Branching Ratios from and Lambda B · B S 0 0 Branching Ratios from and Λb Matthew Martin Johns...

24
S B 0 0 b Λ and Branching Ratios from Matthew Martin Johns Hopkins University for the CDF collaboration Flavor Physics & CP Violation Ecole Polytechnique, Paris, France June 2003

Transcript of Branching Ratios from and Lambda B · B S 0 0 Branching Ratios from and Λb Matthew Martin Johns...

SB0 0bΛandBranching Ratios from

Matthew MartinJohns Hopkins University

for the CDF collaboration

Flavor Physics & CP ViolationEcole Polytechnique, Paris, France

June 2003

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Outline:• Motivation• Branching Ratios at CDF• Results from:

B h h+ −− →

0S SB D π− +− →

0b c π

+ −− Λ →Λ

• Conclusions

M.Martin, Johns Hopkins for CDF, FPCP June 2003

CDF plans a rich program of B-Physics:

• Precision study of the :– BR’s, mass and lifetime– Plan to observe or rule out SM mixing– Measure – Measure

• The world’s largest sample:– BR’s, mass and lifetime– CP Violation searches

• This program just beginning…

0bΛ

0SB

SB∆Γ

0SB

γ

M.Martin, Johns Hopkins for CDF, FPCP June 2003

What we know: 0SB

PDG 2002:

New results for:

0S sB D π− +→

0SB K K+ −→

NEW !

NEW !

M.Martin, Johns Hopkins for CDF, FPCP June 2003

What we know: 0bΛ

PDG 2002:

NEW !

Nearly New results for: 0b c π

+ −Λ → Λ

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Hadronic Level 2 Trigger:

-500 -250 0 250 500silicon trigger impact parameter (µm)

Trac

ks p

er 1

0 µm

0

40

00

80

00

0 10 20 30 40 50Silicon trigger latency (µs)

Even

ts p

er 0

.5 µ

s0

1000

0

200

00

35µm ⊕ 33µmresol ⊕ beam⇒ σ = 48µm •Interaction rate

•Reduced to on Level 2 output.

•Critical component : SVT impact parameter cuts.

•2 Tracks with

2.5MHz

300Hz

120IP mµ>

~~

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Branching Ratios at CDF:• Compare search mode to kinematically similar mode, eg:

• Cancellation:

– Systematics in Trigger and Reconstruction Efficiency.• Production fractions ( ):

– LEP/CDF Combined.– Aim to measure at CDF.

• Daughter BR’s :– Rely on existing measurements.– Future : CLEO-C

• Plan to normalise to same channel Semileptonic

0 0

0 0

0

0

( )( )( ) ( )

d b

b d

Bb baryon b c

b d d cB

N BR D Kf BRf BR B D N BR pK

ε π πσ πσ π ε π

− − + ++ −Λ

+ − + − +Λ

× × →× × Λ →Λ=

× × → × × Λ →

bσ−

f

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Normalisation mode:

Candidate Mass (GeV)4.6 4.8 5 5.2 5.4 5.6

even

ts (

10 M

eV/b

in)

0

50

100

150

200

250

300

April 3rd 2003 CDF Run 2 PRELIMINARY-1 4 pb±65

+π -(*) D→dB-π -π + K→-D

and c.c

44 events± Yield: 505 - D

0.002 GeV± Uncorr. Mean: 5.267

2 MeV± Sigma: 23

• Same mode for:

• Similar cuts to signal

• also visible.

0dB D π ±→ m

0S SB D 𠱕 → m

0b c π

+ −• Λ → Λ

*D

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Reconstructing:

Candidate Mass (GeV)4.6 4.8 5 5.2 5.4 5.6 5.8

even

ts (

20 M

eV

/bin

)

0

5

10

15

20

25

30

35

40

April 3rd 2003 CDF Run 2 PRELIMINARY-1 4 pb±65

sD*sD

π (*)s D→sB

π ϕ →sD KK→ ϕ

11 events± Yield: 44 sD

5 MeV±Uncorr. Mean: 5361

4 MeV±Sigma: 20

0S SB D π ±→ m

( )1.013 1.028K Km GeV+ −• < <

sD•

( ) 4t sp D GeV• >

( )2D-Dist Prim 400sD mµ• → >

( )2D-Flight-Dist 100sB mµ• >

( )Impact-Par 100sB mµ• <

( ) 4t sp B GeV• >

Important Cuts:2 Tracks required to be Trigger Tracks.

mass constrained to

PDG value

First Observation!

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Systematics:s

d

B

B

NN

σ

0.008±

0.008±sB

dB

ParticleUncertainty in due to fit.sB

N←dB

N

( )/s dB Bσ ε εSource

s

d

B

B

εε

← Uncertainty in0.001+XFT 1-miss( )Due to MC

0.08− − − −Min b quark tp

0.02 0.04− +B lifetimes

0.00 0.04+D lifetimes BR Total Syst: 0.07±Total 0.08 0.06− +

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Results:( )

0.44 0.11( ) 0.11( ) 0.07( )( )

s s s

d d

f BR B Dstat BR syst

f BR B Dππ

× →= ± ± ±

× →

From PDG: 0.273 0.034 :s

d

ff= ±

( ) 1.61 0.40( ) 0.40( ) 0.26( ) 0.20( )

s s s

d d

BR B D fstat BR syst PDGBR B D f

ππ

→= ± ± ± ± →

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Reconstructing 0b c π

+ −Λ →Λ

Important cuts:

( ) 2tp P GeV• >

( )0from 2t bp GeVπ• Λ >

( )0 225bct mµ• Λ >

( )0from 65c bct mµ• Λ Λ > −

( )0Impact-Par 100b mµ• Λ <

( )( )2.265 2.303cm GeV• < Λ <

Confirm Trigger•

( ) 4.5t cp GeV±• Λ >

( )0 7.5t bp GeV• Λ >

M.Martin, Johns Hopkins for CDF, FPCP June 2003

b Reflections:

•3 Types of reflection:

•4-Prong Decays

(eg )

•Other decays

•Everything else.

•Normalise Reflection shape to measured

yield.

0dB D π ±→ m

0bΛ

0dB D π ±→ m

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Effect of dE/dX:N o d E

d xp ro to n d E

d x

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Expected Systematics:

Total 6 5+ −

( )Size %SourceB lifetime negligible

0 lifetimebΛ 4 5+ −

Dalitz structurecΛ 1±1+b spectrumtp

2±0 , polarisationb cΛ Λ

XFT 1 miss 3+3+Phi efficiency

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Current Status:• Finalising reflection model

0

0

( )( )

baryon b c

d d

f BRf BR B D

ππ

+ −

+ −

× Λ →Λ

× →• measurement for EPS

• Systematic uncertainty dominated by:

( )( ) 25%cBR pKσ π+ − +Λ → ~

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Prospects for improving normalisation:

]2

)[GeV/cππM(K

1.7 1.8 1.9 2

2E

ven

ts/5

MeV

/c

0

100

200

300

400

500

600X-D+µ →B

60±) = 2061 ±

N(D

-1 4 pb± = 65 L dt ∫CDF Run II Preliminary

]2

)[GeV/cπ)-M(KππM(K

0.14 0.145 0.15 0.155 0.16

2E

ve

nts

/0.2

Me

V/c

0

20

40

60

80

100

120X*-D+µ →B

-π0 D→ 27±) = 707

±*N(D

-1 4 pb± = 65 L dt ∫CDF Run II Preliminary

Note : Hadronic Trigger Path

M.Martin, Johns Hopkins for CDF, FPCP June 2003

B h h+ −→• required to be trigger tracks.

• Optimise offline Cuts on MC signal, data sideband:

h h+ −

1 2 5.5t tp p GeV• + >

( )1 2, 150IP IP mµ• >

( )2D-Flight-Dist 300B mµ• >

80BIP mµ• <

• Isolation:

•Efficiency from data

tB daughters

tAll Tracks

pI

p−=∑∑

•Defined in a cone about the B axis:

( )/B J Kψ± ±→

Reconstructing

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Different signal contributions:

dEdx

• Total width due to several different contributions.

• on top of each other

• Disentangle using:

• Invt Mass

• Relative momentum

• PID

,d sB B K Kππ→ →PID essential⇒

← Most Important

{KinematicSeparation

Monte Carlo:

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Kinematic separation:• Choose 2 variables:

• Signal Likelihood:2( )1 1exp ( )

22M MF Pππ α α

σπσ

− = −

dB π π→

0 /dB K Kπ π+ − − +→ 0 /dB K Kπ π− + + −→

/sB K Kπ π− + + −→sB K K→

/sB K Kπ π+ − − +→

Mππ•

11

2

1 p qp

α

• = −

1 2where: p p<

Monte Carlo:

M.Martin, Johns Hopkins for CDF, FPCP June 2003

• calibrated on sample

• Bachelor charge identifies daughters.

π0D

( ) ( )( ) ( )( )2

1, 1,1 1exp 1 2

22

ij jj

i j jii

M MF P G ID G IDππ αµ σ µ σα

σσ π

− = −

dEdx

*D

/dE dxParticle ID :

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Systematics:

/dE dx +0.05 -0.05 +0.01 -0.01*

+0.005 -0 .006

d

d

BB K

πππ

→→

( )dirC PA Kπ

BC K Shape +0.019 -0.015 +0.002 -0.009

( )dM B +0.0003 -0.0003+0.004 -0.004

( )sM B +0.002 -0.003

( )Mσ +0.004 -0.009 +0.006 -0.005

M C stat +0.002 -0.002 +0.007 -0.007

* new calibration will reduce systematic

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Current Results:0

0

( ) 0.26 0.11( ) 0.055( )( )

d

d

BR B stat systBR B K

πππ

→= ± ±

( )dirCPA = 0.02 0.15(stat) 0.17(syst)Kπ ± ±

Yields:

0dB Kπ→

0dB ππ→

0sB Kπ→

0sB KK→

3 11(stat)±

90 17(stat)±

148 17(stat)±

39 14(stat)±

PDG 2002:0

0

( ) 0.13 0.010.29 0.12 0.02( )d

d

BR BBR B K

πππ

→ + += − −→

M.Martin, Johns Hopkins for CDF, FPCP June 2003

Conclusions:

• First measurement of relative BR • First observation of

– Measurement of validates extraction procedure

• Expect and for EPS• First steps toward an exciting programme in

physics and physics (mixing and CPV) .0bΛ

0SB

• CDF has robust signals in:0b cπ

+ −Λ →Λ0S SB D π±→ m

sB K K→••

0S SB D π ±→ m

sB K K→0

0

( )( )

d

d

BR BBR B K

πππ

→→

0b c π

+ −Λ →ΛsB K K→