Boulder School for Condensed Matter and Materials Physics ...

20
Boulder School for Condensed Matter and Materials Physics Laurette Tuckerman PMMH-ESPCI-CNRS [email protected] Hydrodynamic Instabilities: A Zoo of Instabilities

Transcript of Boulder School for Condensed Matter and Materials Physics ...

Boulder School forCondensed Matter and Materials Physics

Laurette TuckermanPMMH-ESPCI-CNRS

[email protected]

Hydrodynamic Instabilities:

A Zoo of Instabilities

Taylor-Couette flow

R. Tagg T.T. Lim

U = Uθ(r) =⇒

−1

rU2

θ = −1

ρdPdr

0 = ν ddr

(

1

rddr

(rUθ)))

Laminar Couette profile: Uθ = Ar +B

r

Rayleigh criterion: laminar Couette profile stable if

d

dr(rUθ)

2 > 0

e.g. if outer cylinder rotates and inner cylinder is stationary

Viscometer (Couette) < Pattern formationstableΩ2 ↑ unstableΩ1 ↑

Taylor-Couette flow

for Ω2 = 0, increasingΩ1

ModulatedLaminar Couette Taylor Vortex Wavy Vortex Wavy Vortex

UC(r) UTV (r, z) UWV (r, θ, z, t) UMWV (r, θ, z, t)

First success of linear stability analysis

Taylor, 1923

Andereck, Liu, Swinney, 1985

wavy vortices twists spiral turbulence

Marangoni-Benard ConvectionTemperature

gradient=⇒

density gradient =⇒ Rayleigh-Benardsurface tension gradient =⇒ Marangoni-Benard

Rayleigh was mistaken about cause of Benard’s observations

Hexagons require breaking of up-down symmetry

Cylinder wake: Benard-von KarmanIdeal flow with downstream recirculation

von Karman vortex street (Re ≥ 46)

Laboratory experiment(Taneda, 1982)

Off Chilean coastpast Juan Fernandez islands

von Karman vortex street: Re = U∞d/ν ≥ 46

spatially: temporally:two-dimensional(x, y) periodic, St = fd/U∞

(homogeneous inz) appears spontaneously

U2D(x, y, t mod T )

Stability analysis of von Karman vortex street

2D limit cycle U2D(x, y, tmod T ) obeys:

∂tU2D = −(U2D · ∇)U2D − ∇P2D +1

Re∆U2D

Perturbation obeys:

∂tu3D = −(U2D(t) · ∇)u3D − (u3D · ∇)U2D(t) − ∇p3D +1

Re∆u3D

Equation homogeneous inz, periodic in t=⇒

u3D(x, y, z, t) ∼ eiβzeλβtfβ(x, y, t mod T )

Fix β, calculate largestµ = eλβT via linearized Navier-Stokes

From Barkley & Henderson, J. Fluid Mech. (1996)

mode A:Rec = 188.5

βc = 1.585 =⇒ λc ≈ 4

mode B:Rec = 259

βc = 7.64 =⇒ λc ≈ 1

Temporally: µ = 1 =⇒

steady bifurcation to limit cycle with same periodicity asU2D

Spatially: circle pitchfork (any phase in z)

mode A atRe = 210 mode B atRe = 250

From M.C. Thompson, Monash University, Australia(http://mec-mail.eng.monash.edu.au/∼mct/mct/docs/cylinder.html)

Re=47 Re=1882D =⇒ 2D =⇒ 3D

steady Hopf oscillatory circle PF oscillatory

Faraday instability

Faraday (1831): Vertical vibration of fluid layer =⇒ stripes, squares, hexagons

In 1990s: first fluid-dynamical quasicrystals:

Edwards & Fauve Kudrolli, Pier & GollubJ. Fluid Mech. (1994) Physica D (1998)

Hexagonal patterns in Faraday instability

From Perinet, Juric & Tuckerman, J. Fluid Mech. (2009)

Oscillating frame of reference=⇒ “oscillating gravity”

G(t) = g (1 − a cos(ωt)) (1)

G(t) = g (1 − a [cos(mωt) + δ cos(nωt + φ0)]) (2)

Flat surface becomes linearly unstable for sufficiently higha

Consider domain to be horizontally infinite (homogeneous)=⇒solutions exponential/trigonometric inx = (x, y)

Seek bounded solutions=⇒ trigonometric: exp(ik · x)

Height ζ(x, y, t) =∑

k

eik·xζk(t)

Oscillating gravity =⇒ temporal Floquet problem,T = 2π/ω

ζk(t) =∑

j

eλjktf j

k(t)

Height ζ(x, y, t) =∑

k

eik·xζk(t)

Ideal fluids (no viscosity), sinusoidal forcing=⇒ Mathieu eq.

∂2t ζk + ω2

0 [1 − a cos(ωt)] ζk = 0

ω20 combinesg, densities, surface tension, wavenumberk

ζk(t) =2

j=1

eλjktf j

k(t)

Re(λjk) > 1 for somej, k=⇒ ζk ր=⇒ flat surface unstable

=⇒ Faraday waves with wavelength2π/k

Im(λjk) eλT waves period

0 1 harmonic same as forcingπ/ω −1 subharmonic twice forcing period

Floquet functions

XXXXXXXXXXX

XXXX

XXXXXXX

X

X

XXXXXXXXXXXXXXXXXXXXXXXXX

XXX

X

X

XXXXX

XXXXXXXXXXXX

XXXX

XXXXXXX

X

X

XXXXXXX

t / T

(ζ-<

ζ>

)/

0 1 2 3

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

λ

XXXXXXXXXXXXXXXXX

X

X

X

X

X

X

XXXX

XXXXXXXX

XXXXXXXXXXXX

X

X

X

X

X

X

XXXX

XXXXXXXX

XXXXXXXXXXXX

X

X

X

X

X

X

XXXX

XXXt / T

(ζ-<

ζ>

)/

0 1 2 3

-0.002

0

0.002

0.004

0.006

λ

XXXXXXXXXXXXXXXXXXXXXXXXX

X

X

XXXXX

XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXX

XX

X

X

X

XXXXX

XXXXXXXXX

XXXXXXXXX

XXXXXXXXXXXXXXX

X

X

X

X

XXXXX

XXXXXXXXXX

t / T

(ζ-<

ζ>

)/

0 1 2 3

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

λ

within tongue 1 /2 within tongue 2 /2 within tongue 3 /2subharmonic harmonic subharmonicµ = −1 µ = +1 µ = −1

From Perinet, Juric & Tuckerman, J. Fluid Mech. (2009)