of 13 /13
Θ kN 1000N := kg 10N := MPa 10 6 Pa := m 1000mm := ton 1000kg := kip 4.448kN := MPa N mm 2 := MPa 145psi := ksi 1000psi := lb 4.448N := feet 12 in := in 0.0254m := kgpm 1 kg m := kgm 1 kg m := tonm 1 ton m := kgpcm2 1 kg cm 2 :=
• Author

• Category

## Documents

• view

222

0

Embed Size (px)

description

### Transcript of 핐ү핐үcad - Foundation Fb3 (2pile)

• kN 1000N:= kg 10N:= MPa 10

6Pa:= m 1000mm:= ton 1000kg:= kip 4.448kN:=

MPaN

mm2

:= MPa 145psi:= ksi 1000psi:= lb 4.448N:= feet 12 in:= in 0.0254m:=

kgpm 1kg

m:=

kgm 1 kg m:= tonm 1 ton m:=kgpcm2 1

kg

cm2

:=

• 5. GENERAL

5.1. Outline Of Structure

Project : -

Client : -

Location : -

Equipment : -

Foundation type : -

5.2. Calculation Unit

N 0.1kg:= kgpm 1kg

m:= ton 1000kg:= MPa 10

6Pa:=

kN 1000N:= kgm 1 kg m:= tonm 1 ton m:= MPa 1N

mm2

:=

kN 100kg:= kgpcm2 1kg

cm2

:= tonm 1000 kg m:=

5.3. Used Material And Allowable Stress

Compressive concrete strength : fc' 280kg cm2-

:=

fc' 28 MPa=

Yield steel strength : fy 320MPa:=

Unit weight of reinf. concrete : concrete 2400kg m 3-:=

Unit weight of steel : steel 7850kg m 3-:=

Unit weight of soil : soil 1900kg m 3-:=

Unit weight of water' : water 1000kg m 3-:=

• A. DETAIL FOUNDATION

B. PROPERTIES OF FOUNDATION

DIMENSION OF FOUNDATION

Thickness of pile cap : hslabpond 0.9m:=

Height of pedestal above surface : t2 3.95m:=

Height of pedestal under surface : t3 0.3m:=

Length of pedestal : P2 3.15m:=

Width of pedestal : L2 0.85m:=

Length of pile cap : P 1.5m:=

Width of pile cap : L 4m:=

Number of pile : npile 2:=

Length of pile : Lp 26m:=

WEIGHT FOUNDATION

Foundation's self weight (concrete)

Vcap P L hslabpond concrete:=

Vcap 12.96 ton=

• Pedestal Foundation's self weight (concrete)

Vped P2 L2 t2 t3+( ) concrete:=

Vped 27.3105 ton=

Soil Weight

Vsoil P L( ) P2 L2( )-[ ] t3 soil:=

Vsoil 1.894 ton=

Total Weight

Vfound Vcap Vped+ Vsoil+:=

Vfound 42.164 ton=

Joint Reaction from SAP200 (Unfactored)

TABLE: Joint Reactions

Joint OutputCase CaseType F1 F2 F3 M1 M2 M3

Text Text Text Tonf Tonf Tonf Tonf-m Tonf-m Tonf-m

6029 SLS1 Combination 0 0.0907 16.3096 0 0 0

6029 SLS2 Combination 0 0.0814 27.385 0 0 0

6029 SLS3 Combination 0 0.0432 15.9218 0 0 0

6029 SLS4 Combination 0 0.034 26.9972 0 0 0

6029 SLS5.a Combination 0 0.1072 -3.4168 0 0 0

6029 SLS5.b Combination 0 0.0742 36.036 0 0 0

6029 SLS5.c Combination 0 0.1074 -3.6303 0 0 0

6029 SLS5.d Combination 0 0.0741 36.2495 0 0 0Column 1 Column 2

a. F2 Minimum

Vertical load : Pz1 104.9243 ton:= Pz2 14.0087- ton:=

Horisontal load : Px1 0 ton:= Px2 0 ton:=

Py1 7.9581 ton:= Py2 0.3404 ton:=

Moment : Mx1 0ton m:= Mx2 0ton m:=

My1 0ton m:= My2 0ton m:=

b. F2 Maximum

Vertical load : Pz1a 55.7441ton:= Pz2a 6.522- ton:=

Horisontal load : Px1a 0 ton:= Px2a 0 ton:=

Py1a 0.2083- ton:= Py2a 9.8409- ton:=

Moment : Mx1a 0ton m:= Mx2a 0ton m:=

My1a 0ton m:= My2a 0ton m:=

• c. F3 Minimum

Vertical load : Pz1b 14.3965- ton:= Pz2b 63.1132ton:=

Horisontal load : Px1b 0ton:= Px2b 0ton:=

Py1b 0.3878ton:= Py2b 7.9289ton:=

Moment : Mx1b 0ton m:= Mx2b 0ton m:=

My1b 0ton m:= My2b 0ton m:=

d. F3 Maximum

Vertical load : Pz1c 14.0087- ton:= Pz2c 104.9243ton:=

Horisontal load : Px1c 0ton:= Px2c 0ton:=

Py1c 0.3404ton:= Py2c 7.9581ton:=

Moment : Mx1c 0ton m:= Mx2c 0ton m:=

My1c 0ton m:= My2c 0ton m:=

D. PILE CAPACITY

AXIAL BEARING CAPACITY FROM SOIL INVESTIGATION & MATERIAL CAPACITY

For pile capacity we can compare from axial bearing capacity from results of soilinvestigation and brosur of material capacity.

SF1 3:=

• Dia.Pile 500 400 Sqr.300x300 Sqr.250x250 500 400 Sqr.300x300 Sqr.250x250

Qall 133 90 73 42 138 97 83 52

Qhor 4.39 3.09 2.86 2.31 4.39 3.09 2.86 2.31

Qpull 58 40 34 19 61 44 39 23

Dia.Pile 500 400 Sqr.300x300 Sqr.250x250

Qall 136 102 84 51

Qhor 4.39 3.09 2.86 2.31

Qpull 63 45 38 23

BH1 BH2

BH3

Material Capacity From Soil Investigation

Qallused1 161.6ton:= Qallused2 133ton:=

Qhor1 5% Qallused1 8.08 ton=:= Qhor2 4.39ton:=

Qpull1 55.62ton:= Qpull2 58ton:=

Take :

Qallused min Qallused1 Qallused2, ( ):= Qallused 133 ton=

Qhor min Qhor1 Qhor2, ( ):= Qhor 4.39 ton=

Qpull min Qpull1 Qpull2, ( ):= Qpull 55.62 ton=

ALLOWABLE AXIAL AND HORIZONTAL PILE CAPACITY USED

Efficiency Pile :

Based on Converse-Labarre Formula :

Eg 1 nused 1-( ) mused mused 1-( ) nused+

90 mused nused

-:=

Where :

q = acr tg d/S1

Eg = Efficiency Pile Group

m = the number of rows of piles

n = number of piles in a row

S1 = distance center to center pile of pile

d = diameter piles

For this case :

d 0.5m:=

s1 2.5m:=

atand

s1

:= 11.31 deg=

• mused 2:= nused 1:=

Eg 1

deg

nused 1-( ) mused mused 1-( ) nused+90 mused nused

-:=

Eg 0.937=

Compression capacity : Lateral capacity : Pull Out Capacity :

Qcall.used Qallused Eg:= Qhorused Qhor Eg:= Qpullused Qpull Eg:=

Qcall.used 124.643 ton= Qhorused 4.114 ton= Qpullused 52.125 ton=

Pile coordinate from centre of pile cap:

npile 2=

y1 1.25- m:= x1 0m:=

y2 1.25m:= x2 0m:=

ykol1 1.25- m:= xkol1 0m:=

ykol2 1.25m:= xkol2 0m:=

y2 y12 y22+:= x2 x12 x22+:=

y2 3.125m2= x2 0=

E. ANALYSIS OF FOUNDATION

CHECK AXIAL PILE CAPACITY

• For Checking Pile Capacity use formula below (Based on Principle of FoundationEngineering-Braja M.Das) :

PpilemaxQv

nused

My1 Xmax

x2+

Mx1 Ymax

y2+:=

Qv

PpileminQv

nused

My1 Xmax

x2-

Mx1 Ymax

y2-:=

Qv

1). F2 Minimum

Total Weight (Concrete & Soil) Vfound 42.164 ton=

Height pedestal above ground t2 3.95m=

Height pedestal below ground t3 0.3 m=

Allowable Axial Load Qcall.used 124.643 ton=

Vertical load : Pz1 104.924 ton= Pz2 14.009- ton=

Horisontal load : Px1 0 ton= Px2 0 ton=

Py1 7.958 ton= Py2 0.34 ton=

Moment : Mx1 0 ton m= Mx2 0 ton m=

My1 0 ton m= My2 0 ton m=

Vtotal1 Vfound Pz1+ Pz2+:=

Vtotal1 133.08 ton=

Moment Horizontal:

Mx1 Mx1 Mx2+( ) Py1 Py2+( ) hslabpond t2+ t3+( )-:=

• Mx1 42.737- ton m=

My1 My1 My2+( ) Px1 Px2+( ) hslabpond t2+ t3+( )+:=My1 0 ton m=

Total Moment:

Mxtot Mx1:= Mxtot 42.737- ton m=

Mytot My1:= Mytot 0 ton m=

Pile Reaction :

Ppile1Vtotal1

npile

Mytot x1

x2+

Mxtot y1

y2+:=

Ppile1 83.635 ton=

Ppile2Vtotal1

npile

Mytot x2

x2+

Mxtot y2

y2+:=

Ppile2 49.445 ton=

CheckCompression "Ok" Qcall.used max Ppile1 Ppile2, ( )>if

"Not Ok" otherwise

:=

CheckCompression "Ok"=

2). F2 Maximum

Total Weight (Concrete & Soil) Vfound 42.164 ton=

Height pedestal above ground t2 3.95m=

Height pedestal below ground t3 0.3 m=

Allowable Axial Load Qcall.used 124.643 ton=

Vertical load : Pz1a 55.744 ton= Pz2a 6.522- ton=

Horisontal load : Px1a 0 ton= Px2a 0 ton=

Py1a 0.208- ton= Py2a 9.841- ton=

Moment : Mx1a 0 ton m= Mx2a 0 ton m=

My1a 0 ton m= My2a 0 ton m=

Vtotal2 Vfound Pz1a+ Pz2a+:=

Vtotal2 91.386 ton=

Moment Horizontal:

( )

• Mx1a Mx1a Mx2a+( ) Py1a Py2a+( ) hslabpond t2+ t3+( )-:=Mx1a 51.753 ton m=

My1a My1a My2a+( ) Px1a Px2a+( ) hslabpond t2+ t3+( )+:=My1a 0 ton m=

Total Moment:

Mxtot1 Mx1a:= Mxtot1 51.753 ton m=

Mytot1 My1a:= Mytot1 0 ton m=

Pile Reaction :

Ppile1aVtotal2

npile

Mytot1 x1

x2+

Mxtot1 y1

y2+:=

Ppile1a 24.992 ton=

Ppile2aVtotal2

npile

Mytot1 x2

x2+

Mxtot1 y2

y2+:=

Ppile2a 66.395 ton=

CheckCompression1 "Ok" Qcall.used max Ppile1a Ppile2a, ( )>if

"Not Ok" otherwise

:=

CheckCompression1 "Ok"=

3). F3 Minimum

Total Weight (Concrete & Soil) Vfound 42.164 ton=

Height pedestal above ground t2 3.95m=

Height pedestal below ground t3 0.3 m=

Allowable Axial Load Qcall.used 124.643 ton=

Vertical load : Pz1b 14.396- ton= Pz2b 63.113 ton=

Horisontal load : Px1b 0 ton= Px2b 0 ton=

Py1b 0.388 ton= Py2b 7.929 ton=

Moment : Mx1b 0 ton m= Mx2b 0 ton m=

My1b 0 ton m= My2b 0 ton m=

Vtotal3 Vfound Pz1b+ Pz2b+:=

Vtotal3 90.881 ton=

Moment Horizontal:

( )

• Mx1b Mx1b Mx2b+( ) Py1b Py2b+( ) hslabpond t2+ t3+( )-:=Mx1b 42.831- ton m=

My1b My1b My2b+( ) Px1b Px2b+( ) hslabpond t2+ t3+( )+:=My1b 0 ton m=

Total Moment:

Mxtot2 Mx1b:= Mxtot2 42.831- ton m=

Mytot2 My1b:= Mytot2 0 ton m=

Pile Reaction :

Ppile1bVtotal3

npile

Mytot2 x1

x2+

Mxtot2 y1

y2+:=

Ppile1b 62.573 ton=

Ppile2bVtotal3

npile

Mytot2 x2

x2+

Mxtot2 y2

y2+:=

Ppile2b 28.308 ton=

CheckCompression2 "Ok" Qcall.used max Ppile1b Ppile2b, ( )>if

"Not Ok" otherwise

:=

CheckCompression2 "Ok"=

4). F3 Maximum

Total Weight (Concrete & Soil) Vfound 42.164 ton=

Height pedestal above ground t2 3.95m=

Height pedestal below ground t3 0.3 m=

Allowable Axial Load Qcall.used 124.643 ton=

Vertical load : Pz1c 14.009- ton= Pz2c 104.924 ton=

Horisontal load : Px1c 0 ton= Px2c 0 ton=

Py1c 0.34 ton= Py2c 7.958 ton=

Moment : Mx1c 0 ton m= Mx2c 0 ton m=

My1c 0 ton m= My2c 0 ton m=

Vtotal4 Vfound Pz1c+ Pz2c+:=

Vtotal4 133.08 ton=

Moment Horizontal:

( )

• Mx1c Mx1c Mx2c+( ) Py1c Py2c+( ) hslabpond t2+ t3+( )-:=Mx1c 42.737- ton m=

My1c My1c My2c+( ) Px1c Px2c+( ) hslabpond t2+ t3+( )+:=My1c 0 ton m=

Total Moment:

Mxtot3 Mx1c:= Mxtot3 42.737- ton m=

Mytot3 My1c:= Mytot3 0 ton m=

Pile Reaction :

Ppile1cVtotal4

npile

Mytot3 x1

x2+

Mxtot3 y1

y2+:=

Ppile1c 83.635 ton=

Ppile2cVtotal4

npile

Mytot3 x2

x2+

Mxtot3 y2

y2+:=

Ppile2c 49.445 ton=

CheckCompression2 "Ok" Qcall.used max Ppile1c Ppile2c, ( )>if

"Not Ok" otherwise

:=

CheckCompression2 "Ok"=

CHECK LATERAL PILE CAPACITY

Qhorused 4.114 ton= (Horizontal Maximum)

ntotal 2:= (Total of used pile)

Horizontal load from SAP2000 reaction :

Fmax max Px12

Py22

+( ) Px1a2 Py2a2+( ), Px1b2 Py2b2+( ), Px1c2 Py2c2+( ), :=Fmax 9.841 ton=

HorpileFmax

ntotal:= Horpile 4.92 ton=

HorizontalFoundation "Ok" Qhorused Horpile>if

"Not Ok" otherwise

:=

HorizontalFoundation "Not Ok"=

• M3

Tonf-m

F3 Min

F3 Max

Remarks

F2 Min

F2 Max