BranchLine Coupler - Quadraturedl.edatop.com/mte/ads/edatop.com_Hybrid.pdfSheet 6 of 13 6 (3) Lumped...

15
Sheet 1 of 13 1 (1) BranchLine Coupler - Quadrature Zo 2 Zo λ/4 90° NOTE This device is sensitive to load mismatches. (2) Lange Coupler (Quadrature) λ/4 Input Directive Coupled Output φ90° Broadband coupling 3dB 20dB Quadrature To calculate the finger dimensions and spacings, we need to calculate the even and odd mode line impedances:- 0 ) 1 /( ) 1 ( 2 8 9 3 4 0 0 ) 1 /( ) 1 ( 2 8 9 3 4 0 10 2 2 20 t coefficien Coupling Z C C C C C o Z Z C C C C C e Z C + + = + + = = Armed with these line impedances the finger widths and spacings can be read from the graph plotting coupled micro-strip line data against even and odd mode line impedances.

Transcript of BranchLine Coupler - Quadraturedl.edatop.com/mte/ads/edatop.com_Hybrid.pdfSheet 6 of 13 6 (3) Lumped...

  • Sheet

    1 of 13

    1

    (1) BranchLine Coupler - Quadrature Zo

    2

    Zo

    λ/4 90°

    NOTE This device is sensitive to load mismatches. (2) Lange Coupler (Quadrature)

    λ/4 Input Directive

    CoupledOutput

    φ90° Broadband coupling

    3dB → ≈20dB

    Quadrature

    To calculate the finger dimensions and spacings, we need to calculate the even and odd mode line impedances:-

    0)1/()1(2

    89340

    0)1/()1(2

    89340

    10

    2

    2

    20tcoefficien Coupling

    ZCCCCCoZ

    ZCCCCCeZ

    C

    −+−−+

    =

    +−−+−

    =

    =

    Armed with these line impedances the finger widths and spacings can be read from the graph plotting coupled micro-strip line data against even and odd mode line impedances.

  • Sheet

    2 of 13

    2

    Even and odd-mode characteristic impedance design data for coupled micro-strip lines. Example Lange coupler for use at 7.5GHz, 3dB split into 50 ohms. Coupler made from Alumina 0.508mm thick, Dielectric constant 8.8. Determine S and W of fingers.

    ( )

    ( )Ω=

    −+

    −−+=

    Ω=+−

    −+−=

    ==

    52.6 50*)707.01/()707.01(707.0*2

    707.0*893707.0*40

    176.2 50*)707.01/()707.01(707.0*2

    707.0*893707.0*40

    0.707 10

    2

    2

    20-3(dB)

    oZ

    eZ

    C

  • Sheet

    3 of 13

    3

    ~176ohms

    ~52ohms

    From the graph we read S/d ~ 0.075 and W/d = 0.08 The thickness of substrate = 0.508mm so the dimensions of the fingers are:- Width = 0.04mm and Spacing = 0.038mm. One quarter wavelength on this material is 4.15mm long (50 ohm line is 0.5mm wide). To check our rough design we can enter the parameters into the ADS MLANGE model and analyse.

  • Sheet

    4 of 13

    4

    ADS simulation setup

    MLANGLang1

    L=4.35 mmS=0.0381 mmW=0.0406 mmSubst="MSub1"

    S_ParamSP1

    Span=800 MHzCenter=7.5 GHz

    S-PARAMETERS

    TermTerm4

    Z=50 OhmNum=4

    TermTerm3

    Z=50 OhmNum=3

    TermTerm2

    Z=50 OhmNum=2

    TermTerm1

    Z=50 OhmNum=1MSUB

    MSub1

    Rough=0 mmTanD=0T=0 mmHu=1.0e+033 mmCond=1.0E+50Mur=1Er=8.8H=0.508 mm

    MSub

    The Lange length was increased by 0.2mm to centre the response shown below:-

  • Sheet

    5 of 13

    5

    m1freq=7.501GHzdB(S(4,1))=-2.963

    7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

    -2.980

    -2.975

    -2.970

    -2.965

    -2.960

    freq, GHz

    dB(S

    (4,1

    ))

    m1

    m3freq=7.502GHzphase(S(4,1))=-0.129

    7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

    -4

    -2

    0

    2

    4

    freq, GHz

    phas

    e(S

    (4,1

    ))

    m3

    m2freq=7.502GHzdB(S(3,1))=-3.081

    7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

    -3.085

    -3.080

    -3.075

    -3.070

    -3.065

    freq, GHz

    dB(S

    (3,1

    ))

    m2

    m4freq=7.501GHzphase(S(3,1))=-90.053

    7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

    -94

    -92

    -90

    -88

    -86

    freq, GHz

    phas

    e(S

    (3,1

    ))m4

  • Sheet

    6 of 13

    6

    (3) Lumped Quadrature (90 degree) Coupler This lumped element hybrid provides a 3dB split with a 90 degree phase shift. It’s bandwidth is very narrow being approximately 1-2%. The element values are given by:-

    C1L

    1 Co ; Z.11

    R L ; Z1 1 2 −=+

    ==ωωωω C

    C

    1 3

    L 2C 2C

    4 2

    L

    C

    2C 2C

    C

    (4) Lumped 180 degree Coupler This lumped element hybrid provides a 3dB split with a 180 degree phase shift. It’s bandwidth is approximately 20%. The element values are given by:-

    1.414Zo L C1

    == ωω

    1 3

    L 2C 2C

    4 2

    C 2C 2C

    L

    L

    L

  • Sheet

    7 of 13

    7

    Wilkinson Power Divider & Passive Dividers (In Phase) Microstrip The wilkinson power splitter provides a 3-dB split with no phase shift. In microstrip form the two arms are usually made from quarter wavelength lines with an impedance of 70.7 ohms in a 50-ohm system.

    2.Zo

    Zo. 2

    λ/4

    Zo

    Zo

    Zo

    Lumped The bandwidth of the lumped Wilkinson is approximately ½ of the micro-strip version.

    2

    L

    C

    1

    3

    2C 2C C

    L

    2R

    [C] R22

    1 C ; [H] 2R L

    Zo*2 R

    ff ππ==

    =

  • Sheet

    8 of 13

    8

    Passive (6dB power split) A resistive splitter provides a broad-band power split, but has a greater insertion loss through each port (6dB) and only has 6dB of isolation between output ports.

    2

    1

    3

    R/3R/3

    R/3

    R

    R

    R

    Hybrid Ring

    λ/4

    λ/4

    λ/4

    3λ/4

    A D

    B CInput outputs

    at A B C D

    A 0 1∠-90° 0 1∠-270°

    B 1∠-90° 0 1∠-90° 0

    C 0 1∠-90° 0 1∠-90°

    D 1∠-270° 0 1∠-90° 0

    antiphase in phase

    Signal Flow Graphs 2 - Port B1 = S11.a1 + S12.a2 B2 = S21.a1 + S22.a2

  • Sheet

    9 of 13

    9

    S11 S22

    S12

    S21

    b1 a2

    a1 b2

    “Value” of outgoing wave at each node ie b1 or b2 is equal to :- ∑ (branch value) x ingoing node ∴ b1 = S11.a1 + S12.a2 b2 = S21.a1 + S12.a2 Couplers (1) Microstrip Backward Coupler

    λ/4 Input Output

    Coupled Directive (Isolated)

    We use a similar design process for designing this coupler as used with the Lange coupler in that we need to calculate the odd and even mode line impedances given a particular coupling coefficient:-

    CCZoZ

    CCZeZ

    C

    +−

    =

    −+

    =

    =

    1100

    1100

    10 20tcoefficien Coupling

  • Sheet

    10 of 13

    10

    And once we have found the line impedances we can again read off the values of W and S from the Normalised even and odd mode characteristic impedance design data for edge coupled strip-line graph. Note This type of coupler can only be used for loose couplings, as the track spacing becomes too narrow at low coupling factors to be manufactured. Example:- Design a 15dB Microstrip directional coupler for 7.5GHz, using Alumina substrate 0.508mm thick and a dielectric constant of 8.8.

    41.8ohms 1778.011778.01*500

    59.8ohms 1778.011778.01*500

    0.1778 10 20-15

    =+−

    =

    =−+

    =

    ==

    oZ

    eZ

    C

    Using the graph below we can read off the values of S and W

    ~60ohms

    ~42ohms

  • Sheet

    11 of 13

    11

    From the graph we read off S/d = 0.85, therefore S = 0.508*0.85 = 0.43mm And W/d = 0.9, therefore W = 0.508*0.9 = 0.46mm. ¼ Wavelength @ 3GHz in this material = 10.5mm These values were entered into the ADS model for a coupled line namely and analysed. ADS schematic for analysing coupler circuit.

    TermTerm4

    Z=50 OhmNum=4

    MCLINCLin1

    L=4.45 mmS=0.4 mmW=0.46 mmSubst="MSub1"

    S_ParamSP1

    Step=Stop=Start=

    S-PARAMETERS

    TermTerm3

    Z=50 OhmNum=3

    TermTerm2

    Z=50 OhmNum=2Term

    Term1

    Z=50 OhmNum=1

  • Sheet

    12 of 13

    12

    Analysed results

    m1freq=7.501GHz dB(S(2,1))=-0.188 m1freq=7.501GHz dB(S(2,1))=-0.188

    7.0 7.2 7.4 7.6 7.8 8.0-0.1885 -0.1880 -0.1875 -0.1870 -0.1865

    freq, GHz

    dB(S(2,1))

    m1

    m2 freq=7.495GHzdB(S(3,1))=-15.295 m2 freq=7.495GHzdB(S(3,1))=-15.295

    7.0 7.2 7.4 7.6 7.8 8.0-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10

    freq, GHz

    dB(S(3,1))

    m2

    Coupled Output

    m3freq=7.507GHz dB(S(4,1))=-20.837 m3freq=7.507GHz dB(S(4,1))=-20.837

    7.0 7.2 7.4 7.6 7.8 8.0 -21.6

    -21.4

    -21.2

    -21.0

    -20.8

    -20.6

    -20.4

    -20.2

    freq, GHz

    dB(S(4,1))

    m3

    Directivity

    Eqn Isolation=m3+m2 Isolation-36.132

    Through path

    (2) Lumped Coupler (loosely coupled) This lumped approximation of the microstrip backward wave coupler gives ~ 10% bandwidth for 20dB directivity.

    L

    C

    Input

    C

    Cc

    2C

    L Isolated

    Cc

    L

    L

    Coupled

    Output

  • Sheet

    13 of 13

    13

    15dB- CF Zo.2

    0.18 Cc Note

    Zo.210 ~ Cc ;

    Zo.21 C ;

    2Zo L

    (CF/20)

  • 专注于微波、射频、天线设计人才的培养 易迪拓培训 网址:http://www.edatop.com

    A D S 视 频 培 训 课 程 推 荐

    ADS–Advanced Design System 是由原美国安捷伦科技(现更名为是德科技)推出的微波射频电路、

    通信系统和 MMIC/RFIC 仿真设计软件,其功能强大、应用广泛,被国内高校、科研院所和大型科技

    公司使用广为使用。掌握 ADS 无疑能提升相关设计领域工程师的技术实力、提高工作效率。

    为了帮助工程技术人员更好、更快的学习掌握 ADS 的使用,易迪拓培训(www.edatop.com)特聘多

    年 ADS 使用经验的资深专家精心制作推出了多套 ADS 视频培训课程,由浅入深、全面系统地讲授了

    ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的仿真设计和应用操作。其中,视频课

    程多以设计实例边操作边讲解,工程实践强,且直观易学,能够帮助您在最短的时间内学会使用 ADS,

    并把 ADS 真正应用到设计研发工作中去...

    ADS 学习培训课程套装

    该套装是易迪拓培训和微波 EDA 网联合推出的迄今为止国内最全面、最

    权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有

    多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解,并多

    结合设计实例,由浅入深、详细而又全面地讲解了 ADS 在微波射频电路

    设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间

    内学会使用 ADS,迅速提升个人技术能力,把 ADS 真正应用到实际研发

    工作中去,成为 ADS 设计专家...

    课程网址: http://www.edatop.com/peixun/ads/13.html

    更多 ADS 视频培训课程:

    两周学会 ADS — 中文视频培训教程 最新版 ADS 的入门和进阶培训课程,适合 ADS2011 ~ ADS2014 以及更新版本 ADS 的学习。是

    ADS 初学者的最佳课程,网址:http://www.edatop.com/peixun/ads/14.html

    ADS 射频模拟电路设计详解 — 中文视频教程 本课程基于新版的 ADS 软件,由李明洋老师讲授,讲解了 ADS 在微波射频模拟电路设计中的具

    体应用,视频课程,直观易学,网址:http://www.edatop.com/peixun/ads/15.html

    ADS 高低阻抗线微带滤波器设计(ADS2014 版)— 中文视频教程 该门课程旨在帮助学员快速、全面、透彻地理解高低阻抗线微带滤波器的设计原理和设计步骤,

    帮助学员学会并掌握使用 ADS 软件仿真分析和优化设计微带线滤波器的实际操作;课程网址:

    http://www.edatop.com/peixun/filter/128.html

    更多 ADS 培训课程,敬请浏览:http://www.edatop.com/peixun/ads

  • `

    专注于微波、射频、天线设计人才的培养 易迪拓培训 网址:http://www.edatop.com

    关于易迪拓培训:

    易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,一直致力和专注

    于微波、射频、天线设计研发人才的培养;后于 2006 年整合合并微波 EDA 网(www.mweda.com),

    现已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计相

    关培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电

    子工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、

    研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电

    子等多家台湾地区企业。

    我们的课程优势:

    ※ 成立于 2004 年,10 多年丰富的行业经验

    ※ 一直专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求

    ※ 视频课程、既能达到现场培训的效果,又能免除您舟车劳顿的辛苦,学习工作两不误

    ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

    联系我们:

    ※ 易迪拓培训官网:http://www.edatop.com

    ※ 微波 EDA 网:http://www.mweda.com

    ※ 官方淘宝店:http://shop36920890.taobao.com

    专注于微波、射频、天线设计人才的培养

    官方网址:http://www.edatop.com 易迪拓培训 淘宝网店:http://shop36920890.taobao.com

    ExampleMicrostripLumpedHybrid RingCouplers