nk=1

    ak

    nk=1

    bk

    n `

    pi xn n x

    nk=1

    xn

    nn x

    1 +2 + 33 + nnn

    n n

    k N 1 + 2k + 3k + nknk+1

    n

    1

    k + 1

    xn+1xn n ` n|xn| n `

    pi.. limn

    nn5 3n3 + 8 = 1

  • (Stolz):

    anbnn `

    bk > 0 nk=1

    bk n

    nk=1

    ak

    nk=1

    bk

    n `

    pi:

    anbnn `

    { > 0 N1() > 0 :k > m > N1() ` < ak

    bk< `+

    }

    (` ) bk < ak < (`+ ) bk

    (` )n

    k=m+1

    bk R

    pi

    xn n +

    1xnn 0

    {xn

    n }R > 0, N(R) > 0 :

    n > N(R) xn < R

    pi

  • 1 xn xn Cauchy

    2 xn n 0 {xn}nN

    C > 0 : n |xn| < C

    3 |a| < 1 an n 0

    4 () xn 6= 0, |xn+1xn | n k < 1 xn n 0

    5 xn n x pi xnk x

    6 (Bolzano-Weierstrass): ( ) pi

    7 xn xn n sup{xk}kN

    8 xn pi lim

    kxnk = x xn

    xn n x

    9 limn

    (1 +

    x

    n

    )n= ex =

    `=0

    x`

    `!

    10 (Stolz):

    anbnn `

    bk > 0 nk=1

    bk n

    nk=1

    ak

    nk=1

    bk

    n `

    11

    xn+1xn n ` n|xn| n `

  • Sn =nk=1

    ak ,

    Sn n S pi S

    k=1

    ak SN Cauchy

    > 0 N() : n > m > N() |Sn Sm| = nk=m+1 ak

    <

    pi n=1

    an an n 0

    : an

    n 0 nan

    pi. an =1

    nn 0

    n=1

    1n =

  • pi pi k=1

    |ak|

    pi pi

    (Comparison test)

    |bn| an,n=1

    an n=1

    bn

    0 an bn,n=1

    an = pi n=1

    bn = pi

  • (Ratio test)

    n=1

    an

    1 pi limn

    an+1an < 1

    2 pi limn

    an+1an > 1

    3 pi pi limn

    an+1an = 1

    (Root test)

    n=1

    an

    1 pi limn

    n|an| < 1

    2 pi limn

    n|an| > 1

    3 pi pi limn

    n|an| = 1

  • an bn . limn

    anbn

    = ` 6= 0

    n=1

    bn pi n=1

    an pi

    an bn . limn

    anbn

    = 0

    n=1

    bn pi n=1

    an pi

  • pi (Condensation test)

    0 < an+1 < an :{ n=1

    an pi}{ k=1

    2ka2k pi}

    :

    p > 1 n=1

    1np 1 n=2

    1n(ln n)p

  • (1, 2, . . . , k, . . .) (1, 2, . . . , k, . . .)

    k nk N : max {1, 2, . . . k} < nk

    bm = am

    nan pi

    nbn pi .

  • a11 a12 a13 a14 upslope upslope upslope

    a21 a22 a23 a24 upslope upslope upslope

    a31 a32 a33 a34 upslope upslope upslope

    a41 a42 a43 a44 upslope upslope upslope

    m,n=0amn = ` pi

    m=0

    ( n=0

    amn

    )= ` pi

  • Sn =nk=1

    ak ,

    Sn n S pi S

    k=1

    ak SN Cauchy

    > 0 N() : n > m > N() |Sn Sm| = nk=m+1 ak

    <

    pi n=1

    an an n 0

    pi.

    pi Cauchy

    > 0, N() : n > N() |Sn Sn1| = |an| <

    pi an n 0

    : an

    n 0 nan

    pi. an =1

    nn 0

    n=1

    1n =

  • pi pi k=1

    |ak|

    pi pi

    pi.

    { pi }{ > 0, N() : n > m > N()

    nk=m+1

    |ak| < }

    n

    k=m+1

    ak

    n

    k=m+1

    |ak| < { > 0, N() : n > m > N()

    n

    k=m+1

    ak

    < }

  • (Comparison test)

    |bn| an,n=1

    an n=1

    bn

    pi.

    n=1

    an

    > 0, N() :

    n > m > N() nk=m+1 ak

    <

    nk=m+1

    |bk|

    nk=m+1

    ak

    > 0, N() :n > m > N()

    nk=m+1

    |bk| <

    n=1

    bn

    pi

    0 an bn,n=1

    an = pi n=1

    bn = pi

    pi.

    n=1

    an = {R > 0, N(R) > 0 : n > N(R)

    nk=1

    ak > R

    }nk=1

    bk nk=1

    ak > R n=1

    bn =

  • (Ratio test)

    n=1

    an

    (i) pi limn

    an+1an < 1

    (ii) pi limn

    an+1an > 1

    (iii) pi pi limn

    an+1an = 1

    pi (i) limn

    an+1an

    = c < 1 = 1c2 , n0 :n > n0

    an+1 < (c + 1 c2

    ) |an|

    |an| 1 = f12 , n0 :n > n0

    an+1 > (f f 12

    ) |an|

    |an| >(

    f + 1

    2

    )n an0 (f+12

    )n0pi f+1

    2> 1 an

    nan

    (Root test)

    n=1

    an

    (i) pi limn

    n|an| < 1

    (ii) pi limn

    n|an| > 1

    (iii) pi pi limn

    n|an| = 1

  • pi (Condensation test)

    0 < an+1 < an :{ n=1

    an

    }pi

    { k=1

    2ka2k pi}

    pi.

    S2k+11 = a1 + (a2 + a3) 2

    +(a4 + a5 + a6 + a7) 4

    +

    +(a8 + a9 + a10 + a11 + a12 + a13 + a14 + a15) 8

    + ++(a2k + a2k+1 + a10 + a2k+2 + + a2k+11

    ) 2k

    a1 + 2a2 + 4a4 + 8a8 + + 2ka2k = Tk Tk pi S2k+11 Sn Sn .

    Tk2

    =a12+ a2 + 2a4 + 4a8 + + 2k1a2k

    a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8)++ ++(a2k1+1 + a2k1+2 + + a2k

    )= S2k

    Sn pi S2k Tk .

    pin=2

    1

    n ln n

    n=2

    1

    n(ln n)2

    n=1

    1

    nr r > 1,

    r 1

  • (Alternating SeriesTest)

    0 < an+1 < an an n 0 :

    { n=1

    (1)n+1an pi}

    pi.

    Sn =nk=1

    (1)k+1akSm+2 Sm = (1)m+3am+2 (1)m+2am+1 = (1)m+2(am+1 am+2) |Sm+2 Sm| = am+1 am+2 0|Sm+4 Sm+2| = am+3 am+4|Sm+6 Sm+4| = am+5 am+6. . . . . . . . .|Sm+2p Sm+2(p1)| = am+2p1 am+2p|Sm+2p Sm| |Sm+2p Sm+2p2|+ |Sm+2p2 Sm+2p4|+ + |Sm+2 Sm||Sm+2p Sm| am+2p1 am+2p + am+2p3 am+2p2 + + am+3 am+4 + am+1 am+2|Sm+2p Sm| am+1 am+2p < am+1|Sm+2p+1 Sm| |Sm+2p+1 Sm+2p|+ |Sm+2p Sm| am+2p+1 + am+1 am+2p < am+1n > m |Sn Sm| < am+1limn an = 0

    > 0 N() : m > N() am+1 < am <

    |Sn Sm| < Sn Cauchy

    pin

    (1)nn

    n

    (1)nln n

    n(1)n sin pi

    n

  • nan pi

    nbn pi .

    pi.

    :

    (1, 2, . . . , k, . . .) (1, 2, . . . , k, . . .)

    k nk N : max {1, 2, . . . k} < nk :

    S` = |a1|+ |a2|+ + |a`| , Tk = |b1|+ |b2|+ + |bk|

    pi bm = am pi Tk Snk . pi Snk Cauchy Tk Cauchy, . pi pi , pi .

    Tk Snk limk

    Tk limk

    Snk n

    bn n

    an

    an bn, pin

    an n

    bn

    .