Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent...

37
B 0 s φμ + μ - at LHCb DPF, Ann Arbor, Michigan Michael Kolpin on behalf of the LHCb collaboration Ruprecht-Karls-Universit¨ at Heidelberg, Germany August 4, 2015

Transcript of Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent...

Page 1: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

B0s → φµ+µ− at LHCb

DPF, Ann Arbor, Michigan

Michael Kolpinon behalf of the LHCb collaboration

Ruprecht-Karls-Universitat Heidelberg, Germany

August 4, 2015

Page 2: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Outline

1 Introduction

2 Candidate selection

3 Branching fraction

4 Angular analysis

5 Conclusion

Page 3: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

The LHCb experiment

� Single-arm forwardspectrometer

� High performance in theforward region

� Large heavy flavour program

I ∼ 1012bb pairs/yearI ∼ 1013cc pairs/year

� Excellent momentumresolution of 0.4− 0.6% allowsfor very precise analyses

� Strong boost leads toexceptional decay timeresolution

3 M. Kolpin B0s → φµ+µ− at LHCb

Page 4: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Electroweak penguin decays

[LHCb-CONF-2015-002]

]4c/2 [GeV2q0 5 10 15

5'P

-1

-0.5

0

0.5

1

preliminaryLHCb

SM from DHMV

� Flavour changing neutral currents forbidden in SM at tree-level

� However, allowed in loop processes: penguin decays

� Sensitive to New Physics entering in loop, very small branching fraction prediction allowsobservation

� Analyses done depending on dimuon invariant mass squared q2

� Significant deviation from SM predictions observed in B0 → K∗0µ+µ−

4 M. Kolpin B0s → φµ+µ− at LHCb

Page 5: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

B0s → φµ+µ−

SM

SM scaled

Data

1fb-1

� Second highest statistics penguin decay at LHCb

� Tree-level decay B0s → J/ψ (→ µ+µ−)φ(→ K+K−) used as control and normalisation mode

� Previous analysis of 1 fb−1 published in 2013 [LHCb-PAPER-2013-017]

� Discrepancy to SM in differential branching fraction

� This talk: analysis of 3 fb−1 including full angular analysis [LHCb-PAPER-2015-023]

5 M. Kolpin B0s → φµ+µ− at LHCb

Page 6: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Selection

� Cut based selection:

I Loose cut on B0s mass, tight (±12MeV/c2)

on φ massI Particle identificationI Reconstruction quality criteriaI Explicit misidentification vetoes

� Multivariate analysis to reduce combinatorialbackground, trained data-driven using control mode

1

10

210

310

]2c) [GeV/−

µ+µ−

K+K(m5.3 5.4 5.5

]4c/

2[G

eV

2q

0

2

4

6

8

10

12

14

16

18

LHCb

J/

(2S)

6 M. Kolpin B0s → φµ+µ− at LHCb

Page 7: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Selection

Control channel yield: 62033 ± 260

]2c [MeV/)−µ+µ

−K+m(K

5300 5400 5500

2c

Ev

en

ts /

10

MeV

/

210

310

410 LHCb

φ ψ/J →0sB

Data

Signal

Background

Signal yield: 432 ± 24

]2c [MeV/)−µ+µ

−K+m(K

5300 5400 5500

2c

Ev

en

ts /

10

MeV

/

50

100

LHCb−µ+µφ→0sB

Data

Signal

Background

� Most background sources negligible

� Non-negligible peaking backgrounds:

I B0 → K∗0µ+µ−: 1.7± 0.4 events expectedI Λ0

b → Λ(1520)µ+µ−: 2.0± 0.8 eventsexpected

� q2 binning removes tree-level charmonium decays

q2 bin range [ GeV2/c4]1 0.1 − 2.02 2.0 − 5.03 5.0 − 8.04 11.0 − 12.55 15.0 − 17.06 17.0 − 19.0

W1 1.0 − 6.0W2 15.0 − 19.0

7 M. Kolpin B0s → φµ+µ− at LHCb

Page 8: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Branching fraction

� Branching fraction ratio calculated via

1

B(B0s → J/ψφ)

· dB(B0s → φµ+µ−)

dq2=B(J/ψ → µ+µ−)

q2max − q2

min

·Nφµ+µ−

NJ/ψφ· εtot

J/ψφ

εtotφµ+µ−

� B(J/ψ → µ+ µ−) from PDG

� Yields determined from unbinned extended maximum likelihood fits to invariant B0s mass

I Sum of two Crystal Ball shapes used as signal model (fixed for signal from controlchannel fit)

I Exponential function as background model

� Relative efficiencies εtotJ/ψφ/εtot

φµ+µ− determined from simulation

8 M. Kolpin B0s → φµ+µ− at LHCb

Page 9: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Branching fraction

� Branching fraction ratio calculated via

1

B(B0s → J/ψφ)

· dB(B0s → φµ+µ−)

dq2=B(J/ψ → µ+µ−)

q2max − q2

min

·Nφµ+µ−

NJ/ψφ· εtot

J/ψφ

εtotφµ+µ−

� B(J/ψ → µ+ µ−) from PDG

� Yields determined from unbinned extended maximum likelihood fits to invariant B0s mass

I Sum of two Crystal Ball shapes used as signal model (fixed for signal from controlchannel fit)

I Exponential function as background model

� Relative efficiencies εtotJ/ψφ/εtot

φµ+µ− determined from simulation

8 M. Kolpin B0s → φµ+µ− at LHCb

Page 10: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Branching fraction

� Branching fraction ratio calculated via

1

B(B0s → J/ψφ)

· dB(B0s → φµ+µ−)

dq2=B(J/ψ → µ+µ−)

q2max − q2

min

·Nφµ+µ−

NJ/ψφ· εtot

J/ψφ

εtotφµ+µ−

� B(J/ψ → µ+ µ−) from PDG

� Yields determined from unbinned extended maximum likelihood fits to invariant B0s mass

I Sum of two Crystal Ball shapes used as signal model (fixed for signal from controlchannel fit)

I Exponential function as background model

� Relative efficiencies εtotJ/ψφ/εtot

φµ+µ− determined from simulation

8 M. Kolpin B0s → φµ+µ− at LHCb

Page 11: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Mass fit in q2 bins

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

10

20

LHCb4c/2 < 2 GeV2q0.1 <

Data

Signal

Background

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

5

10

15

20

25

LHCb4c/

2 < 5 GeV2q2 <

Data

Signal

Background

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

10

20

30LHCb

4c/2 < 8 GeV2q5 <

Data

Signal

Background

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

5

10

15

20 LHCb4c/

2 < 12.5 GeV2q11 <

Data

Signal

Background

9 M. Kolpin B0s → φµ+µ− at LHCb

Page 12: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Mass fit in q2 bins

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

10

20

LHCb4c/2 < 17 GeV2q15 <

Data

Signal

Background

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

5

10

15 LHCb4c/2 < 19 GeV2q17 <

Data

Signal

Background

Wide bins

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

10

20

30LHCb

4c/2 < 6 GeV2q1 <

Data

Signal

Background

]2c [MeV/)−

µ+µ−

K+m(K5300 5400 5500

2c

Events

/ 1

0 M

eV

/

10

20

30

40 LHCb4c/2 < 19 GeV2q15 <

Data

Signal

Background

10 M. Kolpin B0s → φµ+µ− at LHCb

Page 13: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Relative efficiencies

� Determined from corrected B0s → J/ψφ and B0

s → φµ+µ− simulations

� Corrected data-driven to account for data-simulation differences

� Total efficiency for both modes are composed as:

εtot = εdet · εrec/det · εsel/rec · εtrg/sel

� Efficiency dependent on the q2 bin for the signal mode

� Determined separately for 2011 and 2012, to account for different conditions

� Combined according to data composition

11 M. Kolpin B0s → φµ+µ− at LHCb

Page 14: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Systematics: Branching fraction ratio

Systematic uncertainties [10−5 GeV−2c4] on the branching fraction ratio dB(B0s → φµ+µ−)/B(B0

s → J/ψφ)dq2 per bin of q2 [ GeV2/c4].

Source [0.1, 2] [2, 5] [5, 8] [11, 12.5] [15, 17] [17, 19] [1, 6] [15, 19]

Simulation corr. 0.01 0.01 0.01 0.01 0.05 0.04 0.00 0.04

Angular model 0.04 0.00 0.01 0.00 0.01 0.06 0.00 0.01

Efficiency ratio 0.06 0.03 0.03 0.06 0.06 0.07 0.02 0.04

Signal mass model 0.02 0.01 0.03 0.03 0.03 0.00 0.05 0.05

Bkg. mass model 0.02 0.02 0.02 0.02 0.03 0.05 0.01 0.06

Time acceptance 0.09 0.04 0.05 0.07 0.07 0.06 0.04 0.06

B(J/ψ → µ+µ−) 0.03 0.01 0.02 0.02 0.02 0.02 0.01 0.02

Peaking bkg. 0.03 0.02 0.02 0.10 0.02 0.01 0.02 0.01

Quadratic sum 0.13 0.06 0.07 0.14 0.11 0.13 0.07 0.12

Stat. uncertainty +0.68−0.64

+0.39−0.37

+0.41−0.39

+0.64−0.61

+0.53−0.50

+0.53−0.50

+0.30−0.29

+0.37−0.35

� Systematics dominated by efficiency ratio uncertainty and decay time acceptance effects

� This is both tied to the simulation sample used

� However, all systematics small compared to statistical uncertainties

12 M. Kolpin B0s → φµ+µ− at LHCb

Page 15: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Results: branching fraction

q2 bin [ GeV2c−4]dB(B0

s→φµµ)

B(B0s→J/ψφ)dq2 [10−5 GeV−2c4]

dB(B0s→φµ

+µ−)

dq2 [10−8 GeV−2c4]

0.1 < q2 < 2.0 5.44+0.68−0.64 ± 0.13 5.85+0.73

−0.69 ± 0.14± 0.44

2.0 < q2 < 5.0 2.38+0.39−0.37 ± 0.06 2.56+0.42

−0.39 ± 0.06± 0.19

5.0 < q2 < 8.0 2.98+0.41−0.39 ± 0.07 3.21+0.44

−0.42 ± 0.08± 0.24

11.0 < q2 < 12.5 4.37+0.64−0.61 ± 0.14 4.71+0.69

−0.65 ± 0.15± 0.36

15.0 < q2 < 17.0 4.20+0.53−0.50 ± 0.11 4.51+0.57

−0.54 ± 0.12± 0.34

17.0 < q2 < 19.0 3.68+0.53−0.50 ± 0.13 3.96+0.57

−0.54 ± 0.14± 0.30

1.0 < q2 < 6.0 2.40+0.30−0.29 ± 0.07 2.58+0.33

−0.31 ± 0.08± 0.19

15.0 < q2 < 19.0 3.75+0.37−0.35 ± 0.12 4.04+0.39

−0.38 ± 0.13± 0.30

� Extrapolation to full q2 range yields:

B(B0s → φµ+µ−)

B(B0s → J/ψφ)

= (7.40+0.42−0.40 stat. ± 0.16sys. ± 0.21extrapol.) · 10−4

B(B0s → φµ+µ−) = (7.97+0.45

−0.43 stat. ± 0.18sys. ± 0.23extrapol. ± 0.60J/ψφ) · 10−7

13 M. Kolpin B0s → φµ+µ− at LHCb

Page 16: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Branching fraction: Comparison to SM

[LHCb-PAPER-2015-023]

]4c/2[GeV2q

5 10 15

]4c

-2G

eV-8

[10

2q

)/d

µµ

φ→

s0B

dB

(

0

1

2

3

4

5

6

7

8

9LHCb

SM pred.SM (wide)DataData (wide)

� SM predictions from Altmannshofer/Straub [arXiv:1411.3161]� Confirmed B to be significantly smaller than SM expectations in low q2 region� Deviation of 3.5σ in 1.0− 6.0GeV2/c4 bin

14 M. Kolpin B0s → φµ+µ− at LHCb

Page 17: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Angular analysis

� Fit performed three-dimensional in cos θl , cos θK and Φ

� Access to eight observables:

I CP-averages FL, S3,4,7

I CP-asymmetries A5,6,8,9

� Angular acceptances derived from simulation, parametrised by Legendre-polynomials

15 M. Kolpin B0s → φµ+µ− at LHCb

Page 18: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Angular analysis

� Angular distributions modelled three-dimensional:

1

dΓ/dq2

d3Γ

d cos θl d cos θK dΦ=

9

32π

[34(1− FL) sin2 θK + FL cos2 θK

+ 14(1− FL) sin2 θK cos 2θl − FL cos2 θK cos 2θl

+ S3 sin2 θK sin2 θl cos 2Φ + S4 sin 2θK sin 2θl cos Φ

+ A5 sin 2θK sin θl cos Φ + As6 sin2 θK cos θl

+ S7 sin 2θK sin θl sin Φ + A8 sin 2θK sin 2θl sin Φ

+ A9 sin2 θK sin2 θl sin 2Φ]

� Background description from B0s mass sidebands, using second

order polynomials

lθcos­1 ­0.5 0 0.5 1

Events

/ 0

.2

0

5

10

15

20LHCb

4c/2 < 2 GeV2q0.1 <

Data

Signal

Background

Kθcos­1 ­0.5 0 0.5 1

Events

/ 0

.2

0

10

20

LHCb

4c/2 < 2 GeV2q0.1 <

Data

Signal

Background

16 M. Kolpin B0s → φµ+µ− at LHCb

Page 19: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Systematics: Angular analysis

1.0 < q2 < 6.0GeV2/c4

FL S3 S4 A5 A6 S7 A8 A9

MC statistics 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

MC corrections 0.002 0.001 0.001 0.000 0.001 0.000 0.001 0.000

data-MC diff. 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000

acc. q2 dependence 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bkg parameterization 0.024 0.003 0.002 0.000 0.002 0.000 0.000 0.000

Bkg statistics 0.007 0.004 0.004 0.003 0.010 0.002 0.003 0.004

S-wave 0.008 0.000 0.002 0.002 0.001 0.001 0.001 0.001

Peaking bkg 0.001 0.001 0.000 0.002 0.001 0.002 0.001 0.002

Quadratic sum 0.027 0.006 0.005 0.004 0.010 0.003 0.004 0.005

Stat. uncertainty +0.09−0.08

+0.12−0.15

+0.14−0.15

+0.14−0.14

+0.14−0.13

+0.12−0.11

+0.15−0.17

+0.13−0.13

� Most systematics related to angular acceptance� FL dominated by background parametrisation� Background statistics dominant uncertainty for most other observables� All systematics small compared to statistical uncertainties

17 M. Kolpin B0s → φµ+µ− at LHCb

Page 20: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Angular analysis: Comparison to SM

]4c/2 [GeV2q5 10 15

LF

­0.5

0.0

0.5

1.0

1.5LHCb

SM pred.SM (wide)DataData (wide)

]4c/2 [GeV2q5 10 15

3S

­1.0

­0.5

0.0

0.5

1.0LHCb

SM pred.SM (wide)DataData (wide)

]4c/2 [GeV2q5 10 15

4S

­1.0

­0.5

0.0

0.5

1.0LHCb

SM pred.SM (wide)DataData (wide)

]4c/2 [GeV2q5 10 15

7S

­1.0

­0.5

0.0

0.5

1.0LHCb

Data

Data (wide)

18 M. Kolpin B0s → φµ+µ− at LHCb

Page 21: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Angular analysis: Comparison to SM

]4c/2 [GeV2q5 10 15

5A

­1.0

­0.5

0.0

0.5

1.0LHCb

Data

Data (wide)

]4c/2 [GeV2q5 10 15

6A

­1.0

­0.5

0.0

0.5

1.0LHCb

Data

Data (wide)

]4c/2 [GeV2q5 10 15

8A

­1.0

­0.5

0.0

0.5

1.0LHCb

Data

Data (wide)

]4c/2 [GeV2q5 10 15

9A

­1.0

­0.5

0.0

0.5

1.0LHCb

Data

Data (wide)

19 M. Kolpin B0s → φµ+µ− at LHCb

Page 22: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Introduction Candidate selection Branching fraction Angular analysis Conclusion

Conclusion

� Deviation in branching fraction for low q2 confirmed

� This fits well into deviations observed in B0 → K∗0µ+µ−

� Reasons for these deviations are being discussed in the theory community(underestimated charmonium loops ↔ New Physics in Wilson coefficients)

� Most precise branching fraction measurement for this channel so far:

B(B0s → φµ+µ−) = (7.97+0.45

−0.43 stat. ± 0.18sys. ± 0.23extrapol. ± 0.60J/ψφ) · 10−7

� Angular observables show good agreement with SM expectations within their uncertainties

20 M. Kolpin B0s → φµ+µ− at LHCb

Page 23: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Backup slides

Page 24: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Relative efficiencies

q2 εJ/ψφtot /εφµ

+µ−

tot 2011 εJ/ψφtot /εφµ

+µ−

tot 2012 εJ/ψφtot /εφµ

+µ−

tot combined0.1− 2.0 1.260± 0.015 1.264± 0.018 1.263± 0.0152.0− 5.0 1.204± 0.015 1.268± 0.019 1.247± 0.0155.0− 8.0 1.084± 0.013 1.145± 0.015 1.125± 0.013

11.0− 12.5 0.963± 0.014 0.974± 0.016 0.970± 0.01315.0− 17.0 1.064± 0.015 1.045± 0.017 1.051± 0.01417.0− 19.0 1.449± 0.031 1.398± 0.035 1.414± 0.027

1.0− 6.0 1.194± 0.012 1.257± 0.015 1.236± 0.01315.0− 19.0 1.171± 0.014 1.145± 0.016 1.153± 0.014

22 M. Kolpin B0s → φµ+µ− at LHCb

Page 25: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Results: angular analysis

q2 bin [ GeV2c−4] FL S3 S4 S7

0.1 < q2 < 2.0 0.20+0.09−0.08 ± 0.02 −0.05+0.13

−0.13 ± 0.01 0.27+0.27−0.20 ± 0.01 0.04+0.12

−0.12 ± 0.00

2.0 < q2 < 5.0 0.68+0.16−0.13 ± 0.03 −0.06+0.19

−0.22 ± 0.01 −0.47+0.28−0.19 ± 0.01 −0.03+0.19

−0.23 ± 0.01

5.0 < q2 < 8.0 0.54+0.10−0.09 ± 0.02 −0.10+0.18

−0.24 ± 0.01 −0.10+0.16−0.15 ± 0.01 0.04+0.16

−0.20 ± 0.01

11.0 < q2 < 12.5 0.29+0.13−0.12 ± 0.04 −0.19+0.20

−0.25 ± 0.01 −0.47+0.20−0.30 ± 0.01 0.00+0.16

−0.17 ± 0.01

15.0 < q2 < 17.0 0.23+0.09−0.08 ± 0.02 −0.06+0.17

−0.16 ± 0.01 −0.03+0.15−0.15 ± 0.01 0.12+0.16

−0.13 ± 0.01

17.0 < q2 < 19.0 0.40+0.13−0.15 ± 0.02 −0.07+0.23

−0.25 ± 0.02 −0.39+0.24−0.22 ± 0.02 0.20+0.29

−0.21 ± 0.01

1.0 < q2 < 6.0 0.63+0.09−0.08 ± 0.03 −0.02+0.12

−0.15 ± 0.01 −0.19+0.14−0.15 ± 0.01 −0.03+0.14

−0.14 ± 0.00

15.0 < q2 < 19.0 0.29+0.07−0.06 ± 0.02 −0.09+0.11

−0.11 ± 0.01 −0.14+0.11−0.11 ± 0.01 0.13+0.11

−0.11 ± 0.01

q2 bin [ GeV2c−4] A5 A6 A8 A9

0.1 < q2 < 2.0 −0.02+0.13−0.13 ± 0.00 −0.19+0.15

−0.15 ± 0.01 0.10+0.14−0.14 ± 0.00 0.03+0.14

−0.14 ± 0.01

2.0 < q2 < 5.0 0.09+0.26−0.23 ± 0.01 0.09+0.19

−0.18 ± 0.02 −0.19+0.28−0.21 ± 0.01 −0.13+0.23

−0.25 ± 0.01

5.0 < q2 < 8.0 0.04+0.17−0.16 ± 0.01 −0.01+0.14

−0.12 ± 0.01 −0.12+0.17−0.19 ± 0.01 −0.03+0.17

−0.16 ± 0.01

11.0 < q2 < 12.5 0.08+0.24−0.26 ± 0.01 −0.16+0.16

−0.18 ± 0.01 0.01+0.15−0.15 ± 0.01 −0.02+0.16

−0.16 ± 0.01

15.0 < q2 < 17.0 0.02+0.12−0.13 ± 0.01 0.01+0.12

−0.17 ± 0.01 0.08+0.16−0.18 ± 0.01 0.21+0.18

−0.12 ± 0.01

17.0 < q2 < 19.0 0.13+0.28−0.28 ± 0.01 −0.04+0.18

−0.18 ± 0.01 −0.16+0.23−0.29 ± 0.01 −0.02+0.17

−0.19 ± 0.01

1.0 < q2 < 6.0 0.20+0.14−0.13 ± 0.00 0.08+0.12

−0.11 ± 0.01 −0.00+0.15−0.17 ± 0.00 −0.01+0.13

−0.13 ± 0.01

15.0 < q2 < 19.0 0.11+0.10−0.10 ± 0.00 0.00+0.10

−0.11 ± 0.01 0.03+0.12−0.12 ± 0.00 0.12+0.11

−0.09 ± 0.00

23 M. Kolpin B0s → φµ+µ− at LHCb

Page 26: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Angular fit projections

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

5

10

15

20LHCb

4c/2 < 2 GeV2q0.1 <

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30LHCb

4c/2 < 5 GeV2q2 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

LHCb4c/2 < 2 GeV2q0.1 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30LHCb

4c/2 < 5 GeV2q2 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

LHCb4c/2 < 2 GeV2q0.1 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

LHCb4c/2 < 5 GeV2q2 <

24 M. Kolpin B0s → φµ+µ− at LHCb

Page 27: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Angular fit projections

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30 LHCb4c/2 < 8 GeV2q5 <

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

LHCb4c/2 < 12.5 GeV2q11 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30

40LHCb

4c/2 < 8 GeV2q5 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

5

10

15

20LHCb

4c/2 < 12.5 GeV2q11 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

30LHCb

4c/2 < 8 GeV2q5 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

LHCb4c/2 < 12.5 GeV2q11 <

25 M. Kolpin B0s → φµ+µ− at LHCb

Page 28: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Angular fit projections

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30LHCb

4c/2 < 17 GeV2q15 <

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

5

10

15 LHCb4c/2 < 19 GeV2q17 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

LHCb4c/2 < 17 GeV2q15 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

5

10

15 LHCb4c/2 < 19 GeV2q17 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

LHCb4c/2 < 17 GeV2q15 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

5

10

15LHCb

4c/2 < 19 GeV2q17 <

26 M. Kolpin B0s → φµ+µ− at LHCb

Page 29: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

Angular fit projections

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30

40 LHCb4c/2 < 6 GeV2q1 <

lθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30 LHCb4c/2 < 19 GeV2q15 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30

40LHCb

4c/2 < 6 GeV2q1 <

Kθcos1− 0.5− 0 0.5 1

Eve

nts

/ 0.2

0

10

20

30

40 LHCb4c/2 < 19 GeV2q15 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

30

40LHCb

4c/2 < 6 GeV2q1 <

[rad]Φ2− 0 2

Eve

nts

/ 0.6

3

0

10

20

30LHCb

4c/2 < 19 GeV2q15 <

27 M. Kolpin B0s → φµ+µ− at LHCb

Page 30: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: FL

LF0.0 0.1 0.2 0.3 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

LF0.4 0.6 0.8

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

LF0.4 0.6 0.8

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

LF0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

LF0.1 0.2 0.3 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

LF0.2 0.4 0.6

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

LF0.4 0.5 0.6 0.7 0.8

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

LF0.4 0.5 0.6 0.7 0.8

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

28 M. Kolpin B0s → φµ+µ− at LHCb

Page 31: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: S3

3S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

3S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

3S0.5− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

3S0.6− 0.4− 0.2− 0.0− 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

3S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

3S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

3S0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

3S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

29 M. Kolpin B0s → φµ+µ− at LHCb

Page 32: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: S4

4S0.2− 0.0 0.2 0.4 0.6

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

4S1.0− 0.5− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

4S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

4S0.8− 0.6− 0.4− 0.2− 0.0−

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

4S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

4S0.5− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

4S0.4− 0.2− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

4S0.4− 0.2− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

30 M. Kolpin B0s → φµ+µ− at LHCb

Page 33: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: A5

5A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

5A0.0 0.5

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

5A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

5A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

5A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

5A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

5A0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

5A0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

31 M. Kolpin B0s → φµ+µ− at LHCb

Page 34: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: A6

6A0.6− 0.4− 0.2− 0.0− 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

6A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

6A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

6A0.6− 0.4− 0.2− 0.0− 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

6A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

6A0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

6A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

6A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

32 M. Kolpin B0s → φµ+µ− at LHCb

Page 35: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: S7

7S0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

7S0.4− 0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

7S0.4− 0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

7S0.4− 0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

7S0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

7S0.2− 0.0 0.2 0.4 0.6

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

7S0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

7S0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

33 M. Kolpin B0s → φµ+µ− at LHCb

Page 36: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: A8

8A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

8A0.0 0.5

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

8A0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

8A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

8A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

8A0.5− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

8A0.4− 0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

8A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

34 M. Kolpin B0s → φµ+µ− at LHCb

Page 37: Bs0 +- at LHCb - DPF, Ann Arbor, Michigan · I˘1012bb pairs/year I˘1013cc pairs/year Excellent momentum resolution of 0:4 0:6% allows for very precise analyses Strong boost leads

Relative efficiencies Angular fit results Angular fit projections Feldman-Cousins scans

FC scans: A9

9A0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 2 GeV2q0.1 <

9A0.5− 0.0

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 5 GeV2q2 <

9A0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 8 GeV2q5 <

9A0.4− 0.2− 0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 12.5 GeV2q11 <

9A0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 17 GeV2q15 <

9A0.4− 0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q17 <

9A0.2− 0.0 0.2

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 6 GeV2q1 <

9A0.0 0.2 0.4

Con

fide

nce

Lev

el

0.0

0.2

0.4

0.6

0.8

1.0

LHCb4c/2 < 19 GeV2q15 <

35 M. Kolpin B0s → φµ+µ− at LHCb