Block Diagrams

269
Exciter AC7B and ESAC7B C E R sT + 1 1 Σ Σ REF V S V UEL V + + Σ 1 E sT E K D K π ( ) EX N F f I = C FD N E KI I V = ( ) X E E E V VS V = + + + + + + FE V X V E V EX F FD I FD E Σ Σ Exciter AC7B and ESAC7B IEEE 421.5 2005 Type AC7B Excitation System Model 1 IR DR PR DR K sK K s sT + + + L FE -K V + C V AC7B supported by PSSE ESAC7B supported by PSLF with optional speed multiplier RMAX V FEMAX D FD E E E V -K I K +S (V ) π IA PA K K s + AMAX V A V Σ 2 F K 1 F K + + 3 1 F F sK sT + P T KV EMIN V AMIN V RMIN V N I E t IR DR A 1 - V 2 - Sensed V 3 - K 4 - K 5 - V 6 - Feedback States 1 2 3 4 5 6 Speed 1 0 Spdmlt

Transcript of Block Diagrams

Page 1: Block Diagrams

Exciter AC7B and ESAC7B

CE

RsT+11

Σ Σ

REFV

SV

UELV

+

+

Σ1

EsT

EK

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

( )X E E EV V S V=

+

+

+

++

+

FEV

XV

EV

EXF

FDI

FDE

Σ Σ

Exciter AC7B and ESAC7B IEEE 421.5 2005 Type AC7B Excitation System Model

1IR DR

PRDR

K sKKs sT

+ ++

L FE-K V

+

CV

AC7B supported by PSSEESAC7B supported by PSLF with optional speed multiplier

RMAXVFEMAX D FD

E E E

V -K IK +S (V )

πIAPA

KKs

+

AMAXV

AV

Σ 2FK

1FK

+

+

3

1F

F

sKsT+

P TK V

EMINVAMINVRMINV

NI

E

t

IR

DR

A

1 - V2 - Sensed V3 - K4 - K5 - V6 - Feedback

States

12

3 4

5

6

Speed

10

Spdmlt

Page 2: Block Diagrams

Exciter AC8B

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV SV

+−

+

+

Exciter AC8B IEEE 421.5 2005 AC8B Excitation System

RVΣ

Model supported by PSSE

COMPV

1

EsT

( )E E EK S V+

DK

( )EX NF f I=

C FDN

E

K IIV

=

+

+

EXF

FDI

FDE

Σ

NI

Σ π

FEV

52

E

t

R

1 - V2 - Sensed V3 - PID 14 - PID 25 - V

States

3

1

4

FEMAX D FD

E E E

V -K IK +S (V )

EMINV

1IR DR

PRDR

K sKKs sT

+ ++

++

+

UELV OELV

PIDMAXV

PIDMINV

Page 3: Block Diagrams

Exciter BPA_EA

TV

RsT+11

1

11 AsT+Σ

REFV

+

−+

Σ1

EsT

E ES K+

+

Exciter BPA_EA Continuously Acting DC Rotating Excitation System Model

1A

A

KsT+

1F

F

sKsT+

Model in the public domain, available from BPA

STBV

FDE

Σ−

+

RMAXV

RMINV

RegulatorExciter

Filter

Stabilizer

FD

t

R

R1

F

1 - E2 - Sensed V3 - V4 - V5 - V

States

3 4

5

12

Page 4: Block Diagrams

Exciter BPA EB

RsT+11

1

11 AsT+Σ

REFV

+

−+

Σ1

EsT

E ES K+

+

Exciter BPA EB Westinghouse Pre-1967 Brushless Excitation System Model

1A

A

KsT+

1F

F

sKsT+

Model in the public domain, available from BPA

STBV

FDEΣ−

+

RMAXV

RMINV

Regulator Exciter

Filter

Stabilizer

1

11 FsT+

FDMAXE

FDMINE 0=

TV

FD

t

R

R1

F

F1

1 - E before limit2 - Sensed V3 - V4 - V5 - V6 - V

States

3 4

5

12

6

Page 5: Block Diagrams

Exciter BPA EC

1

11 AsT+Σ

REFV

+

+

Σ1

EsT

E ES K+

+

Exciter BPA EC Westinghouse Brushless Since 1966 Excitation System Model

1A

A

KsT+

1F

F

sKsT+

Model in the public domain, available from BPA

STBV

FDEΣ−

+

RMAXV

RMINV

Regulator Exciter

Stabilizer

FDMAXE

FDMINE 0=

E ES K+

TV3

4

12

FD

R

R1

F

1 - E before limit2 - V3 - V4 - V

States

Page 6: Block Diagrams

Exciter BPA ED

Exciter BPA ED SCPT Excitation System Model

Model in the public domain, available from BPA

RsT+11

Σ

REFV

SV

+

−+

Σ1

EsT+

+

FDE

RVΣ−

+

20.78

If 1, 0

FD

THEV

B

IAV

A V

⋅= > =

1F

F

sKsT+

0

BMAXV

BV

THEV P T I TV K V jK I= +

1 A−FDI

Σ+

EK

π

1A

A

KsT+

RMAXV

RMINV

1

11 AsT+

Stabilizer

Regulator Exciter

'TV

TV

TITHEVV

3 4

5

12

t

A

R

1 - EField2 - Sensed V3 - V4 - V5 - Feedback

States

Page 7: Block Diagrams

Exciter BPA EE

'TV

REFV

+

Σ1

EsT

E ES K+

+

Exciter BPA EE Non-Continuously Active Rheostatic Excitation System Model

'

1A

RH

KsT

+

Model in the public domain, available from BPA

FDE+

RMAXV

RMINV

Regulator Exciter

FDMAXE

FDMINE

Σ

If:, , ,

T V R RMAX

T V R RH

T V R RMIN

V K V VV K V VV K V V

∆ ≥ =

∆ < =

∆ ≤ − =

RV

'TV

'TOV

+

Σ TV∆

RHV

RH'

* NOTE:If the time constant T is equal to

zero, this block is represented as K /sA

1

2

RH

1 - EField before limit2 - V

States

Page 8: Block Diagrams

Exciter BPA EF

Σ

REFV

+

+

Σ1

EsT

E ES K+

+

Exciter BPA EF Westinghouse Continuous Acting Brushless Rotating Alternator

Excitation System Model

1F

F

sKsT+

Model in the public domain, available from BPA

SOV

FDEΣ−

+

RMAXV

RMINV

Regulator Exciter

Stabilizer

FDMAXE

FDMINE 0=

E ES K+

( )TV

T 0R =

(1 )A AK sTs+

3

12

R

F

1 - EField before limit2 - V3 - V

States

Page 9: Block Diagrams

Exciter BPA EG

Exciter BPA EG SCR Equivalent Excitation System Model

Model in the public domain, available from BPA

Σ

REFV

SOV

+

+

FDE

RVΣ−

+

1F

F

sKsT+

1A

A

KsT+

RMAXV

RMINV

1

11 AsT+

Stabilizer

Regulator

TV

3

12

A

F

1 - EField2 - V3 - V

States

Page 10: Block Diagrams

Exciter BPA EJ

1

11 AsT+

REFV

+

+

Exciter BPA EJ Westinghouse Static Grand Couple PP#3 Excitation System Model

1A

A

KsT+

1F

F

sKsT+

Model in the public domain, available from BPA

'TV

FDEΣ−

+

RMAXV

RMINV

Regulator

Stabilizer

FDMAXE

FDMINE

SOV

11 RsT+ − Σ

Filter

π3

4

12

t

R

F

1 - EField before limit2 - Sensed V3 - V4 - V

States

Page 11: Block Diagrams

Exciter BPA EK

1

11 AsT+Σ

REFV

+

+

Σ1

EsT

E ES K+

+

Exciter BPA EK General Electric Alterrex Excitation System Model

1A

A

KsT+

1F

F

sKsT+

Model in the public domain, available from BPA

SOV

FDEΣ−

+

RMAXV

RMINV

Regulator Exciter

Stabilizer

FDMAXE

FDMINE 0=

T

R

V(T =0)

3

4

12

R

R1

F

1 - EField before limit2 - V3 - V4 - V

States

Page 12: Block Diagrams

Exciter BPA FA

Exciter BPA FA WSCC Type A (DC1) Excitation System Model

Model in the public domain, available from BPA

FV

SV

1

EsTFDE

+

1F

F

sKsT+

VR( )C T C C TV V R jX I= + +TV

TI Σ+

E ES K+

11

C

B

sTsT

++

RMAXV

RMINV

1A

A

KsT+

ERRV +

FEV

RsT+11CV

Σ

REFV

+

Σ3

4

5

1

2

t

B

R

F

1 - EField2 - Sensed V3 - V4 - V5 - V

States

Page 13: Block Diagrams

Exciter BPA FB

Exciter BPA FB WSCC Type B (DC2) Excitation System Model

Model in the public domain, available from BPA

FV

SV

1

EsTFDE

+

1F

F

sKsT+

VR( )C T C C TV V R jX I= + +TV

TI Σ+

E ES K+

11

C

B

sTsT

++

T RMAXV V

T RMINV V

1A

A

KsT+

ERRV +

FEV

RsT+11CV

Σ

REFV

+

Σ3

4

5

1

2

t

B

R

F

1 - EField2 - Sensed V3 - V4 - V5 - V

States

Page 14: Block Diagrams

Exciter BPA FC

1A

A

KsT+

RMAXV

RMINV

1F

F

sKsT+

0

SV

FV

1

EsT

EK

DK

( )EX NF f I=

C FDN

E

K IIV

=

+

−−

+

+

FEV

RVEV

EXF

FDI

FDE

Σ

NI

( )C T C C TV V R jX I= + +TV

TI

ERRV

RsT+11CV

REFV

+

Exciter BPA FC WSCC Type C (AC1) Excitation System Model

Model in the public domain, available from BPA

π11

C

B

sTsT

++

Σ

Σ+

34

5

1

2

E

t

R

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 15: Block Diagrams

Exciter BPA FD

1A

A

KsT+

RMAXV

RMINVSV

+

1

EsT

EK

+

FDE

Exciter BPA FD WSCC Type D (ST2) Excitation System Model

1F

F

sKsT+

FV 0

π

+

BV

E P T I TV K V jK I= +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

MAXEFD

+−

EV If 0. and 0., 1.P I BK K V= = =

RV

Model in the public domain, available from BPA

( )C T C C TV V R jX I= + +TV

TI

ERRV

RsT+11CV

REFV

+

Σ

Σ

Σ3

4

1

2

t

R

F

1 - EField2 - Sensed V3 - V4 - V

States

Page 16: Block Diagrams

Exciter BPA FE

Exciter BPA FE WSCC Type E (DC3) Excitation System Model

ERRV RMAX RMIN

V RH

V VsK T

RMAXV

RMINV

If , If , If ,

ERR V R RMAX

ERR V R RH

ERR V R RMIN

V K V VV K V VV K V V

≥ =

< =

≤ − =

RHV

VK−

VK

Σ1

EsT

E EK S+

FDE+

−RV

Model in the public domain, available from BPA

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

Σ

FEV

3

1

2

t

RH

1 - EField before limit2 - Sensed V3 - V

States

Page 17: Block Diagrams

Exciter BPA FF

11

C

B

sTsT

++

SV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

FDE

Σ

Exciter BPA FF WSCC Type F (AC2) Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1F

F

sKsT+

0−

FV LV

LVGateΣ

AV

+

RMINV

RMAXV

BK

LK

HK

Σ −

+

LRVHV

NI

Model in the public domain, available from BPA

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

Σ

ERRV

Σ+ 34

5

1

2

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 18: Block Diagrams

Exciter BPA FG

1A

A

KsT+

Exciter BPA FG WSCC Type G (AC4) Excitation System Model

11

C

B

sTsT

++

Model in the public domain, available from BPA

FDE+

IMIMV

IMAXV

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

Σ

VS

ERRV

ΣRMIN C FD(V K I )−

RMAX C FD(V K I )−

+

3 1

2

t

LL

1 - EField before limit2 - Sensed V3 - V

States

Page 19: Block Diagrams

Exciter BPA FH

11

C

B

sTsT

++

SV+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

Σ

Exciter BPA FH WSCC Type H (AC3) Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1 F

ssT+

0−

FV

+AV

RK

NI

HVGate π

LVK −

+

LVV

Σ

EFD

NV

FK

NK

FDNE

Model in the public domain, available from BPA

FDE

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

ERRV

Σ

Σ34

5

1

2

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 20: Block Diagrams

Exciter BPA FH

11

C

B

sTsT

++

SV+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

Σ

Exciter BPA FH WSCC Type H Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1 F

ssT+

EMINV−

FV

+AV

RK

NI

π

EFD

NV

FK

NK

FDNE

Model in the public domain, available from BPA

FDE

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

ERRV

Σ

Σ34

5

1

2

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 21: Block Diagrams

Exciter BPA FJ

1A

A

KsT+

Exciter BPA FJ WSCC Type J Excitation System Model

11

C

B

sTsT

++

Model in the public domain, available from BPA

FDE+

RMAXV

RMINV

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

Σ

SV

ERRV

T FDMAX C FD(V E K I )−

+

1F

F

sKsT+

T FDMIN C FD(V E K I )−

Σ−

FV

3

4

1

2

t

LL

F

1 - EField before limit2 - Sensed V3 - V4 - V

States

Page 22: Block Diagrams

Exciter BPA FK

1A

A

KsT+

Exciter BPA FK WSCC Type K (ST1) Excitation System Model

11

C

B

sTsT

++

Model in the public domain, available from BPA

FDE+

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

Σ

VS

ERRV

T RMAX C FD(V V K I )−

+

1F

F

sKsT+

T RMIN C FD(V V K I )−

Σ−

IMIMV

IMAXV

FV

3

4

1

2

t

LL

F

1 - EField before limit2 - Sensed V3 - V4 - V

States

Page 23: Block Diagrams

Exciter BPA FL

SV

REFV

+

+

+Σ+

FDE

Exciter BPA FL WSCC Type L (ST3) Excitation System Model

IMINV

IMAXV

J1K1

C

B

sTsT

++

GV

AV

GK

1A

A

KsT+

RMAXV

RMINV

RVπ

π( )PE T I P L TV K V j K K X I= + +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI

EXF

EV

BV

FDMAXE

GMAXV

jP PK K e pθ=

( )C T C C TV V R jX I= + +TV

TI RsT+11CV

REFV

+

ERRV

Σ

Σ

Model in the public domain, available from BPA

3 1

2

M

t

LL

1 - V2 - Sensed V3 - V

States

Page 24: Block Diagrams

Exciter BPA FM through BPA FV

Exciter BPA FM through BPA FV

No block diagrams have been created

Page 25: Block Diagrams

Exciter DC3A

Exciter DC3A IEEE 421.5 2005 DC3A Excitation System Model

1

EsT

EMINV

Σ

EK

Σ

RV

+

+

−+

( )X EV EFD S EFD= ⋅

RsT+11

REFV

Σ+

− ERRV RMAX RMIN

V RH

V VsK T

RMAXV

RMINV

If , If , If ,

ERR V R RMAX

ERR V R RH

ERR V R RMIN

V K V VV K V VV K V V

≥ =

< =

≤ − =

RHV

VK−

VKCE

XV

Model supported by PSSE

1

2 3

States 1 - EFD 2 – Sensed Vt 3 - VRH

Page 26: Block Diagrams

Exciter DC4B

RsT+11

UEL(UEL=1)

V

REFV

+−+

FDE

Exciter DC4B IEEE 421.5 2005 DC4B Excitation System Model

1A

A

KsT+

T RMAXV V

T RMINV V

1F

F

sKsT+

OEL(OEL=2)

V

HVGate

LVGate

Alternate UEL Inputs

Alternate OEL InputsOEL

(OEL=1)

V

+

Model supported by PSSEModel supported by PSLF with optional speed multiplier

CE

UEL(UEL=2)

V

SV

1I D

PD

K sKKs sT

+ ++Σ

RMAX AV K

RMIN AV K

1

EsT

EMINV

π Σ π

EK

( )X E E EV V S V=

Σ

RV

TV

+

+

−+

FV

FD

t

R

1 - E2 - Sensed V3 - PID14 - PID25 - V6 - Feedback

States

3 4

5

6

12

Speed

1 0 Spdmlt

Page 27: Block Diagrams

Exciter ESAC1A

CE

RsT+11 1

1C

B

sTsT

++Σ

REFV

+

+

Σ1

EsT

EK

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

( )X E E EV V S V=

+

+

++

+

FEV

RV

XV

EV

EXF

FDI

Σ Σ

Exciter ESAC1A IEEE Type AC1A Excitation System Model

1A

A

KsT+

AMAXV

RMINV

RMAXV

1F

F

sKsT+

0−

UELV

HVGate

OELV

LVGate

FV

Model supported by PSSEModel supported by PSLF with optional speed multiplier

SV

AMINV

FDE3

4

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Speed

10

Spdmlt

Page 28: Block Diagrams

Exciter ESAC2A

E

1sTR

11+sT

C

B

1+sT1+sT BK

HK

F

F

sK1+sT EK

X E E EV =V S (V ) EX NF =f(I )

DK

C FDN

E

K II =V

CE REFV

FV

++

AV+

UELV OELVAMAXV

AMINV HV

RV −

+

RMINV

RMAXV

0

EV

FEMAX D FD

E E E

V -K IK +S (V )

FDE

EXF

XV NI

FEV

+

+

+

+

FDI

Exciter ESAC2A IEEE Type AC2A Excitation System Model

Model supported by PSSEModel supported by PSLF with optional speed multiplier

A

A

K1+sT

SV

34

5

1

2Σ Σ Σ

Σ

Σ

πHVGate

LVGate

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Speed

10

Spdmlt

Page 29: Block Diagrams

Exciter ESAC3A

CE

RsT+11 1

1C

B

sTsT

++Σ Σ 1

A

A

KsT+

AMAXV

AMINV

1 F

ssT+

FEMAX D FD

E E E

V -K IK +S (V )

EMINV

REFV

SV

UELV

HVGate

+

+

π Σ

FV

1

EsT

RK

EK

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

( )X E E EV V S V=

+

+

+

++

+

FEV

AV RV

XV

EV

EXF

FDI

FDE

EFD

NV

FK

NK

NV

Σ Σ

Model supported by PSSEModel supported by PSLF with optional speed multiplier

CV

NI

Exciter ESAC3A IEEE Type AC3A Excitation System Model

3

4

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Speed

10

Spdmlt

Page 30: Block Diagrams

Exciter ESAC4A

CERsT+1

1 11

C

B

sTsT

++Σ 1

A

A

KsT+

RMAX C IFDV -K I

RMINV

REFV

SV

UELV

HVGate

+

+

FDE

Exciter ESAC4A IEEE Type AC4A Excitation System Model

IMINV

IMAXV

IV

FD

Model supported by PSLF and PSSEPSSE uses nonwindup limit on E

3 12

t

LL

1 - EField before limit2 - Sensed V3 - V

States

Page 31: Block Diagrams

Exciter ESAC5A

CE

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV 0

REFV

SV

+

+

Σ1

EsT

EK

( )X E E EV V S V= ⋅

+

+

+

XV

FDE

F2 F3If T =0, then sT =0. Σ

Exciter ESAC5A IEEE Type AC5A Excitation System Model

( )( )( )

3

1 2

11 1

F F

F F

sK sTsT sT

++ +

Model supported by PSLF and PSSE

3

4 5

12

t

R

1 - EField2 - Sensed V3 - V4 - Feedback 15 - Feedback 2

States

Page 32: Block Diagrams

Exciter ESAC6A

CE

RsT+11 1

1C

B

sTsT

++Σ Σ

REFV

SV

UELV

+

−+

ΣAV

1

EsT

EK

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

( )X E E EV V S V=

+

+

+

++

+

FEV

RV

XV

EV

EXF

FDI

FDE

Σ Σ

Exciter ESAC6A IEEE Type AC6A Excitation System Model

( )11

A K

A

K sTsT+

+

AMAXV

AMINV T RMINV V

T RMAXV V

HK11

J

H

sTsT

++

HMAXV

0

0HV Σ +

FELIMV−

+

CV

Model supported by PSSEModel supported by PSLF with optional speed multiplier

NI

3 4

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - T Block4 - V5 - V

States

Speed

10

Spdmlt

Page 33: Block Diagrams

Exciter ESAC8B_GE

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV

SV

+−

+

+

Exciter ESAC8B_GE IEEE Type AC8B with Added Speed Multiplier.

RVΣ+

+

+

IRKs

PRK

1DR

DR

sKsT+

TMULT RMAX T RMAX RMIN T RMIN

Model supported by PSLFIf V 0, V V V and V V V<> = =

COMPV

1

EsT

( )E E EK S V+

DK

( )EX NF f I=

C FDN

E

K IIV

=

+

+

EXF

FDI

FDE

Σ

NI

Σ π

FEV

52

E

t

R

1 - V2 - Sensed V3 - PID 14 - PID 25 - V

States

3 1

4

FEMAX D FD

E E E

V -K IK +S (V )

EMINV

Speed

10

Spdmlt

Page 34: Block Diagrams

Exciter ESAC8B_PTI

RsT+11

1A

A

KsT+

RMAXV

RMINV 0

REFV

SV

+

+

Σ1

EsT

EK

( )X EV EFD S EFD= ⋅

+

+

+

XV

FDE

Σ

Exciter ESAC8B_PTI Basler DECS Model

RV

+

+

+

IRKs

PRK

1DR

D

sKsT+

Model supported by PSSE

CV

3

4 5 12

FD

t

R

1 - E2 - Sensed V3 - Derivative Controller4 - Integral Controller5 - V

States

ΣΣ

Page 35: Block Diagrams

Exciter ESDC1A

CE

RsT+11

Σ 1A

A

KsT+

RMAXV

0

REFV

SV

+

+

Σ1

EsT

EK

( )X EV EFD S EFD= ⋅

+

+

+

XV

FDE

Σ

Exciter ESDC1A IEEE Type DC1A Excitation System Model

RV

11F

F

sKsT+

11

C

B

sTsT

++CV

UELV

HVGate

FV FEV

Model supported by PSSEModel supported by PSLF includes spdmlt, exclim, and UEL inputs that are read but not utilized in the Simulator implementation

RMINV

3

4

5

12

FD

t

R

F

1 - E2 - Sensed V3 - V4 - V5 - Lead-Lag

States

Page 36: Block Diagrams

Exciter ESDC2A

RsT+11

Σ 1A

A

KsT+

T RMAXV VREFV

SV

+

+

Σ1

EsT

EK

( )X EV EFD S EFD= ⋅

+

+

+

XV

FDE

Σ

Exciter ESDC2A IEEE Type DC2A Excitation System Model

RV

11F

F

sKsT+

11

C

B

sTsT

++CV

HVGate

Model supported by PSSEModel supported by PSLF includes spdmlt, exclim, and UEL inputs that are read but not utilized in Simulator

CEUELV

FV

T RMINV V

FEV

3

4

5

12

FD

t

R

F

1 - E2 - Sensed V3 - V4 - V5 - Lead-Lag

States

Page 37: Block Diagrams

Exciter ESDC3A

Exciter ESDC3A IEEE Type DC3A with Added Speed Multiplier

ERRVRMAX RMIN

V RH

V VsK T

RMAXV

RMINV

If , If , Else

ERR V R RMAX

ERR V R RMIN

R RH

V K V VV K V V

V V

≥ =≤ − ==

RHVVK−

VK

Σ1

E EK sT+FDE

+

RV

Model supported by PSLF

RsT+11CV

REFV

+

Σ

π

( )X EV EFD S EFD= ⋅XV Speed

10

Spdmlt

t

RH

1 - EField2 - Sensed V3 - V

States

31

2

If exclim 0 then 0 else unlimited<>

Page 38: Block Diagrams

Exciter ESST1A

RsT+11

Σ

S(VOS=1)

V

REFV

+

+

Σ+

−AV FDE

Exciter ESST1A IEEE Type ST1A Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1F

F

sKsT+

0

HVGate

IMINV

IMAXV( )( )( )( )

1

1

1 11 1

C C

B B

sT sTsT sT

+ ++ +

HVGate

OELV

LVGate

IV

T RMINV V

T RMAX C FDV V -K I

LRK Σ FDI

LRI

AlternateStabilizer

Inputs

AlternateUEL Inputs

+

+−

+

Model supported by PSLF and PSSE

CE

FV

3 4

5

12

S(VOS=2)

V

UEL(UEL=1)

V UEL(UEL=3)

V

UEL(UEL=2)

V

A

t

1 - V2 - Sensed V3 - LL4 - LL15 - Feedback

States

Page 39: Block Diagrams

Exciter ESST2A

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV

SV

+

−+

Σ1

EsT

EK

+

FDE

Exciter ESST2A IEEE Type ST2A Excitation System Model

1F

F

sKsT+

UELV

HVGate

FV 0

π

BV

E P T I TV K V jK I= +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

MAXEFD

EV If 0 and 0, 1P I BK K V= = =

Model supported by PSSEModel supported by PSLF includes UEL input that is read but not utilized in Simulator

CE

CVRV

11

C

B

sTsT

++

3

4

12 π

FD

t

R

F

1 - E2 - Sensed V3 - V4 - V

States

Page 40: Block Diagrams

Exciter ESST3A

RsT+11

Σ

SV

REFV

+

+Σ+

AV FDE

Exciter ESST3A IEEE Type ST3A Excitation System Model

1A

A

KsT+

RMAXV

HVGate

IMINV

IMAXV11

C

B

sTsT

++IV

GV

RV

GK

1M

M

KsT+

MMAXV

MMINV

MVπ

π( )PE T I P L TV K V j K K X I= + +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI

EXF

EV

BVBMAXV

Model supported by PSLF and PSSE

CEUELV

GMAXV

RMINV

PjP PK K e θ=

34 12

M

t

R

1 - V2 - Sensed V3 - V4 - LL

States

Page 41: Block Diagrams

Exciter ESST4B

RsT+11

Σ

SV

REFV

+

+Σ+

FDE

Exciter ESST4B IEEE Type ST4B Potential- or Compound-Source Controlled-Rectifier Exciter Model

11 AsT+

RV

GK

IMPM

KKs

+

MMAXV

MMINV

π

π( )E P T I P L TV K V j K K X I= + +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

EVBVBMAXV

RMAXV

RMINVOELV

LVGate

IRPR

KKs

+

+

GMAX

Model supported by PSSEModel supported by PSLF includes V input that is read but not utilized in Simulator

UELV

PjP PK K e θ=

COMPV34 12

M

t

A

R

1 - V2 - Sensed V3 - V4 - V

States

Page 42: Block Diagrams

Exciter EWTGFC

Exciter EWTGFC Excitation Control Model for Full Converter GE Wind-Turbine Generators

Model supported by PSLF

+− 1

1 FVsT+

RFQV

11 PsT+

elecP

1

Nf

1PV

V

KsT+

+

∑RsT+1

1

IVKs

MINQ

MAXQ

π

tanFAREFP

REFQ

1

1−

0

Reactive Power Control Model

MINQ

MAXQ

varflg

−genQ

QIKs

MINV

+

−∑

REFVVIKs

QMAXI

QMINI

QCMDI

CV

3

4

5

1

2

ref

qppcmd

PV

regMeas

IV

ORD

Meas

1 - V2 - E

3 - K4 - V

5 - K6 - Q7 - P

States

6

7MAXV

TERMV

+

elecP

dbrK

∑1s

÷PMAXI

++

−TERMV

PCMDI

+

pfaflg

REFQ

01

ORDP

Converter Current Limitpqflag

+

dbrP

0

1

0 BSTE

Page 43: Block Diagrams

Exciter EX2000

RsT+11

Σ Σ IAPA

KKs

+

AMAXV

AMINV

1FK

EMAXV

EMINV

−+

π Σ

FV

1

EsT

PK ETRM⋅

EK

DK

π

( )EX EF f I=

C FDN

E

K IIV

=

( )X E E EV V S V=

+

+

+

++

+

FEV

AV

XV

EV

EXF

FDI

Σ Σ

Exciter EX2000 IEEE Type AC7B Alternator-Rectifier Excitation System Model

MinimumGate 1

IRPR

KKs

+

RMAXV

RMINV L FEK V−

ReferenceSignal

Field CurrentLimiter

2FKΣ +

+

Model supported by PSSE

EMAX

FEMAX D FDEMAX

E E E

If field current limiter is included, V is off.V -K IIf field current limiter is excluded, V =K +S (V )

CE

FDE

REF 34

12

1st PI Controller 2nd PI Controller

E

t

API

RPI

PI

1 - V2 - Sensed V3 - V4 - V5 - LL6 - IFD

States

Page 44: Block Diagrams

Exciter EX2000 REFERENCE SIGNAL MODEL

REF

Exciter EX2000 Reference Signal Model

MinimumGate 2

KRCCSBASE

Machine MVA BASEELECQ1

ETERM

KVHZ

Σ

REFV

UELV

STBV

++

+

−LIMPREF

Frequency

ReactiveCurrent

Reference Signal Model

Model supported by PSSE

Page 45: Block Diagrams

Exciter EX2000 FIELD CURRENT LIMITER MODEL

KIIFDKPIFDs

+

REF2IFD

LIMNIFD

Exciter EX2000 Field Current Limiter Model

LevelDetector

LatchGate 1

LatchGate 2

OR

ADVLIMIFD11

LEAD

LAG

sTsT

++

Σ

Advance Limit

( 1, 1)I T

( 3, 3)I T

( 2, 2)I T

( 4, 4)I T

Inverse Timing

A

B

C

D

A

B

C

D

LIMPIFD

REF3IFD

REF4IFD

REF1IFD

FDI

+

ToMinimum

Gate 1

Output =1 if level exceeded

Output =1 iftiming expired

Switch Operation Output D = B if C =0Output D = A if C=1

Field Current Limiter Model(Over Excitation Limiter)

Model supported by PSSE

3rd PI Controller

5

6

Page 46: Block Diagrams

Exciter EXAC1

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

FDE

Σ

Exciter EXAC1 IEEE Type AC1 Excitation System Model

1A

A

KsT+

RMAXV

RMINV

1F

F

sKsT+

0−

FV

Σ+

−+

CV

AMIN AMAX

AMIN RMIN RMIN AMIN

AMAX RMAX

Model supported by PSSEModel supported by PSLF also uses V and V

Simulator will narrow the limit range as appropriate when loading the DYD fileIf V V then V VIf V V the

> =< RMAX AMAXn V V

Model supported by PSLF includes speed multiplier that is not implemented in Simulator=

CE

E

t

R

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

34

5

12

Page 47: Block Diagrams

Exciter EXAC1A

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

FDE

Σ

Exciter EXAC1A Modified Type AC1 Excitation System Model

1A

A

KsT+

RMAXV

RMINV

1F

F

sKsT+

0−

FV

Σ+

−+

CV

Model supported by PSSEModel supported by PSLF includes speed multiplier that is not implemented in Simulator

CE

34

5

12

E

t

R

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 48: Block Diagrams

Exciter EXAC2

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

FDE

Σ

Exciter EXAC2 IEEE Type AC2 Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1F

F

sKsT+

0−

FV

Σ+

− +

CVLV

LVGateΣ

AV

+

RMINV

RMAXV

BK

LK

HK

Σ −

+

LRV

HV

NI

Model supported by PSSEModel supported by PSLF includes speed multiplier that is not implemented in Simulator

CE 34

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 49: Block Diagrams

Exciter EXAC3

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

Σ

Exciter EXAC3 IEEE Type AC3 Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1 F

ssT+

0−

FV

Σ+

+CV AV

RK

NI

HVGate π

LVK −

+

LVV

Σ

EFD

NV

FK

NK

NEFD

Model supported by PSSEModel supported by PSLF includes speed multiplier that is not implemented in Simulator

CE

FDE34

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

FEMAXV

Page 50: Block Diagrams

Exciter EXAC3A

RsT+11 1

1C

B

sTsT

++ Σ

SV

REFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

RVEV

EXF

FDI

Σ

Exciter EXAC3A IEEE Type AC3 Excitation System Model

1A

A

KsT+

AMAXV

AMINV

1 F

ssT+

EMINV−

FV

Σ+

−+

AV

NI

π

RK

EFD

NV

FK

NK

NEFD

CEFDE

EMAXV Speed

Model supported by PSLF

( )

( )

L1 C S REF C FFEMAX

FA L1

FEMAX D FDEMAX

E E

LVEMIN

EX

K V +V +V -V -VV =

K KV -K I

V =S +K

VV =F

34

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - V4 - V5 - V

States

CV

Page 51: Block Diagrams

Exciter EXAC4

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

FDE

Exciter EXAC4 IEEE Type AC4 Excitation System Model

1A

A

KsT+Σ

+−

+ERRV

IMINV

IMAXV

RMIN C IFDV -K I

RMAX C IFDV -K I

Model supported by PSLF and PSSE

CE3 12

t

LL

1 - EField before limit2 - Sensed V3 - V

States

Page 52: Block Diagrams

Exciter EXAC6A

Exciter EXAC6A IEEE Type AC6A Excitation System Model

Model supported by PSLF

RsT+11 1

1C

B

sTsT

++ Σ

SV

REFV

+

Σ1

EsT

E EK S+

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

FEV

EV

EXF

Σ

(1 )1A k

A

K sTsT+

+

T RMAXV V

AMINV

11

J

H

sTsT

++

0−

HV

Σ+

− +

NI

HK

CE

FDE

Speed

HMAXV

AMAXV

AV

0

+

−Σ

FELIMV

T RMINV V

DK FDI

RV3 4

5

12

E

t

A

LL

F

1 - V2 - Sensed V3 - T Block4 - V5 - V

States

Page 53: Block Diagrams

Exciter EXAC8B

Exciter EXAC8B Brushless Exciter with PID Voltage Regulator

Model supported by PSLF

RsT+11

Σ1

1 AsT+

RMAXV

RMINV

REFV

SV

+−+

+Σ+

++

VIKs

VPK

1VD

VD

sKsT+

CE

Σ1

EsT

E EK S+

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

FEV

EV

EXF

Σ

0

NI

FDE

Speed

DK FDI

IMAX-V

IMAXV3

4

5 12

E

t

R

1 - V2 - Sensed V3 - V4 - Derivative5 - Integral

States

Page 54: Block Diagrams

Exciter EXBAS

RsT+11 1

1C

B

sTsT

++Σ

STBVREFV

+

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

+

EV

EXF

FDI

Σ

Exciter EXBAS Basler Static Voltage Regulator Feeding DC or AC Rotating Exciter Model

1A

A

KsT+

RMAXV

RMINV

1F

F

sKsT+

Σ+

− +

UELV

NI1

2

11

F

F

sTsT

++

IP

KKs

+

OELV

+ +

Model supported by PSSE

CE

FDE3

4 5

12

E

t

R

1 - V2 - Sensed V3 - V4 - PI5 - LL6 - Feedback LL7 - Feedback

States

67

Page 55: Block Diagrams

Exciter EXBBC

3

4

11

sTsT

++ Σ

REFV

Σ1

1 EsT+

EX

+

FDI

Exciter EXBBC Transformer-fed Excitation System

RMAXV

RMINV+

Σ+

− +

1

2 2

1 111

TK T sT

− +

2

1

TKT+

Model supported by PSLF but not yet implemented in Simulator

CE

FDEΣ

T FDMINE E

T FDMAXE E

Switch 0= Switch 1=

SupplementalSignal

+

11 FsT+

Page 56: Block Diagrams

Exciter EXDC1

Exciter EXDC1 IEEE DC1 Excitation System Model

Model supported by PSLF

RsT+11

Σ

SV

REFV

+

+1

A

A

KsT+

RMAXV

RMINV

Σ1

EsT

E EK S+

+

11F

F

sKsT+

RV−

CE

− π

Speed

FDE11

C

B

sTsT

++

FV

3 4

5

1

2

FD

t

B

R

F

1 - E2 - Sensed V3 - V4 - V5 - V

States

Page 57: Block Diagrams

Exciter EXDC2_GE

RsT+11 1

1C

B

sTsT

++

SVREFV

+

Exciter EXDC2_GE IEEE Type DC2 Excitation System Model

Σ+

−1

A

A

KsT+

RMAX TV V

Σ1

1 EsT+

E EK S+

FDE+

( )( )1 21 1F

F F

sKsT sT+ +

Model supported by PSLF

RMIN TV V

compV

π

Speed

3 4

5

1

2

FD

t

B

R

F1

F2

1 - E2 - Sensed V3 - V4 - V5 - V6 - V

States

6

Page 58: Block Diagrams

Exciter EXDC2_PTI

RsT+11 1

1C

B

sTsT

++

SVREFV

+

Exciter EXDC2_PTI IEEE Type DC2 Excitation System Model

Σ+

1A

A

KsT+

RMAX TV V

Σ1

1 EsT+

E EK S+

FDE+

11F

F

sKsT+

Model supported by PSEE

RMIN TV V

compV

π

Speed

Σ+ERRV

3 4

5

1

2

FD

t

B

R

F

1 - E2 - Sensed V3 - V4 - V5 - V

States

Page 59: Block Diagrams

Exciter EXDC2A

RsT+11 1

1C

B

sTsT

++Σ

+

Exciter EXDC2A IEEE Type DC2 Excitation System Model

1A

A

KsT+

RMAX TV V

Σ1

EsT

E EK S+

+

11F

F

sKsT+

RV−

Model supported by PSLF

CE

FV

SV

REFV+

π

Speed

FDE34

5

1

2

RMIN TV V

FD

t

B

R

F

1 - E2 - Sensed V3 - V4 - V5 - V

States

Page 60: Block Diagrams

Exciter EXDC4

Σ+

Exciter EXDC4 IEEE Type 4 Excitation System Model

− 1

RHsT

RMAXV

Σ1

E EK sT++

−RHV

Model supported by PSLF

CE

RMINV

SV

REFV+

π

Speed

FDE

ESRMAXV

RMINVVK

V-K

RV

π

1

-1RK

R-K

1

2

FD

RH

1 - E2 - V

States

Page 61: Block Diagrams

Exciter EXELI

11 FVsT+ Σ

REFV

+

+

+

FDE

Exciter EXELI Static PI Transformer Fed Excitation System Model

PUV

Σ +

Σ1

NUsT

+

11 FIsT+

EX

FDI

FMINE

FMAXE

PIV

PNFV

+

PNFD

GENP3

1W

W

sTsT

+

2

21s

s

sTsT

−+Σ

+

+

1sK

2

11s

s

KsT+

MAXS−

MAXS

Model supported by PSLF and PSSE

CE

− Σ

3

4 5

12

NU

t

FLD

GEN

GEN

GEN

1 - T2 - Sensed V3 - Sensed I4 - P Washout15 - P Washout26 - P Washout37 - Lag Stabilizer8 - Washout Stabilizer

States

6 7

8

Page 62: Block Diagrams

Exciter EXPIC1

RsT+11

Σ

REFV

Exciter EXPIC1 Proportional/Integral Excitation System Model

Σ+

+

( )11A AK sTs+

R1V

R2V

1

EsT

E EK S+

FDE+

( )( )1 21 1F

F F

sKsT sT+ +

RVTE

SV

AV( )

( )( )3

2 4

11 1

A

A A

sTsT sT

++ +

RMINV

RMAXV

FDMINE

FDMAXE

Σπ0E

πTV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI

NI

EXF

BV

0

If 0 and 0, then 1If 0, then

P I B

E

K K VT EFD E

= = == =

E P T I TV K V jK I= +

Model supported by PSLF and PSSE

CE3

4 51

2

FD

t

A

R1

R

F1

F

1 - E2 - Sensed V3 - V4 - V5 - V6 - V7 - V

States

6 7

Page 63: Block Diagrams

Exciter EXST1_GE

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

FDE

Exciter EXST1_GE IEEE Type ST1 Excitation System Model

1A

A

KsT+

+

IMINV

IMAXV

T RMIN C IFDV V -K I

T RMAX C IFDV V -K I

1F

F

sKsT+

Model supported by PSLF

compV

1

1

11

C

B

sTsT

++

AMAXV

AMINV

Σ+−

EX

lrK

Σ

FDIΣ

lrI

+

+−

3

4

5 12

0

A

t

LL

F

LL1

1 - V2 - Sensed V3 - V4 - V5 - V

States

Page 64: Block Diagrams

Exciter EXST1_PTI

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

FDE

Exciter EXST1_PTI IEEE Type ST1 Excitation System Model

1A

A

KsT+

+

IMINV

IMAXV

T RMIN C IFDV V -K I

T RMAX C IFDV V -K I

1F

F

sKsT+

Model supported by PSSE

cE

ERRV+ Σ

3

4

12

FD

t

LL

F

1 - E before limit2 - Sensed V3 - V4 - V

States

Page 65: Block Diagrams

Exciter EXST2

RsT+11

Σ

REFV

Exciter EXST2 IEEE Type ST2 Excitation System Model

Σ+

−+

1A

A

KsT+

RMAXV

RMINV

1

EsT

EK

FDE+

1F

F

sKsT+

RV Σ−

πE P T I TV K V jK I= +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI

EXF

If 0 and 0, then 1P I BK K V= = =

Σ++

ERRV

BV

FDMAXE

0

SV

+

EV

B C

Model supported by PSLFModel supported by PSSE does not include T and T inputs

CE3

4

5 12

FD

t

R

F

LL

1 - E2 - Sensed V3 - V4 - V5 - V

States

11

C

B

sTsT

++

Page 66: Block Diagrams

Exciter EXST2A

RsT+11

Σ

REFV

Exciter EXST2A Modified IEEE Type ST2 Excitation System Model

Σ+

−+ 1

A

A

KsT+

RMAXV

RMINV

1

EsT

EK

FDE+

1F

F

sKsT+

RV Σ−

πE P T I TV K V jK I= +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

If 0 and 0, then 1P I BK K V= = =

ERRV

FDMAXE

0

SV

+

EV

π

B C

Model supported by PSLFModel supported by PSSE does not include T and T inputs

FVBV

COMPV11

C

B

sTsT

++

3

4

5 12

FD

t

R

F

LL

1 - E2 - Sensed V3 - V4 - V5 - V

States

Page 67: Block Diagrams

Exciter EXST3

RsT+11

Σ

REFV

Exciter EXST3 IEEE Type ST3 Excitation System Model

Σ+−

+

11

CJ

B

sTKsT

++

FDEAV π

π( )E P T I P L TV K V j K K X I= + +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

ERRV

BV

FDMAXE

SV

+

EV

∑ 1A

A

KsT+

RMAXV

RMINV

RV+

IMINV

IMAXV

GK

−GV

GMAXV

Model supported by PSSEModel supported by PSLF includes speed multiplier that is not implemented in Simulator

CE

PjP PK K e θ=

3 12

R

t

1 - V2 - Sensed V3 - LL

States

Page 68: Block Diagrams

Exciter EXST3A

Exciter EXST3A IEEE Type ST3 Excitation System Model

11

CJ

B

sTKsT

++

FDEAV π

π( )E P T I P L TV K V j K K X I= + +TV

TI

( )EX NF f I=C FDN

E

K IIV

=FDI NI EXF

BV

EV

∑ 1A

A

KsT+

RMAXV

RMINV

+

IMINV

IMAXV

GK

−GV

GMAXV

Model supported by PSLF

RsT+11

Σ+

CESV

REFV+

BMAXV

SpeedPj

P PK K e θ=

3 12

R

t

1 - V2 - Sensed V3 - LL

States

Page 69: Block Diagrams

Exciter EXST4B

Exciter EXST4B IEEE Type ST4B Excitation System Model

FDEπ

π( )E P T I P L TV K V j K K X I= + +

( )EX NF f I=C FDN

E

K IIV

=FDI NI

EXF

BV

EV

∑ IMPM

KKs

+

MMAXV

MMINV

+

RMINV

RMAXV

GK

Model supported by PSLF

RsT+11

Σ+

CESV

REFV+

BMAXV

11 AsT+

IRPR

KKs

+MV

TV

TI

PjP PK K e θ=

34 12

MInt

t

A

R

1 - V2 - Sensed V3 - V4 - V

States

Page 70: Block Diagrams

Exciter EXWTG1

Exciter EXWTG1 Excitation System Model for Wound-Rotor Induction Wind-Turbine Generators

MAXR

MINR

+

Model supported by PSLF

+−Rω 1

1 AsT+ EXT FDR (E )

REFω

1DP

DP

sKsT+EP

WK 1

2

11

W

W

sTsT

++ +

+

EXTR

3

12

external1 - R2 - SpeedReg3 - Washout

States

Page 71: Block Diagrams

Exciter EXWTGE

Exciter EXWTGE Excitation System Model for GE Wind-Turbine Generators

Model supported by PSLF

+− 1

1 CsT+ORDQ

RFQ REFV (V )

11 PsT+

EP

1

Nf

1PV

V

KsT+

+

+∑

RsT+11

IVKs

MINQ

MAXQ

π

tan( )⋅FAREF REFP (V ) REF

REF

Q(V ) Switch 0=

Switch 1=

ORDQ

Switch 1= −

Switch 1=

Switch 0=

ORD

REF

Q from separate model(V )

WindVAR Emulation

OpenLoop Control

MINQ

MAXQ

CMDQ

pfaflg

varflg

+−GENQ

∑QIKsCMDQ

MAXV

MINV

+−

TERMV

∑REFV VIKs

TERM QMAXV + XI

TERM QMINV + XI

Q CMD FDE '' (E )

÷ORD SFrom Wind Turbine Model

P (V ) PCMD FDI (I )

PMAXI

To Generator Model

REGV

3

4

5

1

2

ref"QCMD

PV

regMeas

IV

ORD

Meas

1 - V

2 - E3 - K4 - V

5 - K6 - Q7 - P

States

6

7

Page 72: Block Diagrams

Exciter IEEET1

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV

SV

+

−+

Σ1

EsT

EK

E E FDV S E= ⋅

+

+

+

EV

FDE

Σ

Exciter IEEET1 IEEE Type 1 Excitation System Model

RVΣ−

+

1F

F

sKsT+

Model supported by PSSEModel supported by PSLF includes speed multiplier that is not implemented in Simulator

CE

3

4

1

2

t

R

F

1 - EField2 - Sensed V3 - V4 - V

States

Page 73: Block Diagrams

Exciter IEEET2

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV

SV

+

−+

Σ1

EsT

EK

E E FDV S E= ⋅

+

+

+

EV

FDE

Σ

Exciter IEEET2 IEEE Type 2 Excitation System Model

RVΣ−

+

11F

F

sKsT+2

11 FsT+

Model supported by PSSE

CE

3

45

1

2

t

R

F1

F2

1 - EField2 - Sensed V3 - V4 - V5 - V

States

Page 74: Block Diagrams

Exciter IEEET3

RsT+11

Σ 1A

A

KsT+

RMAXV

RMINV

REFV

SV

+

−+

Σ1

E EK sT+

+

+

FDE

Exciter IEEET3 IEEE Type 3 Excitation System Model

RVΣ−

+

20.78

If 1, 0

FD

THEV

B

IAV

A V

⋅= > =

1F

F

sKsT+

0

BMAXV

BV

πTHEV P T I TV K V jK I= +TV

TI

1 A−FDI

Model supported by PSSE

CE

3

4

12

t

R

F

1 - EField2 - Sensed V3 - V4 - V

States

Page 75: Block Diagrams

Exciter IEEET4

Σ1

RHsT

RMAXV

RMINV

REFV

+

− Σ1

E EK sT+

+ FDE

Exciter IEEET4 IEEE Type 4 Excitation System Model

RVRHVVΔV K<ΔV

π

ψ

ES

Model supported by PSSE

CE

RMAXV

RMINVKV

-KV

1

-1RK

R-K

VΔV K>

12

RH

1 - EField2 - V

States

Page 76: Block Diagrams

Exciter IEEET5

Σ1

RHsT

+

− Σ1

E EK sT+

+

Exciter IEEET5 Modified IEEE Type 4 Excitation System Model

RMAXV

π

ψ

ES

Model supported by PSSE

CE

RMAXV

RMINVKV

-KV

RMAXV

RMINV

REFV

FDE

RVRHV

VΔV K<ΔV

VΔV K>

12

RH

1 - EField2 - V

States

Page 77: Block Diagrams

Exciter IEEEX1

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Exciter IEEEX1 IEEE Type 1 Excitation System Model

Σ+

−+

ERRV 1A

A

KsT+

RMAXV

RMINV

Σ1

EsT

E EK S+

FDE+

11F

F

sKsT+

FVRV

Regulator

Damping

Model supported by PSSE

CE3 4

5

12

t

B

R

F

1 - EField2 - Sensed V3 - V4 - V5 - V

States

Page 78: Block Diagrams

Exciter IEEEX2

Exciter IEEEX2 IEEE Type 2 Excitation System Model IEEEX2

Model supported by PSSE

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Σ+

+ERRV 1A

A

KsT+

RMAXV

RMINV

Σ1

EsT

E EK S+

FDE+

−FV

RV

Regulator

Damping

CE

( )( )1 21 1F

F F

sKsT sT+ +

3 4

5

12

t

R

F1

F2

1 - EField2 - Sensed V3 - LL4 - V5 - V6 - V

States

6

Page 79: Block Diagrams

Exciter IEEEX3

RsT+11

Σ

SVREFV

+

Exciter IEEEX3 IEEE Type 3 Excitation System Model

Σ+

− +

ERRV 1A

A

KsT+

RMAXV

RMINV

Σ1

E EK sT+FDE+

+

1F

F

sKsT+

FV

Regulator

Damping

0

THEV P T I TV K V jK I= +TV

TI0

BMAXV

( )22 0.78TH FDV I−THV

FDI

BV

Model supported by PSSE

CE

RV

3

4

12

t

R

F

1 - EField2 - Sensed V3 - V4 - V

States

Page 80: Block Diagrams

Exciter IEEEX4

RsT+11

REFV

Exciter IEEEX4 IEEE Type 4 Excitation System Model

Σ+

− ERRV RMAX RMIN

V RH

V VsK T

RMAXV

RMINV

If , If , If ,

ERR V R RMAX

ERR V R RH

ERR V R RMIN

V K V VV K V VV K V V

≥ =

< =

≤ − =

RHV

VK−

VK

Σ1

EsT

E EK S+

FDE+

−RV

Model supported by PSSE

CE

3

1

2

t

RH

1 - EField2 - Sensed V3 - V

States

Page 81: Block Diagrams

Exciter IEET1A

Σ

REFV

Exciter IEET1A Modified IEEE Type 1 Excitation System Model

Σ+

− +

1A

A

KsT+

RMAXV

RMINV

Σ1

EsT

E EK S+

FDE+

1F

F

sKsT+

SV

FDMAXE

FDMINE+

Model supported by PSSE

CE

3

12

R

F

1 - EField2 - V3 - V

States

Page 82: Block Diagrams

Exciter IEET1B

Σ

MAGI

+

1

EsT+ FDE

Exciter IEET1B Modified IEEE Type 1 Excitation System Model

RV

π

ψ

ES

EK−

+RsT+1

1

EX

TV Σ

REFV

+SMAXV

SMINV

Σ− +

Bias

SV

Σ+

++

11A

A

KsT+

RMAXV

RMINV

2

11 AsT+ REGV

1

11F

F

sKsT+

Switch=0

Switch=1

Model supported by PSSE but not implemented yet in Simulator

CE

Page 83: Block Diagrams

Exciter IEET5A

Σ 1A

RH

KsT+

RMAXV

RMINV

REFV

+

− Σ1

E EK sT+

+FDE

Exciter IEET5A Modified IEEE Type 4 Excitation System Model

RV

*

π

ψ

ES

Σ

TOV

+

− TΔV

FDMAXE

FDMINE

* If equals zero, block becomes ARH

KTs

Model supported by PSSE

CE

RMAXV

RMINVKV

-KV

VΔV K<

VΔV K>

12

RH

1 - EField2 - V

States

Page 84: Block Diagrams

Exciter IEEX2A

RsT+11 1

1C

B

sTsT

++Σ

SVREFV

+

Exciter IEEX2A IEEE Type 2A Excitation System Model

Σ+

−+

ERRV 1A

A

KsT+

RMAXV

RMINV

Σ1

EsT

E EK S+

FDE+

11F

F

sKsT+

FVRV−

0

Model supported by PSSE

CE3 4

5

12

t

B

R

F

1 - EField2 - Sensed V3 - V4 - V5 - V

States

Page 85: Block Diagrams

Exciter REXS

RsT+11

ΣSV

REFV

+

Exciter REXS General Purpose Rotating Excitation System Model

Σ+

−+

ERRV 1A

A

KsT+

RMAXV

RMINV

1

2

11

F

F

sTsT

++

FV

Regulator

0

RMIN RMAX FMIN FMAX TERMModel supported by PSLF. If flimf = 1 then multiply V ,V ,V , and V by V .

CE

IMAXV−

IMAXV

1F

F

sKsT+

VIVP

KKs

+ 1 2

1 2

(1 )(1 )(1 )(1 )

C C

B B

sT sTsT sT

+ ++ +

ΣΣ IIIP

KKs

++

RV

11 PsT+

FMAXV

FMINVHK

Σ1

EsT

E EK S+

DK

π

( )EX NF f I=

C FDN

E

K IIV

=

+−

+

+

EV

EXF

FDI

Σ

NI

FDE+

0

Speed

CXTERMI

CMAXV

EFDK

RV

+ +

FEI0

1

2

Fbf

34

5

1

2 E

T I

F I

R

1 - V 6 - Voltage PI2 - Sensed V 7 - V LL13 - V 8 - V LL24 - Current PI 9 - Feedback5 - V 10 - Feedback LL

States6

87

10

9

Page 86: Block Diagrams

Exciter REXSY1

Exciter REXSY1 General Purpose Rotating Excitation System Model

Model supported by PSSE

RsT+11

Σ

SV

REFV

+

Σ+

−+

11 AsT+

RMAXF V⋅

RMINF V⋅1

2

11

F

F

sTsT

++

FV−

IMAXV−

IMAXV

1F

F

sKsT+

VIVP

KKs

+ 1 2

1 2

(1 )(1 )(1 )(1 )

C C

B B

sT sTsT sT

+ ++ + RV

0

1

2FEI

FDE

0II

IPKKs

+1

1 PsT+

FMAXF V⋅

FMINF V⋅HK

Σ1

EsT

E EK S+

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

EV

EXF

FDI

ΣNI

FDE+

CXTERMI

CMAXV

+

FEI

RV

DK

Σ+

[ ]1IMF T E D EF= 1.0 + F (E -1.0) (K +K +S )⋅CE

Exciter Field Current Regulator

Fbf

34

5

1

2

Voltage Regulator

E

T I

F I

R

1 - V 6 - Voltage PI2 - Sensed V 7 - V LL13 - V 8 - V LL24 - Current PI 9 - Feedback5 - V 10 - Feedback LL

States

6

7 8

910

Page 87: Block Diagrams

Exciter REXSYS

Exciter REXSYS General Purpose Rotating Excitation System Model

Model supported by PSSE

RsT+11

Σ

SV

REFV

+

Σ+

−+

11 AsT+

RMAXF V⋅

RMINF V⋅1

2

11

F

F

sTsT

++

FV−

IMAXV−

IMAXV

1F

F

sKsT+

VIVP

KKs

+ 1 2

1 2

(1 )(1 )(1 )(1 )

C C

B B

sT sTsT sT

+ ++ + RV

0

1

2FEI

FDE

0II

IPKKs

+1

1 PsT+

FMAXF V⋅

FMINF V⋅HK

Σ1

EsT

E EK S+

π

( )EX NF f I=

C FDN

E

K IIV

=

+

+

EV

EXF

FDI

ΣNI

FDE+

+

FEI

RV

DK

Σ+

[ ]1IMP T E D EF= 1.0 + F (E -1.0) (K +K +S )⋅CE

Exciter Field Current Regulator

Fbf

34

5

1

2

Voltage Regulator

E

T I

F I

R

1 - V 6 - Voltage PI2 - Sensed V 7 - V LL13 - V 8 - V LL24 - Current PI 9 - Feedback5 - V 10 - Feedback LL

States

6

7 8

910

Page 88: Block Diagrams

Exciter SCRX

REFV

Exciter SCRX Bus Fed or Solid Fed Static Excitation System Model

Σ+

−1 E

KsT+

FDMAXE

FDMINE

πFDE1

1A

B

sTsT

++

SV

+

TE 1SWITCHC =0 SWITCHC =1

SWITCH

Model supported by PSLFModel supported by PSSE has C 1=

CE

1 2

E

1 - Lead-Lag2 - V

States

Page 89: Block Diagrams

Exciter SEXS_GE

compV

REFV

Exciter SEXS_GE Simplified Excitation System Model

+

−1 E

KsT+

MAXE

MINE

11

A

B

sTsT

++

StabilizerOutput

+

Model supported by PSLF

RsT+11 FDE( )1C C

C

K sTsT+

Σ

FDMINE

FDMAXE34 12

t

1 - EField2 - Sensed V3 - LL4 - PI

States

Page 90: Block Diagrams

Exciter SEXS_PTI

CE

REFV

Exciter SEXS_PTI Simplified Excitation System Model

Σ+

−1 E

KsT+

FDMAXE

FDMINE

FDE11

A

B

sTsT

++

SV

+

Model supported by PSSE

12

1 - EField2 - LL

States

Page 91: Block Diagrams

Exciter ST6B

RsT+11

UELVREFV

−FDE

Exciter ST6B IEEE 421.5 2005 ST6B Excitation System Model

RMAXV

RMINV

1G

G

sKsT+

OEL(OEL=2)

V

HVGate

LVGate

Alternate OEL Inputs

OEL(OEL=1)

V

+

RMULT

ST6B supported by PSSEESST6B supported by PSLF with optional V

CV

1IA DA

PADA

K sKKs sT

+ ++Σ

AMAXV

AMINV

Σ

π

CLK

GV

AV

TV

FD

t

G

1 - E2 - Sensed V3 - PID14 - PID25 - V

States

3 4

5

1

2

10 RMULTV

Σ

SV

+

+−

Σ MK Σ

FFK

LRK

BV

RMINV

LRI

FDI

+

+

++

RVΣ

11 SsT+

Page 92: Block Diagrams

Exciter ST7B

RsT+11

REFV

FDE

Exciter ST7B IEEE 421.5 2005 ST7B Excitation System Model

1IA

IA

sKsT+

OEL(OEL=2)

V

LVGate

Alternate OEL Inputs

OEL(OEL=1)

V

+

ST7B supported by PSSEESST7B supported by PSLFNot implemented yet in Simulator

CV

++

LK

HK

Σ

11 SsT+

11

G

F

sTsT

++

HVGate

Alternate UEL Inputs

UEL(UEL=1)

V UEL(UEL=2)

V

MAXV

MINVΣ

+++

+

DROOPV

SCLVΣ Σ

REF_FBV

SV

PAK

HVGate

LVGate

11

C

B

sTsT

++

Σ Σ

Σ LVGate

HVGate

T RMAXV V

T RMINV V

OEL(OEL=3)

V UEL(UEL=3)

V

T RMAXV VT RMINV V

+

+

+

Page 93: Block Diagrams

Exciter TEXS

CE

REFV

Exciter TEXS General Purpose Transformer-Fed Excitation System Model

Σ+

−FDE

1G

G

KsT+

SV

+

Model supported by PSLF

11 RsT+

IMAXV−

IMAXVVI

VPKKs

+

1VD

VD

sKsT+

RMAXV

RMINV

Σ++

Σ−

Σ+

+ Σ+

FFK

MK

RMINV

RMAXVLVGate π

CX

Σ+−

CLKLRI LRK

0

FDI

1 0

GeneratorTerminal Voltage

ConstantSource Voltage

RV EV+

3

4

1

2

t

1 - Feedback2 - Sensed V3 - Derivative Controller4 - Integral Controller

States

Page 94: Block Diagrams

Exciter URST5T

CE

RsT+11

Σ

REFV

−+

Σ

CK

+

+

STBV FDI

FDE

Exciter URST5T IEEE Proposed Type ST5B Excitation System Model

UELV

HVGate

OELV

LVGate Σ

1

1

11

C

B

sTsT

++

RMAX RV /K

RMIN RV /K

2

2

11

C

B

sTsT

++

RMAX RV /K

RMIN RV /K

RMAXV

RMINV1

11 sT+

RMAX TV V

RMIN TV V

RK +

Model supported by PSSE

3 4 12

R

t

1 - V2 - Sensed V3 - LL14 - LL2

States

Page 95: Block Diagrams

Exciter WT2E

Exciter Model WT2E

Model supported by PSLF

Tw Time constant Kw Speed regulator gain Tp Field current bridge time constant in sec. Kp Potential source gain in p.u. Kpp Potential source gain in p.u. Kip Field current regulator proportional gain Rmax Maximum external rotor resistance in p.u. Rmin Minimum external rotor resistance in p.u. Slip_1 to Slip_5 Slip 1 to Slip 5 Power_Ref_1 to Power_Ref_5 Power factor regulator 1 to power factor regulator 5

States: 1 – Rexternal 2 – Speed 3 – Pelec

Page 96: Block Diagrams

Exciter WT2E1

+

Exciter WT2E1 Rotor Resistance Control Model for Type 2 Wind Generator

elecP

MAXR

MINR

Model supported by PSSE

external

elec

1 - R2 - Speed3 - P

States

11 SPsT+

11 PCsT+

Σ1

PI

KsT

+

Speed

Power-Slip Curve

1

2

3

Page 97: Block Diagrams

Exciter WT3E and WT3E1

Exciter WT3E and WT3E1 Electrical Control for Type 3 Wind Generator

MAX wrat MIN wrat FV C

QCMD QMAX QMIN

WT3E supported by PSLF with RP P and RP -P , T TWT3E1 supported by PSSE uses vltflg to determine the limits on E . When vltflg > 0 Simulator always uses XI and XI .

= = =

+− 1

1 FVsT+

RFQV

11 PsT+

elecP

1

Nf

1PV

V

KsT+

+

∑RsT+1

1

IVKs

MINQ

MAXQ

π

tanFAREFP

REFQ

1

0

1−

Reactive Power Control Model

MINQ

MAXQ

varflg

−elecQ

QIKs

MINV

+−

∑REFV

QVKs

QMAXXI

QMINXI

QCMDE

CV

3

4

5

1 2

ref ORD

qppcmd Meas

PV

regMeas

IV ORD

1 - V 6 - Q2 - E 7 - P

3 - K 8 - PowerFilter4 - V 9 - SpeedPI

5 - K 10 - P

States

6

7

MAXV TERMVvltflg

+

0

0>

20( 20%, )PP ω=

100( 100%, )PP ω=

40( 40%, )PP ω=60( 60%, )PP ω=

( , )MIN PMINP ω

Speed

P

Active Power (Torque) Control Model

elecP1

1 PWRsT+∑ IP

PPKKs

+ π ∑1

FPsT ÷MINRP

MAXRP PMAXIMAXP

MINP

1098

Speed Speed

++

TERMV

PCMDI

+

Page 98: Block Diagrams

Exciter WT4E1

Exciter WT4E1 Electrical Control for Type 4 Wind Generator

Model supported by PSSE but not yet implemented in Simulator

∑+

− 11 FVsT+

RFQV

11 PsT+

elecP

1PV

V

KsT+

+

∑1

1 RVsT+

IVKs

MINQ

MAXQ

π

tanFAREFP

10

MINQ

MAXQ

varflg

−elecQ

QIKs

MINCLV

+

−∑ VIK

s

QMAXI

QMINI

QCMDI

CV

MAXCLV

TERMV

+

elecP ∑ ÷PMAXI

−+

+

TERMV

PCMDI

+

pfaflg

REFQ

01

ORDP

Converter Current Limitpqflag

0.01

11 PWRsT+

IPPP

KKs

+

1F

F

sKsT+

REFP

MINdP

MAXdP

3

4

5

12

6

7

10

98

States: 1 – Vref 6 - Qord 2 - Eqppcmd 7 - Pmeas 3 – Kpv 8 - TPower 4 – VregMeas 9 - Kip 5 – Kiv 10 - Feedback

Page 99: Block Diagrams

Machine Model CSVGN1

Model supported by PSSE

Σ−

Machine Model CSVGN1 Static Shunt Compensator CSVGN1

+

5

11 sT+

1.

/MINR RBASE

Other SignalsVOTHSG

REFV−

V ( )( )( )( )

1 2

3 4

1 11 1

K sT sTsT sT+ ++ +

MAXV

MINV

π+

/BASEC SBASE

/MBASE SBASE

RBASE MBASE= is the voltage magnitude on the high side of generator step-up transformer if present.VNote :

31 2

States: 1 – Regulator1 2 – Regulator2 3 – Thyristor

Page 100: Block Diagrams

Machine Model CSVGN3

Model supported by PSSE

Σ−

Machine Model CSVGN3 Static Shunt Compensator CSVGN3

+

5

11 sT+

1.

π+

/MINR RBASE

Other SignalsVOTHSG

REFV−

/BASEC SBASE

YERRV

V ( )( )( )( )

1 2

3 4

1 11 1

K sT sTsT sT+ ++ +

MAXV

MINV

1, if / if

ERR OV

ERR OV

V VRMIN RBASE V V

>< −

Σ

/MBASE SBASE

RBASE MBASE= is the voltage magnitude on the high side of generator step-up transformer if present.VNote :

31 2

States: 1 – Regulator1 2 – Regulator2 3 – Thyristor

Page 101: Block Diagrams

Machine Model CSVGN4

Model supported by PSSE

Σ−

Machine Model CSVGN4 Static Shunt Compensator CSVGN4

+

5

11 sT+

1.

π+

/MINR RBASE

Other SignalsVOTHSG

REFV−

/BASEC SBASE

YERRV

IBV ( )( )( )( )

1 2

3 4

1 11 1

K sT sTsT sT+ ++ +

MAXV

MINV

1, if / if

ERR OV

ERR OV

V VRMIN RBASE V V

>< −

Σ

/MBASE SBASE

RBASE MBASE=

31 2

States: 1 – Regulator1 2 – Regulator2 3 – Thyristor

Page 102: Block Diagrams

Machine Model CSVGN5

Model supported by PSSE

Machine Model CSVGN5 Static Var Compensator CSVGN5

6

11 sT+

MAXB

MINB

( )VREF I

+VOLT(IBUS)

VOLT(ICON(M))or

EMAXV

EMAXV−

+

1

11 ssT+ Σ

+

( )VOTHSG I

Σ 2

3

11

S

S

sTsT

++

4

5

11

S

S

sTsT

++ SVSK

( )MBASE ISBASE ( )VAR L

( )' '

'

' '

If :If :

If :

ERR LO R MAX SD ERR

HI ERR LO R R

ERR HI R MIN

V DV B B K V DVDV V DV B B

V DV B B

> = + −< < =< =

ERRV RB

Fast Override

Thyristor Delay

'

'

If 0, /

/LO MAX SVS

HI MIN SVS

DVDV B KDV B K

=

=

=

If 0,

LO

HI

DVDV DVDV DV

>== −

Filter

Regulator1st Stage 2nd Stage

'R

B SVSB

31 2

States: 1 – Filter 2 – Regulator1 3 – Regulator2 4 – Thyristor

4

Page 103: Block Diagrams

Machine Model CSVGN6

Model supported by PSSE

Machine Model CSVGN6 Static Var Compensator CSVGN6

6

11 sT+

MAXB

MINB

VREF

+VOLT(IBUS)

VOLT(ICON(M))or

+

1

11 ssT+ Σ

+

OtherSignals

( )VOTHSG I

Σ 2

3

11

S

S

sTsT

++

4

5

11

S

S

sTsT

++ SVSK

( )' '

'

' '

If :If :

If :

ERR LO R MAX SD ERR

HI ERR LO R R

ERR HI R MIN

V DV B B K V DVDV V DV B B

V DV B B

> = + −< < =< =

ERRV RB

Fast Override

Thyristor Delay

'

'

If 0, /

/LO MAX SVS

HI MIN SVS

DVDV B KDV B K

=

=

=

If 0,

LO

HI

DVDV DVDV DV

>== −

Filter

'R

B SVSB

MAXV

MINV

EMAXV

EMINV

++

Σ

Position 1 is normal (open)If 2, switch willclose after cycles.

ERRV DVTDELAY

>

1 2

BIAS

BSHUNT

+

RB

31 2

4States: 1 – Filter 2 – Regulator1 3 – Regulator2 4 – Thyristor

Page 104: Block Diagrams

Machine Model GENCC

fdE+

Machine Model GENCC Generator represented by uniform inductance ratios rotor

modeling to match WSCC type F

+

'

1

dosT

'

' ''d d

d d

X XX X

−−

Model supported by PSLF

''

'd d

d d

X XX X

−−

' ''d dX X−

'qE '

qE''

1

dosTΣ

di

1EeS

q

d

XX

q axis

d axis

−Σ

π

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – Eqpp 5 – Edp 6 - Edpp

Page 105: Block Diagrams

Machine Model GENCLS

Machine Model GENCLS Synchronous machine represented by “classical” modeling or

Thevenin Voltage Source to play Back known voltage/frequency signal

Model supported by PSLF

RecordedVoltage

RespondingSystem0.03

on 100 MVA baseabZ =

A B

gencls

RespondingSystem

ppdI

B

RespondingSystem0.03

on 100 MVA baseabZ =

A Bgencls

ppdI

States: 1 – Angle 2 – Speed w

Page 106: Block Diagrams

Machine Model GENROU

fdE+

Machine Model GENROU Solid Rotor Generator represented by equal mutual

inductance rotor modeling

+

+'

1

dosT

''

'd l

d l

X XX X

−−

Model supported by PSLF

''dP

di

fdP

' ''

'd d

d l

X XX X

−− Σ

'd lX X−

+ ''

1

dosT−Σ

kdP−

+

+

+

'd dX X−

Σ

''dP

+

+

Σ

''P

''

( )q l

qd l

X XP

X X−

eS

Σ

' ''

'( )**2d d

d l

X XX X

−−

d AXIS−

ad fdL i

*** , q AXIS identical swapping d and q substripts−

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – PsiDp 5 – PsiQpp 6 – Edp

Page 107: Block Diagrams

Machine Model GENSAL

fdE+

Machine Model GENSAL Salient Pole Generator represented by equal mutual

inductance rotor modeling

+

+'

1

dosT

''

'd l

d l

X XX X

−−

Model supported by PSLF

''dP

di

fdP ' ''

'd d

d l

X XX X

−− Σ

'd lX X−

+ ''

1

dosT−Σ

kdP−

++

+

'd dX X−

Σ

+

+

Σ

' ''

'( )**2d d

d l

X XX X

−−

d AXIS−

ad fdL iΣ

''

1

qosT−Σ kdP−

''q qX X−

''qP

qiq AXIS−

e fdS P

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – PsiDp 5 – PsiQpp

Page 108: Block Diagrams

Machine Model GENTPF

fdE+

Machine Model GENTPF Generator represented by uniform inductance ratios rotor

modeling to match WSCC type F

+

'

1

dosT

'

' ''d d

d d

X XX X

−−

Model supported by PSLF

''

' ''d d

d d

X XX X

−−

' ''d dX X−

'qE '

qE''

1

dosT

di

−Σ

eS

eS Σ''dϕ

( )

( )

1.

Axis Similar except:

1.

e ag

qe ag

d

S fsat

QX

SX

ϕ

ϕ

= +

= +

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – Eqpp 5 – Edp 6 – Edpp

Page 109: Block Diagrams

Machine Model GENTRA

fdE+

Machine Model GENTRA Salient Pole Generator without Amortisseur Windings

+

Model supported by PSLF

di

'dX

'd dX X−+

+

d AXIS−

ad fdL i

qX qiq AXIS−

eS

'

1

dosT Σ−

Σ

Σ

States: 1 – Angle 2 – Speed w 3 - Eqp

Page 110: Block Diagrams

Machine Model GENWRI

MECHP+

Machine Model GENWRI Wound-rotor Induction Generator Model with Variable External

Rotor Resistance

+1

2Hs

Model supported by PSLF

rω slip0ω÷Σ

ELECP

Σ

Sf

( )( )

( )( )( )

( )( )

'0

'0

'

'0

'

'0

'

'

2

22 2

( )

( )

s l

s

fd d s dfd fq

fq q s qfq fd

d fd

q fq

L LR Tpo

L L

R TpoTR ex R

S L L islip

T

S L L islip

T

−=

=+

+ + −= − +

+ + −= − +

=

=

ω

ϕϕ ϕ

ϕϕ ϕ

ϕ ϕ

ϕ ϕ

( ) ( )( )( )( )

' '

' '

2 2' ' '

'

'

'

q s d d a q

d s q q a d

d q

e sat

d e d

q e d

e Li R i

e Li R i

S f

S S

S S

= − −

= − + −

= +

=

=

=

ω ϕ

ω ϕ

ϕ ϕ ϕ

ϕ

ϕ

ϕ

'0R2Tpo is a constant which is equal to T times

the total rotor resistance. R2 is the internal rotor resistance R2ex is the internal rotor resistance

States: 1 – Epr 2 – Epi 3 – Speed wr

Page 111: Block Diagrams

Machine Model GEWTG

''

( )q cmdEefd

Fromexwtge

Machine Model GEWTG Generator/converter model for GE wind turbines – Doubly Fed Asynchronous Generator (DFAG) and

Full Converter (FC) Models

11 0.02s+

Model supported by PSLF

0s

1''X

PlvI11 0.02s+

1s

( )PcmdI

ladifdFrom

exwtge

sorcI

''jX

High VoltageReactive Current

Management

Low VoltageActive CurrentManagement

11 0.02s+

2sV

LVPL

xerox(0.5pu)

brkpt(0.9pu)

LowVoltage Power Logic

1.11

LVPL

& LVLP rrpwr

VtermV

Figure 1. DFAG Generator / Converter Model

3

1

2

States: 1 – Eq 2 – Ip 3 – Vmeas

Page 112: Block Diagrams

''

( )q cmdEefd

Fromexwtge

Machine Model GEWTG Generator/converter model for GE wind turbines – Doubly Fed Asynchronous Generator (DFAG) and

Full Converter (FC) Models

11 0.02s+

Model supported by PSLF

0s

1−

PlvI11 0.02s+

1s

( )PcmdI

ladifdFrom

exwtge

sorcIHigh VoltageReactive Current

Management

Low VoltageActive CurrentManagement

11 0.02s+

2sV

LVPL

xerox(0.5pu)

brkpt(0.7pu)

LowVoltage Power Logic

1.11

LVPL

& LVLP rrpwr

VtermV

Figure 1. Full Converter Generator / Converter Model

Page 113: Block Diagrams

Machine Model MOTOR1

Machine Model MOTOR1 “Two-cage” or “one-cage” induction machine

Model supported by PSLF

1

1

o r

lr

RLω

oSLIPω1drψ

Σ1

1.

lrL

+

−+

+1qrψ

2

2

o r

lr

RLω

oSLIPω

Σ

2drψ

Σ2

1.

lrL

+

−+

−2qrψ

'' m satLΣ

+

+

'' ''d qE ψ− =

'' m satL qsi

Σ

eS

1. ( )sat e mK S ψ= +

''

1 2

1./ 1. / 1. /m sat

sat m lr lr

LK L L L

=+ +

Σ

2

2

o r

lr

RLω

oSLIPω2qrψ

Σ2

1.

lrL

+

−+

+2drψ

1

1

o r

lr

RLω

oSLIPω

Σ Σ1

1.

lrL

+

−+

+1drψ

Σ

1qrψ

'' m satL

+

+ Σ

+

2 2md mqψ ψ+

'' m satL dsi

−Σ+

'' ''q dE ψ=

' '1

'' ''1 2

' '1 1 1 1

'' ' '' '2 2 2 2

1. / (1. / 1. / )

1. / (1. / 1. / 1. / )

/ ( ) ( ) / ( )

/ ( ) ( ) / ( )

m s l

m m lr l

m m lr lr l

o lr m o r m lr m o r

o lr m o r m lr m o r

L L LL L L L LL L L L L LT L L R L L L RT L L R L L L R

ω ω

ω ω

= −

= + = −

= + + = −

= = +

= = +

mqψ

mdψ

States: 1 – Epr 2 – Epi 3 – Ekr 4 - Eki 5 – Speed wr

Page 114: Block Diagrams

Machine Model SVCWSC

Machine Model SVCWSC Static Var device compatible with WSCC Vx/Wx models

+

11

S12

1+sT1+sT

S13

S14

sT1+sT

S3K

Input 1

Input 2

Model supported by PSLF

EMINV

EMAXV

RETV

SVSBC

S1

1+sT1+sTΣ+

CX

S2

S3

1+sT1+sT

S4

S5

1+sT1+sT SVSK

1MAXV

1MINV

2*VC MAXK V

2*VC MINK V

Σ Σ

SCS S

S

V VV (from external PSS)

+

S6

11+sT

FastOverRide

MAXB

MINB

π

BUSV

S1

S7

K1+sT

8

S9

1+sT1+sT

S2

S10

K1+sT

+

+ +

SCSMINV

SCSMAXV

SCSV

if Vbus<V1vcl, Kvc = 0.if Vbud>V2vcl for Tdvcl sec., Kvc =1.

Voltage Clamp Logic

Page 115: Block Diagrams

Generator Other Model LCFB1

Turbine Load Controller Model LCFB1

mwsetP 1Ks

++

PK

+

bFMAXe

MAXe−db

db−

11 PELECsT+

Σ

genP

rmaxL

rmaxL−

rmaxL

rmaxL−

Σ +

+

0refP

Σ refP

Model supported by PSLF

Σ

Frequency Bias Flag - fbf, set to 1 to enable or 0 to disablePower Controller Flag - pbf, set to 1 to enable or 0 to disable

Freq

1.0+

elec

I

1 - P Sensed2 - K

States

1

2

Page 116: Block Diagrams

Generator Other Model COMP

Voltage Regulator Current Compensating Model COMP

Model supported by PSSE

𝑉�𝑇 𝑉𝐶𝑇 = |𝑉�𝑇 − 𝑗 ∙ 𝑋𝑒 ∙ 𝐼�̅�| VCT

𝐼�̅� ECOMP

Page 117: Block Diagrams

Generator Other Model COMPCC

Voltage Regulator Current Compensating Model for Cross-Compounds Units COMPCC

Model supported by PSSE

𝐸𝐶𝐶𝐶𝐶1 = 𝑉𝑇 − �𝐼𝑇1 + 𝐼𝑇2

2� ∙ (𝑅1 + 𝑗 ∙ 𝑋1) + 𝐼𝑇1 ∙ (𝑅2 + 𝑗 ∙ 𝑋2)

VT IT1

IT2

𝐸𝐶𝐶𝐶𝐶2 = 𝑉𝑇 − �𝐼𝑇1 + 𝐼𝑇2

2� ∙ (𝑅1 + 𝑗 ∙ 𝑋1) + 𝐼𝑇2 ∙ (𝑅2 + 𝑗 ∙ 𝑋2)

Page 118: Block Diagrams

Generator Other Model GP1

Generic Generator Protection System GP1

Model supported by PSLF

Generator Protection

(GP)

Ifd

flag

Excitation System Notes: = isoc or ifoc*affl

a = asoc or afoc k = ksoc or kfoc

Trip Signal Alarm Only

0

1

Field Shunt

VT PT

I CT

GSU

52G

T1

T2

s2 1.05*pick up pick up

𝑇1 =𝑘

1.05 − 𝑎

𝑇2 =𝑘

𝑠2 − 𝑎

Page 119: Block Diagrams

Generator Other Model IEEEVC

Voltage Regulator Current Compensating Model IEEEVC

Model supported by PSSE

𝑉�𝑇 𝑉𝐶𝑇 = |𝑉�𝑇 + (𝑅𝐶 + 𝑗 ∙ 𝑋�𝐶) ∙ 𝐼�̅�| VCT

𝐼�̅� ECOMP

Page 120: Block Diagrams

Generator Other Model MAXEX1 and MAXEX2

+ -

VLOW

�⬚ EFD

Maximum Excitation Limiter Model MAXEX1 and MAXEX2

Model supported by PSSE

KMX 0 V

OEL

EFDDES*EFDRATED

(EFD1, TIME1)

Tim

e (s

ec.)

EFD (p.u. of Rated)

(EFD2, TIME2) (EFD3, TIME3)

Page 121: Block Diagrams

Generator Other Model MNLEX1

+

+ �⬚ IREAL

Minimum Excitation Limiter Model MNLEX1

Model supported by PSSE

0

EFD

XADIFD

+ �⬚

VUEL

𝐾𝐶1 + 𝑠𝑇𝐶

𝑠𝐾𝐹2

1 + 𝑠𝑇𝐹2

MELMAX

-

1𝐾

PQSIG

Page 122: Block Diagrams

Generator Other Model MNLEX2

+

+ �⬚ Q

Minimum Excitation Limiter Model MNLEX2

Model supported by PSSE

0

P

+ �⬚ VUEL 𝐾𝐶

1 + 𝑠𝑇𝐶

𝑠𝐾𝐹2

1 + 𝑠𝑇𝐹2

MELMAX

-

PQSIG -

�⬚ + X2

X2

𝑄𝑜 ∙ 𝐸𝑇2 (𝑅 ∙ 𝐸𝑇2)2

- Q

P

Radius Qo

Page 123: Block Diagrams

Generator Other Model MNLEX3

+

+ �⬚ Qo

(1.0 p.u.)

Minimum Excitation Limiter Model MNLEX3

Model supported by PSSE

0

+ �⬚ VUEL 𝐾𝐶

1 + 𝑠𝑇𝐶

𝑠𝐾𝐹2

1 + 𝑠𝑇𝐹2

MELMAX

PQSIG -

�⬚ +

B

𝑃𝑉𝑇

+ Q/V

P/V

B = Slope

𝑄

𝑉𝑇

EFD

Qo (1.0 p.u. V)

Page 124: Block Diagrams

Generator Other Model OEL1

Over Excitation Limiter for Synchronous Machine Excitation Systems OEL1

Model supported by PSLF

Reference Runback

Voltage Regulator

Voltage Reference

Field Winding

Field Current

Transformer

PT

CT Generator

Overexcitation Limiter

Page 125: Block Diagrams

Generator Other Model REMCMP

Voltage Regulator Current Compensating Model REMCMP

Model supported by PSSE

Remote bus Remote bus number

Page 126: Block Diagrams

Governor BPA GG

Governor BPA GG WSCC Type G Governor Model

Model in the public domain, available from BPA

mech1 - P2 - Lead-Lag 13 - Integrator 34 - Integrator 4

States

'1KΔω 2

1

11

sTsT

++ Σ

+

MOP

MAXP+

−3

11 sT+ 4

11 sT+

5

5

11

sFTsT

++

MPM eP -P

eP

Σ2 3 4 1

Page 127: Block Diagrams

Governor BPA GH

Governor BPA GH WSCC Type H Hydro-Mechanical Governor Turbine Model

Model in the public domain, available from BPA

1(1 )G PT sT+

UPP

−−

1s /2

11

W

W

sTsT−+

'1KΔω

DOWNP

0P XRMAX(P.U.)P

MINP =0

R

Σ+

+

1d d

d

SD TsT+

Σ+

PILOT VALVE GATE SERVO TURBINE

MP23

4

1

mech1 - P2 - P gate valve3 - y34 - Feedback

States

Page 128: Block Diagrams

Governor BPA GIGATB, BPA GJGATB, BPA GKGATB, and BPA GLTB

Governor BPA GIGATB, BPA GJGATB, BPA GKGATB, and BPA GLTB

No block diagrams have been created

Page 129: Block Diagrams

Governor BPA GSTA

Governor BPA GSTA WSCC Type S Steam System Governor

And Nonreheat Turbine (Type A) Model

Model in the public domain, available from BPA

−−

1s

1KΔω

0PMAX(P.U.)P

MIN(P.U.)P

+GVP

2

1

11

sTsT

++ 3

1T

UPP

DOWNP

Σ1

1 CHsT+MP23 1

mech1 - P2 - P gate valve3 - Lead-lag

States

Page 130: Block Diagrams

Governor BPA GSTB

Governor BPA GSTB WSCC Type S Steam System Governor and Tandem Compound

Single Reheat Turbine (Type B) Model

Model in the public domain, available from BPA

−−

1s

1KΔω

0PMAX(P.U.)P

MIN(P.U.)P

+

GVP2

1

11

sTsT

++ 3

1T

UPP

DOWNP

Σ

MP

11 CHsT+

11 RHsT+

11 COsT+

HPF IPF LPF

++

++

ΣΣ

2

3 4 5

1

1 - P gate valve2 - Lead-lag3 - y34 - y45 - y5

States

Page 131: Block Diagrams

Governor BPA GSTC

Governor BPA GSTC WSCC Type S Steam System Governor and Tandem Compound

Double Reheat Turbine (Type C) Model

Model in the public domain, available from BPA

−−

1s

1KΔω

0PMAX(P.U.)P

MIN(P.U.)P

+

GVP2

1

11

sTsT

++ 3

1T

UPP

DOWNP

Σ

MP

11 CHsT+ 1

11 RHsT+ 2

11 RHsT+

VHPF HPF IPF

++

++

Σ

11 COsT+

LPF

++

Σ Σ

2

3 4 5 6

1

1 - P gate valve2 - Lead-lag3 - y34 - y45 - y56 - y6

States

Page 132: Block Diagrams

Governor BPA GWTW

Governor BPA GWTW WSCC Type W Hydro Governor System

And Hydro Turbine (Type W) Model

Model in the public domain, available from BPA

KΔω

0P

+GVP

2

1 3

1(1 )(1 )

sTsT sT+

+ +

MAX/100P

MIN/100P

Σ1

1 0.5W

W

sTsT

−+

MP

2 3

1

mech1 - P2 - y03 - y1

States

Page 133: Block Diagrams

Governor CCBT1

Governor CCBT1 Steam Plant Boiler/Turbine and Governor Model

MIN4

Σ

Model supported by PSLFProportional-integral blocks 1-6 also have rate limits not shown in the block diagram

Σ

11 WsT+

1

DsT

11 FsT+

11

IP

KKs

+

77

71D

PD

sKKsT

++

Σ

44

IP

KKs

+

Σ

Σ

33

IP

KKs

+

Σ1 r

rpelec

rvalve

ΣBK

-dbd

+dbd Σ

MAX4

MIN3

MAX3

Σ

MIN7

MAX7

Σ

MIN2

22

IP

KKs

+

MAX2

MIN5

55

IP

KKs

+

MAX5

1.0

MIN6

66

IP

KKs

+

MAX6

MIN1

MAX1

Σ

π

πPK

π

1 ah−

ah

1

RHsT

1PLM

PLM

KsT+

Σ

Σ

11 GsT+

IGOVPGOV

KKs

+

MINV

MAXV

Σ Σ

11 PelecsT+

-1

0

refω Speed

1.0

Speed

mechP

Valve Bias

mechP

refL

Bias

refPresslmref refP •Press

genP

Σ

+

++

− −

−−

−−

−−

+

+

+

+

++

++

++

+

++

++

2

3

4

5

6

1

7

8 9

10

11

12

+

13

14 1550PLMT =

Σ

Page 134: Block Diagrams

Governor CRCMGV

(HP)Speed ( )

1( )

1/1

HP

HP

RsT+ Σ

+

mech(HP)P

Governor CRCMGV Cross Compound Turbine-Governor Model

( )( )( )( ) 5( )

3( ) 4( ) 5( )

11 1 1

HP HP

HP HP HP

sF TsT sT sT

+

+ + +−

Reference

MAX(HP)P

0

+

( )

1( )

1/1

LP

LP

RsT+ Σ

+

( )( )( )( ) 5( )

3( ) 4( ) 5( )

11 1 1

LP LP

LP LP LP

sF TsT sT sT

+

+ + +−

ReferenceMAX(LP)P

0

+

( )( )2( )H HP T HPD E −

Σ−

+

( )( )2( )H LP T HPD E −−

Σ−

(LP)SpeedΣ

High-Pressure Unit

Low-Pressure Unit

mech(LP)P−

Model supported by PSLF and PSSE

2 3 4

5

6

1

1 - HPInput2 - HPState13 - HPState24 - HPState35 - LPInput6 - LPState17 - LPState28 - LPState3

States

7 8

Page 135: Block Diagrams

Governor DEGOV

Governor DEGOV Woodward Diesel Governor Model

( )( )( )

4

5 6

11 1

Actuator

K sTs sT sT

++ +

MAXT

MINT

π( )32

1 2 1

11

Electric Control Box

sTsT s T T− ++ +

1+Speed

Engine

DsTe−mechP

Model supported by PSSE

2

3 4 5

1

1 - Control box 12 - Control box 23 - Actuator 14 - Actuator 25 - Actuator 3

States

ΔωSpeed

Page 136: Block Diagrams

Governor DEGOV1

Governor DEGOV1 Woodward Diesel Governor Model

( )( )( )

4

5 6

11 1

Actuator

K sTs sT sT

++ +

MAXT

MINT

πΔωSpeed

1+Speed

Engine

DsTe−mechP( )3

21 2 1

11

Electric Control Box

sTsT s T T− ++ +

+

11 EsT+

SBASEMBASE

elecPDROOP

Σ−

refP

1

0

Model supported by PSSE

6

Droop Control

1 - Control box 12 - Control box 23 - Actuator 14 - Actuator 25 - Actuator 36 - Droop Input

States

21

3 4 5

Page 137: Block Diagrams

Governor G2WSCC

Governor G2WSCC Double Derivative Hydro Governor and Turbine

Represents WECC G2 Governor Plus Turbine Model

GVN

Δω(Speed) eps

1db

11 DsT+

1

1 F

sKsT+

22

2(1 )F

s KsT+

+

+

+

R1

1 TsT+elecP

1G

P

KsT+

OPENVEL

CLOSEVEL

1s

MAXP

MINP

2db

GV 11

turb turb

turb turb

sA TsB T

++

GVPmechP

+−

Σ

T(T =0)

refP

Model supported by PSLF

+−Σ IK

s−

Σ2 3

4 5

6

1

mech

D

1

2

2

elec

1 - P2 - T3 - K4 - K first5 - K second6 - Integrator7 - P Sensed8 - Valve9 - Gate

States

8 9

7

GV1, PGV1...GV6, PGV6 are the x,y coordinates of blockGVN

Page 138: Block Diagrams

Governor GAST_GE

Governor GAST_GE Gas Turbine-Governor Model

refP ( )4

5

11

AK sTsT+

+

+

+

+

Model supported by PSLF

+

2

2

11

AsTBsT

++

eps

0db

Δω(Speed)

3

11 sT+

1

1sT

MAXV

MINV

LIMR

1R

Σ

IDLEF

TK

Σ

ΣIDLEF

MAXL

Σ +−

VG

GVP dbb

mechP

11 LTRsT+

+

V INC LIM TRAT

LIM MAX

if (D >L ) R =L else R =R Σ

VD

Σ

2

3

4

5

1 LVGATE

1 - Input LL2 - Integrator3 - Governor LL4 - Load Limit5 - Temperature

States

GV1, PGV1...GV6, PGV6 are the x,y coordinates of vs. blockGVP GV

Page 139: Block Diagrams

Governor GAST_PTI

Governor GAST_PTI Gas Turbine-Governor Model

MAXV

refLoad mechP−

+

turbD

1R

Σ

MINV

1

11 sT+ 2

11 sT+

LVGate Σ+

Speed

3

11 sT+TK+ −

+

ΣΣ+

TA (Load Limit)

Model supported by PSSE

2

3

1

1 - Fuel Valve2 - Fuel Flow3 - Exhaust Temperature

States

Page 140: Block Diagrams

Governor GAST2A

Governor GAST2A Gas Turbine-Governor Model

LowValueSelect

( )1W sXsY Z

++

+Σ−

ReferencesTe−

MAX

MINSpeed

GovernorSpeed

Control

3K +

FuelControl

AC sB+

11 Fsτ+

CRsEe−

FK

6K

Σ+

ValvePositioner

FuelSystem fW

FuelFlow

TDsEe−

51

T

sTsτ+

MAX

+

4

11 sT+

54

31KK

sT+

+ 1fΣ −TurbineExhaust

Turbine

RadiationShieldThermocouple

TemperatureControl*

CT

11 CDsT+

2fMBASERATET

+

Δω

1.0 +

π

Σ

π

mechP

( )1 R f1 f1f1f =T -A 1.0-w -B Speed

( ) ( )f22 f2 f2 f2f =A -B w -C Speed

f2wTurbine

Gas TurbineDynamics

* Temperature control output is set to output of speed governor when temperature control input changes from positive to negative

Model supported by PSSE

2 3

45

7

1

f1w

1 - Speed Governor2 - Valve Positioner3 - Fuel System4 - Radiation Shield5 - Thermocouple6 - Temp Control7 - Turbine Dynamics

States

6

Page 141: Block Diagrams

Governor GASTWD

Governor GASTWD Woodward Gas Turbine-Governor Model

LowValueSelect+

SpeedReference

sTe−

MAX

MIN

SpeedControl

3K +

FuelControl

AC sB+

11 Fsτ+

CRsEe−

FK

6K

Σ+

ValvePositioner

FuelSystem

fWFuelFlow

TDsEe−

5 1

T

sTsτ+

MAX

+ 4

11 sT+

54

31KK

sT+

+ 1fΣ −TurbineExhaust

Turbine

RadiationShieldThermocouple

TemperatureControl*

11 CDsT+

2fMBASERATET

+

Δω

1.0 +

π

Σ

π

mechP

( ) ( )f =T -A 1.0-w -B Speed1 R f1 f1 f1 ( ) ( )f =A -B w -C Speed2 f2 f2 f2 f2

f2wTurbineGas TurbineDynamics

* Temperature control output is set to output of speed governor when temperature control input changes from positive to negative

IKs

PK

DsK

+

Σ++

SBASE

RATET

1DROOP

D

KsT+

Σ

elecP

eP

T Setpoint for CTemperature Control

Model supported by PSSE

2 3

45

6

1

f1w

1 - Power Transducer2 - Valve Positioner3 - Fuel System4 - Radiation Shield5 - Thermocouple6 - Temp Control7 - Turbine Dynamics8 - PID 1 9 - PID 2

States

78 9

Page 142: Block Diagrams

Governor GGOV1

Governor GGOV1 – GE General Governor-Turbine Model

( / )dref turb fnlL K w+ +1

1 FloadsT+11

SA

SB

sTsT

++

mD**Dmm <If D 0, (Speed+1)m >If D 0, (Speed)

11

C

B

sTsT

++

engsTe−

turbK

Σ

PloadK

IloadKs

Σ

Σ

++

+

1.0

AK t∆ +

+ΣΣ

+

1 A

ssT+

drefL mechP

Speed

PgovK

IgovKs

1Dgov

Dgov

sKsT+

+

++

−+

maxerr

minerr

-dbdb

++

π

11 ACTsT+

MAXV

MINV

refPΣ

LowValueSelect

r

Σ

IMWKs

Σ

Σ+ −

11 PelecsT+

elecP

−Σ

fnlw

π

1.0 (Speed+1)governor outputvalve stroke

aset

IMW

UP DOWN CLOSE OPEN

Model supported by PSLFModel supported by PSSE does not include non-windup limits on K blockR , R , R , and R inputs not implemented in Simulator

+

2

3

4

5

6

1

Flag0 1

Rselect

11−

2−

mwsetP

1.1r

-1.1r

Timestep

elec1 - P Measured 5 - Turbine LL2 - Governor Differential Control 6 - Turbine Load Limiter3 - Governor Integral Control 7 - Turbine Load Integral Control4 - Turbine Actuator 8 - Supervisory Load Co

States

ntrol9 - Accel Control10 - Temp Detection LL

7

8

9

10

MINV

MAXV

Page 143: Block Diagrams

Governor GGOV2

Governor GGOV2 - GE General Governor-Turbine Model

mwsetP

( / )dref turb fnlL K w+ +1

1 floadsT+11

sa

sb

sTsT

++

mD−

11

c

b

sTsT

++

engsTe−

turbK

Σ

ploadK

iloadKs

Σ

Σ

++

+

1.0

aK t∆

5s 9s

6s

+

+ΣΣ

+

1 a

ssT+

8s

4s

drefL MECHP

Speed

pgovK

igovKs

1dgov

dgov

sKsT+

+2s+

+

1s

+

++

π

11 actsT+

ropenvmax

vminrclose

refPΣ

LowValueSelect

r

Σ

imwKs

Σ

Σ+ −

11 PelecsT+

ELECP

7s

0s

−Σ

fnlw3s

π

1.0

aset

+

MINV

MAXV

Frequency-dependent

limit

Speed

fsrt

fsra

fsrn1.1r

-1.1r

Flag0 1

Timestep

**Dmm <If D 0, (Speed+1)m >If D 0, (Speed)

(Speed+1)

Rselect

11−

2−governor output

valve stroke

maxerr

minerr

-dbdb

Model supported by PSLF

8

7

10

2

3

4

5

6

1

elec1 - P Measured 5 - Turbine LL2 - Governor Differential Control 6 - Turbine Load Limiter3 - Governor Integral Control 7 - Turbine Load Integral Control4 - Turbine Actuator 8 - Supervisory Load Co

States

ntrol9 - Accel Control10 - Temp Detection LL

9

Page 144: Block Diagrams

Governor GGOV3

11

cd

bd

sTsT

++

Governor GGOV3 - GE General Governor-Turbine Model

mwsetP

( / )dref turb fnlL K w+ +1

1 floadsT+11

sa

sb

sTsT

++

mD −

11

c

b

sTsT

++

engsTe−

Σ

ploadK

iloadKs

Σ

Σ

+

+

+

1.0

aK t∆ +

+ΣΣ

+

1 a

ssT+

drefL MECHP

PercievedSpeed

pgovK

igovKs

1dgov

dgov

sKsT+

++

+

−+

++

π

11 actsT+

refPΣ

LowValueSelect

R

Σ

imwKs

Σ

Σ+ −

11 PelecsT+

ELECP

fnlw

π

1.0

aset

+

Σ

turbK

2

3 4

56

1

7

8

9

10

11

**Dmm <If D 0, (Speed+1)m >If D 0, (Speed)

1.1r

-1.1r

Flag0 1

Timestep

MAXV

MINV

UP DOWN CLOSE OPEN dnrate, R , R , R , and R inputs not implemented in Simulator

Rselect

11−

2−(Speed+1)governor output

valve stroke

MINV

MAXV

elec1 - P Measured 5 - Turbine LL 9 - Accel Control2 - Governor Differential Control 6 - Turbine Load Limiter 10 - Temp Detection LL3 - Governor Integral Control 7 - Turbine Load Integral Contro

States

l 11 - Fuel System Lead Lag4 - Turbine Actuator 8 - Supervisory Load Control

Maxerr

Minerr

-dbdb

Model supported by PSLF

Page 145: Block Diagrams

Governor GGOV3 - GE General Governor-Turbine Model

dnlo

PercievedSpeed

dnhi

ffa

ffb

slope = 1

slope = ffc

MeasuredSpeed

Nonlinear Speed Filter

FilteredSpeed

Rate limit dnrate not used in SimulatorModel supported by PSLF

Page 146: Block Diagrams

Governor GPWSCC

Governor GPWSCC PID Governor-Turbine Model

GVN

err

1db

11 DsT+

1Ks

1D

f

sKsT+

+

+

+

R 11 tsT+

( 0)tT >

1G

P

KsT+

1s 2db

GV 11

turb turb

turb turb

sA TsB T

++

+ −

Σ

PK

Σ+

− CVΣ

GVP

0tT =

176

5

3

4

2

mechP

elecP

Δω(Speed)

refP

OPENVEL

CLOSEVEL

MAXP

MINP

GV1, PGV1...GV6, PGV6 are the x,y coordinates of blockGVN

mech elec

D

1 - P 5 - P Sensed2 - T 6 - Valve3 - Integrator 7 - Gate4 - Derivative

States

Model supported by PSLF

Page 147: Block Diagrams

Governor HYG3

Governor HYG3 PID Governor, Double Derivative Governor, and Turbine

Δω1db

11 DsT+

IKs

1

1 f

sKsT+

+

+

+

11 tsT+

1G

P

KsT+

1s

MAXP

MINP

2dbGV

+−

2K

Σ+

gateR

1db

11 DsT+

1

1 f

sKsT+

( )2

22

1 f

s K

sT+

+

+

elecR1

1 tsT+

++

Σ IKs

Σ

−−

gateR

Δω (speed-1)pu=

Δω

cflag>0

Σcflag<0

GVN GVP 1

WsT0H

π tA Σ

turbD

GVq/PqNL

Σ÷ πΣ+

− +

+−

H q

ΔωπΣ

GVPmechP

refP

refP

elecP

CV

CV

1

2

4 5

7

6

3

8

9

1

7

2

OPENVEL

CLOSEVEL

Model supported by PSLF

elecR

Note: cflag determines numbering of states

D

1

i

W

elec

2

2

1 - T2 - K3 - K4 - Valve5 - Gate6 - T7 - P Sensed8 - K First9 - K Second

States

elecP

3

GV1, PGV1...GV6, PGV6 are the x,y coordinates of blockGVN

GV

Page 148: Block Diagrams

Governor HYGOV

Governor HYGOV Hydro Turbine-Governor Model

+1

1 fsT+−

R

1 r

r

sTrT s+ 1

1 gsT+

turbD

tA Σ

πg

+−

2db

GVP GV

11

n

np

sTsT

++

MAXG

MING

elmrate limit - V

1db

refP

1 2 3

GVN

GV

Δω

Δω

mechP1

WsTHdam=1

πqNL

Σ÷ πΣ+

− +

H 4GVP

GVq/P

Model supported by PSSE and PSLFRperm shown as R, Rtemp shown as r

Ttur, Tn, Tnp, db1, Eps, db2, Bgv0...Bgv5, Bmax, Tblade not implemented in SimulatorGV0, PGV0...GV5, PGV5 are the x,y coordinates of blockGVN

1 - Filter Output2 - Desired Gate3 - Gate4 - Turbine Flow

States

Page 149: Block Diagrams

Governor HYGOV2

Governor HYGOV2 Hydro Turbine-Governor Model

MAXP

GMAXV

GMAX-V

+I PK sK

s+

1

3

1A

sTKsT

+

2

4

11

sTsT

++

1s

R 1temp R

R

sR TsT+

5

6

11

sTsT

−+

Σ −

1 2 3

4

5

6

1 - Filter Output2 - Governor3 - Governor Speed4 - Droop5 - Gate6 - Penstock

States

MING

mechP

refP

Model supported by PSSEMAX MINThe G G limit is modeled as non-windup in PSSE but as a windup limit in Simulator.

MAXGΔωSpeed

Page 150: Block Diagrams

Governor HYGOV4

GVN

GVP

GV

Governor HYGOV4 Hydro Turbine-Governor Model

+ 11 psT+

1

gT1s

+

+−

1dbΔω ΣCU

OU

2db

permR+

1r temp

r

sT RT s+

Σ

turbD

Σ

π

tA

Model supported by PSLF

mechP

refP MAXP

MINP

GV

1

WsTHdam

πqNL

Σ÷ πΣ+

− +

H 4

GVP GVq/P

q

3

21

GV0, PGV0...GV5, PGV5 are the x,y coordinates of blockGVN

W

1 - Velocity2 - Gate3 - Rtemp4 - T

States

Bgv0...Bgv5, Bmax, Tblade not implemented in Simulator

Page 151: Block Diagrams

Governor HYST1

Governor HYST1 Hydro Turbine with Woodward Electro-Hydraulic PID Governor,

Surge Tank, and Inlet Tunnel

− ip

KKs

+Σ+

11 asT+

1d

a

sKsT+

Σ+

+

11 asT+

1perm

reg

RsT+

Σ +

11 bsT+

MAXG

MING

( )G s +

turbD

Σ−

GVP

GV

refP

genP

Δω

mechP

4

3

21

5

6

9

7

8

Model supported by PSLFNot yet implemented in Simulator

Page 152: Block Diagrams

Governor IEEEG1

Governor IEEEG1 IEEE Type 1 Speed-Governor Model

HPΔω

SPEED

4

11 sT+

2

1

(1 )1

K sTsT++ 3

1T

CU

OU1s

MAXP

MINP

Σ

1K

5

11 sT+

3K

6

11 sT+

5K

7

11 sT+

7K

Σ Σ

2K 4K 6K 8K

Σ Σ

Σ

Σ

HPPMECH

LPPMECH

+

+

+

+

+

+

+

++

++

+

M1P

M2P

+

Model supported by PSLF includes hysteresis that is read but not implemented in SimulatorModel supported by PSSE does not include hysteresis and nonlinear gain

GVP

GV

1db

2db

3 4 5

12

1 - Governor Output2 - Lead-Lag3 - Turbine Bowl4 - Reheater5 - Crossover6 - Double Reheat

States

6refP

GV1, PGV1...GV6, PGV6 are the x,y coordinates of vs. blockGVP GV

Page 153: Block Diagrams

Governor IEEEG2

Governor IEEEG2 IEEE Type 2 Speed-Governor Model

− 4

4

11 0.5

sTsT

−+

2

1 3

(1 )(1 )(1 )

K sTsT sT

++ +

MAXP

MINP

Σ+

Model supported by PSSE

3

2 1

refP

mechP

mech1 - P2 - First Integrator3 - Second Integrator

States

ΔωSpeed

Page 154: Block Diagrams

Governor IEEEG3_GE

Governor IEEEG3_GE IEEE Type 3 Speed-Governor Model IEEEG3

( )11

TURB TURB W

TURB W

K A sTB sT+

+

REFP

11 PsT+

1s

MAXP

MINP

+

1TEMP R

R

R sTsT+

+

ΣCU

OU1

GT

GVP

GV

1db2db

GV GVP

Model supported by PSLF

32

1

mechP

PERMR

4

mech1 - P2 - Servomotor position3 - Gate position4 - Transient droop

States

PSLF model includes db1, db2, and Eps read but not implemented in Simulator

ΔωSpeed

Page 155: Block Diagrams

Governor IEEEG3_PTI

Governor_IEEEG3_PTI IEEE Type 3 Speed-Governor Model IEEEG3

13 2123 11

23

11

1

1

W

W

a aa a sTa

a sT

+ − +

1(1 )G PT sT+

1s

MAXP

MINP

+

OU

CU

PERMR

1TEMP R

R

R sTsT+

+

Σ

Model supported by PSSE

REFP

mechP32 1

4

mech1 - P2 - Servomotor position3 - Gate position4 - Transient droop

States

ΔωSpeed

Page 156: Block Diagrams

Governor IEESGO

Governor IEESGO IEEE Standard Model IEEESGO

−Speed4

11 sT+

OP

1 2

1 3

(1 )(1 )(1 )

K sTsT sT

++ +

MAXP

MINPΣ+

21 K−

21 K−

3

61KsT+

2

51K

sT+

Σ+

+ +

3

2

1

4 5

mechP

1 - First Integrator2 - Second Integrator3 - Turbine T44 - Turbine T55 - Turbine T6

States

Model supported by PSSE

Page 157: Block Diagrams

Governor PIDGOV

Governor PIDGOV - Hydro Turbine and Governor Model PIDGOV

− ip

KKs

+Σ+

11 asT+

1d

a

sKsT+

Σ+

+

11 asT+

1perm

reg

RsT+

SBASEMBASE

Σ +

0

1

1

bT1s

MAXG

MING

MAXVel

MINVelGate

Power

12

3

11 2

Z

Z

sTsT−+

+

( )Z tw wT = A *T

turbD

Σ−

+

−Σ

Feedback signal

Model supported by PSSEModel supported by PSLF

3

2

1

4

5

6

7 mechP

REFP

elecP

(G0,0), (G1,P1), (G2,P2), (1,P3) are x,y coordinates of Power vs. Gate function

1 - Mechanical Output2 - Measured Delta P3 - PI4 - Reg15 - Derivative6 - Reg27 - Gate

States

ΔωSpeed

Page 158: Block Diagrams

Governor TGOV1

Governor TGOV1 Steam Turbine-Governor Model TGOV1

1

11 sT+

MAXV

MINV

1R+

tD

2

3

11

sTsT

++

+

−Σ ΣREFP mechP2 1

1 - Turbine Power2 - Valve Position

States

Model supported by PSSEModel supported by PSLF

ΔωSpeed

Page 159: Block Diagrams

Governor TGOV2

Governor TGOV2 Steam Turbine-Governor with Fast Valving Model TGOV2

1

11 sT+

MAXV

MINV

Reference MECHP1R+

tD

− 3

11

KsT−+

+

−Σ 1 t

vsT+

K

Σ+

I

A A

B B

T : Time to initiate fast valving.

T : Intercept valve, , fully closed T seconds after fast valving initiation.

T : Intercept valve starts to reopen T seconds after fast va

v

C C

lving initiation.

T : Intercept valve again fully open T seconds after fast valving initiation.

ΔωSpeed

Model supported by PSSE

321

4

CT

BT

AT

IT ( )I AT T+ ( )I BT T+ ( )I CT T+

Time, seconds

1.

0.

Inte

rcep

t Val

ve P

ositi

on

1 - Throttle2 - Reheat Pressure3 - Reheat Power4 - Intercept Valve

States

Page 160: Block Diagrams

Governor TGOV3

RMAXP

Governor TGOV3 Modified IEEE Type 1 Speed-Governor with Fast Valving Model

−4

11 sT+

REFP

2

1

(1 )1

K sTsT++ 3

1T

CU

OU1sΣ

1K 2K

6

11 sT+

3K

Σ+

+

+

+

+

Σ

MAXP

MINP5

1sT

+ vΣ−

I

A A

B B

T : Time to initiate fast valving.

T : Intercept valve, , fully closed T seconds after fast valving initiation.

T : Intercept valve starts to reopen T seconds after fast va

v

C C

lving initiation.

T : Intercept valve again fully open T seconds after fast valving initiation.

CT

BT

AT

IT ( )I AT T+ ( )I BT T+ ( )I CT T+

Time, seconds

1.

0.

Inte

rcep

t Val

ve P

ositi

on

MECHP

Model supported by PSLFModel supported by PSSE

0 0.3

0.8

Intercept Valve Position

Flow

321

4 56

1 - LL2 - StateT33 - StateT44 - StateT55 - StateT66 - Intercept Valve

States

Gv1,Pgv1 ... Gv6, Pgv6 are x,y coordinates of Flow vs. Intercept Valve Position function

ΔωSpeed

Page 161: Block Diagrams

Governor TGOV5

Governor_TGOV5 - IEEE Type 1 Speed-Governor Model Modified to Include Boiler Controls

+HPSPEED

ω∆4

11 sT+

OP

2

1

(1 )1

K sTsT++ 3

1T

CU

OU1s

MAXV

MINV

1K

5

11 sT+

3K

6

11 sT+

5K

7

11 sT+

7K

Σ Σ

2K 4K 6K 8K

Σ Σ

Σ

Σ

HPPMECH

LPPMECH

+

+

+

+

+

+

++

++

++

1MP

2MP

−sm

1MW

MW

KsT+ELECP

B

f∆

14K1s

MINR

MAXRMAXL

MINL

Σ +++

Σ

OPLK

ΣΣMWDemand

DesiredMW2C Σ

+

12K

+

13K

Σ

3C

+

+

SPP DPE−DPE

Dead Band

EP(Pressure Error)

π

( )( )( )1

1 11

I I R

R

K sT sTs sT+ +

+

MAXC

EP

π

Fuel Dynamics

Σ+

++

1

BsC

−+

Σ11K

10K

Σ

TP

DP 9K

1CΣ

Σ− +

+ +

πOP

π

sm

sm

SPP

π

DesiredMW

MINC

Model supported by PSSE

TP

Page 162: Block Diagrams

Governor_TGOV5 - IEEE Type 1 Speed-Governor Model Modified to Include Boiler Controls

Model supported by PSSE

States: 1 – Governor Output 2 – Speed Lead-Lag 3 – Turbine Bowl 4 – Reheater 5 – Crossover 6 – Double Reheat 7 – PELEC 8 – PO 9 – FuelDyn1 10 – FuelDyn2 11 – Controller1 12 – Controller2 13 – PD 14 – Delay1 15 – Delay2 16 – Delay3 17 – Delay4

Page 163: Block Diagrams

Governor URGS3T

Governor URGS3T WECC Gas Turbine Model

GV

GVP

2db1

1sT

refP err

1db+

+4

5

(1 )1aK sT

sT+

+LVGATE

+

MAXV

MINV

2

2

11

AsTBsT

++

LIMR

+ mechP

TK3

11 sT+ΣΣIDLEF

MAXL

++ −

+

turbD

ΣΣ

IDLEF−

1R

Σ

Speed

11 LTRsT+

+Σ−

V INC LIM TRAT

LIM MAX

If (D >L ), then R = L else, R = R

Σ

VD

Model supported by PSSE

2

3

4

5

1

1 - Input LL2 - Integrator3 - Governor LL4 - Load Limit5 - Temperature

States

GV1, PGV1...GV5, PGV5 are the x,y coordinates of vs. blockGVP GV

Page 164: Block Diagrams

Governor WT12T1

Governor WT12T1 Two-Mass Turbine Model for Type 1 and Type 2 Wind Generators

FromWT12AModel

Initial rotor slip

+−

Model supported by PSSE

Σ

Σ Σ

Σ

Σ

Σ

+

+

+

+ +

+

+

+

shaftD

Damp

12 tH s

12 gH s

1s

baseω

baseω

baseω Rotorangle

deviation

Σ shaftKs

elecT

mechT Speed

t tfrac

g t2

t gshaft

0

H =H×HH =H-H

2H ×H ×(2π×Freq1)K =

H×ω

1 - TurbineSpeed2 - ShaftAngle3 - GenSpeed4 - GenDeltaAngle

States

3

2

1

4

Page 165: Block Diagrams

Governor W2301

Governor W2301 Woodward 2301 Governor and Basic Turbine Model

Speed

11 VsT+Valve Servo

+ Σ−

−GammaΣ

+

1 2Beta s+ ⋅

Σ+

11 psT+

1 0.5(1.05 )

Rho sBeta s Alpha

+ ⋅⋅ −

SpeedRef

+ Σ

gnl

−Turbine

PIController

+

mechP3

21

4

1 - PelecSensed2 - PI3 - Valve4 - Turbine

States

D

11

t turb

turb

sK TsT

++

refP

Model supported by PSLFGain, Velamx read but not implemented in Simulator.

Gmax

Gmin

elecP

Page 166: Block Diagrams

Governor WEHGOV

Governor WEHGOV Woodward Electric Hydro Governor Model

0 (Speed deadband)( ) (Speed deadband) (Speed deadband)( ) (Speed deadband) (Speed deadband)

Out if ERROut ERR I if ERROut ERR I if ERR

= <= − >= + < −

Governor and Hydraulic Actuators

Model supported by PSSE

(*)

(*)

1

WsT0H =1

π÷ πΣ+

−H 4

ssq/q

Turbine Flow, qFlow

mssPGate position, g

Gate

Flow

ss

Steady-StateFlow, q mssP

+

−Σ mechP

g πturbDSpeed

IKs

Gmin-DICN

6

Gmax+DICN

Σ++

+

PKERR

Speed deadband

Σ Σ 1

DVsT11

1 PsT+

Gmin-DPV

Gmax+DPVPilot Valve

1D

D

sKsT+

Feedbacksignal=1 Feedback

signal=0

+

gGTMXCL*T

gGTMXOP*T

2

Gate position, g1s

3

Gmax

Gmin

1

gT1 PE

RpermPEsT+

7

Distribution Valve

RpermGate

0

Feedbacksignal

SBASEMBASE

elecP

Turbine Dynamics

5

1 - Pilot Valve2 - DistributionValve3 - Gate4 - Turbine Flow5 - Derivative6 - Integrator7 - PelecSensed

States

(Gate 1, Flow G1)...(Gate 5, Flow G5) are x,y coordinates of Flow vs. Gate function(Flow P1, PMECH 1)...(Flow P10, PMECH 10) are x,y coordinates of Pmss vs. Flow function

+−

1−10

refP

Page 167: Block Diagrams

Governor WESGOV

Governor WESGOV Westinghouse Digital Governor for Gas Turbine Model

*

Droop

ΔωSpeed

PK

+1

IsT ( )( )1 2

11 1sT sT+ +Σ+

11 pesT+

**

+

Σ

Reference

Digital Control***

lim

*Sample hold with sample period defined by Delta TC.**Sample hold with sample period defined by Delta TP.

***Maximum change is limited to A between sampling times

.

mechP

elecP

32

1

4

1 - PEMeas2 - Control3 - Valve4 - PMech

States

Model supported by PSSElimA read but not implemented in Simulator

Page 168: Block Diagrams

Governor WNDTGE

Governor WNDTGE Wind Turbine and Turbine Control Model for GE Wind Turbines

Model supported by PSLF

++

11 psT+

11 5s+

+

RotorModel

Over/UnderSpeed Trip

TripSignalω

rotorω

/pp ipK K s+

20.67 1.42 0.51elec elecP P− + +refω

cmdθ

WindPowerModel

BladePitch

θ

Σ

/ptrq itrqK K s+1

1 pcsT+π

ω

ordP

+

−/pc icK K s+ Σ

Σ

ω

Power ResponseRate Limit

Apcflg is set to zero. Limits on states 2 and 3 and trip signal are not implemented.

Anti-windup onPitch Limits

mechP

elecP

elecP

Anti-windup onPower Limits

Anti-windup on Pitch LimitsTorqueControl

Pitch Control

PitchCompensation

PIMax & PIRat

PImin & -PIRat

errω PWmax & PWrat

PWmin & -PWrat

1 2

4

5

7

6

3

8

91 - Pitch2 - Pitch Control3 - Torque Control4 - Pitch Compensation5 - Power Control6 - Speed Reference7 - Mech Speed8 - Mech Angle9 - Elect Speed10- ElectAngle11- Washout12- Active Power

States10

WindPowerModel

if (fbus < fb ORfbus > fc)

FrequencyResponse

Curve

Active PowerControl

(optional)

avlP

avfP

To gewtgTrip Signal

(glimit)

WTG TerBus Freq

AuxiliarySignal(psig)

fbusΣ+

+

setp0

1

fflg

apcflg minP

maxP

stlp

setAPCP

1

MAX

ReleaseP

if fflg set

WindSpeed

(glimv)

1

12

11 pavsT+

+

− 1W

W

sTsT+

Σ++

11

wshoΣ perr

plim

Spdwl

Simulator calculates initial windspeed Spdwl.

ordP

ΣdbrP

+

+

Page 169: Block Diagrams

Governor WNDTGE Wind Turbine and Turbine Control Model for GE Wind Turbines

1s

Two - Mass Rotor Model

1s

1s

1s

12H

12 gH

tgD

baseω

baseω

mechT

elecT

tgK

++

ΣΣ

Σ

Σ

Σ

Σ

0ω+

+rotorω

shaftT

++

−−

ω∆

0ω+

+

7 8

9 10

Turbine Speed

ω Generator Speed

mechmech

mech 0

PTω ω

=+

mechω

elecω

elecelec

elec 0

PTω ω

=+

Wind Power Model( )3

mechP ,2 r w pA v Cρ λ θ=

( / )b wK vλ ω=

( )4 4

0 0, i j

p iji j

C λ θ α θ λ= =

=∑∑See charts for curve fit values

Model supported by PSLF

Page 170: Block Diagrams

Governor WNDTRB

Governor WNDTRB Wind Turbine Control Model

1s

90

0

r

Rotor speedω

mechP1

2

(1 )1PK sT

sT+

++−

11 asT+

refω

Σ

woP

πMXBPR

MX-BPR

Model supported by PSLF

1 2 3cos

1 - Input2 - Blade Angle (Deg)3 - Blade Pitch Factor

States

Page 171: Block Diagrams

Governor WPIDHY

Governor WPIDHY Woodward PID Hydro Governor Model

−+

+

PK

DsK

iKs

+

+ ( )21

1 AsT+Σ 1s

MAXVel

11 BsT+Σ

1 REG

REGsT+

+ Σ−

MAXG

MING

MAXP

MINP

1

12

W

W

sTTs

+PG

D

+

Σ

0( ,0)G

1 1( , )G P

2 2( , )G P

3(1, )P

Gate Position (pu)

0 1.0

Model supported by PSSE

REFP

ΔωSpeed

MECHP

ELECP Per U

nit O

utpu

t (M

BA

SE)

1

2

45

763

1 - Mechanical Output2 - Measured Delta P3 - PID14 - PID25 - PID36 - Velocity7 - Gate

States

MINVel

Page 172: Block Diagrams

Governor WSHYDD

Governor WSHYDD WECC Double-Derivative Hydro Governor Model

GVN

Δω(Speed) err

1db

11 DsT+

1

1 F

sKsT+

( )

22

21 F

s KsT+

+

+

+Σ IKs

refP

R

Σ+

11 TsT+( 0)TT >

elecP

1G

P

KsT+

OPENVEL

CLOSEVEL

1s

MAXP

MINP

2db

GV 11

turb turb

turb turb

sA TsB T

++

rateTMVA

GVP mechP+

Σ

Model supported by PSSE

0TT =

2 3

7

8

6

1

mech

D elec

1

2

2

1 - P 6 - Integrator2 - T 7 - P Sensed3 - K 8 - Valve4 - K first 9 - Gate5 - K second

States

4 5

9

Inputs GV1, PGV1...GV5, PGV5 are the x,y coordinates of blockGVN

Page 173: Block Diagrams

Governor WSHYGP

Governor WSHYGP WECC GP Hydro Governor Plus Model

GVN

err

1db

11 DsT+

IKs

1D

f

sKsT+

+

+

+

R 11 tsT+( 0)tT >

1G

P

KsT+

1s 2db

GV 11

turb turb

turb turb

sA TsB T

++

rateTMVA

GVP+

Σ

PK

Σ+

0tT =

CVΣ

Model supported by PSSE

176

5

3

4

2

mechP

elecP

Δω(Speed)

refP

OPENVEL

CLOSEVEL

MAXP

MINP

mech elec

D

1 - P 5 - P Sensed2 - T 6 - Valve3 - Integrator 7 - Gate4 - Derivative

States

GV1, PGV1...GV5, PGV5 are the x,y coordinates of blockGVN

Page 174: Block Diagrams

Governor WSIEG1

Governor WSIEG1 WECC Modified IEEE Type 1 Speed-Governor Model

Δω err

1db

4

11 sT+

1K

5

11 sT+

3K

6

11 sT+

5K

7

11 sT+

7K

Σ Σ

2K 4K 6K 8K

Σ Σ

Σ

Σ

HPPMECH

LPPMECH

+

+

+

+

+

+

++

++

++

M1P

M2P

GVN

OU

CU

1s

MAXP

MINP

2db

GV GVP−

−3

1T

K 2

1

11

sTsT

++

CV Σ

0GV

+

Model supported by PSSEGV1, PGV1...GV5, PGV5 are the x,y coordinates of blockGVN

1

653 4

2

1 - Lead-lag2 - Governor Output3 - Turbine 14 - Turbine 25 - Turbine 36 - Turbine 4

States

MIN MIN

MAX MAX

MIN MIN

MAX MAX

Iblock 1 : if P =0, P =PinitialIblock 2 : if P =0, P =PinitialIblock 3 : if P =0, P =Pinitial

: if P =0, P =Pinitial

===

Page 175: Block Diagrams

Governor WT1T

Governor WT1T Wind Turbine Model for Type-1 Wind Turbines

Model supported by PSLF

+ 12H

1sΣ

÷

shaftD

12 tH

1s

12 gH

1s

1s

K

÷

÷

Σ

Σ

Σ

Σ

Σt tfrac

g t2

t g

H =H×HH =H-H

2H ×H ×(2π×Freq1)K =

H

mechP

genP

Type 1 WTG Turbine Two - mass Model

Type 1 WTG Turbine One - mass Model

mechT

elecT

FromGovernor

Model

FromGenerator

Model

tω∆

gω∆

tgω∆tgω∆

+

+

+

+

accT

FromGenerator

Model

FromGovernor

Model

mechP

genP

ToGenerator Model andGovernor

Model

ω

1

2

3 4

1 - TurbineSpeed2 - ShaftAngle3 - GenSpeed4 - GenDeltaAngle

States

1

Damp

1s

Page 176: Block Diagrams

Governor WT3T

Governor WT3T Wind Turbine Model for Type-3 (Doubly-fed) Wind Turbines

t tfrac

g t2

t g

H =H×HH =H-H

2H ×H ×(2π×Freq1)K =

H

Type 3 WTG Turbine Two - mass Model

1 - TurbineSpeed2 - ShaftAngle3 - GenSpeed4 - GenDeltaAngle

States

+ 12H

1sΣ

÷−

Type 3 WTG Turbine One - mass Model

accT

FromGenerator

Model

FromPitch Control

Model

mechPgenP

To Pitch Control Model and Converter Control Model

ω1+Σ−+

SimplifiedAerodynamic Model

π

moP

aeroKΣ+

Blade Pitchθ

Model supported by PSLF

2

2 1When windspeed > rated windspeed, blade pitch initialized to 10.75 W

ThetaV

θ

= −

Damp

shaftD

12 tH

1s

12 gH

1s

1s

K

÷

÷

Σ

Σ

Σ

Σ

Σ

mechP

genP

mechT

elecT

tω∆

gω∆

tgω∆tgω∆

+

+

+

+

1

2

3 41s

Page 177: Block Diagrams

Governor WT3T1

Governor WT3T1 Mechanical System Model for Type 3 Wind Generator

Model supported by PSSE

+−Σ

Σ

Σ

Σ

Σ

+

+

+

+ +

+ +

+

shaftD

12 tH s

12 gH s

1s

baseω

Σ shaftKs

elecT

mechT

t tfrac

g t2

t gshaft

0

H =H×HH =H-H

2H ×H ×(2π×Freq1)K =

H×ω

3

2

1

4

Damp

+ Σ−+−

InitialPitchAngle

π aeroP initialaeroKΣ

+Blade Pitchθ

0θ1

1 State 1+

baseω

baseω

From WT3P1 Model

Rotor Angle

Deviation

Initial rotor slip

mechTΣ

tω∆

gω∆

tgω∆

Page 178: Block Diagrams

Governor BBGOV1

European Governor Model BBGOV1

OP

+

+

11P

NK

sT +

+Speed

ω∆

PELEC

cutf

cutf

SK

LSK

LSK−

G

LS

KK

1s

Σ

1

11 sT+

Σ 1D

D

sKsT+

MAXP

MINP

0SWITCH =

0SWITCH ≠

4

11 sT+ 21 K−

31 K−

2

51K

sT+

3

61KsT+

+

+ +Σ PMECH

2 3 4 5 61

Page 179: Block Diagrams

Governor IVOGO

IVO Governor Model IVOGO

MECHP( )5 5 5

6 6

K A sTA sT

++

( )3 3 3

4 4

K A sTA sT

++

3MAX

3MIN

( )1 1 1

2 2

K A sTA sT

++

1MAX

1MIN

5MAX

5MIN

SPEEDΣ

REF

+

2 3 4 5 61

Page 180: Block Diagrams

Governor TURCZT

Czech Hydro and Steam Governor Model TURCZT

+

PK

1

IsT

TMAXN

+

Power Regulator

TMINN

+

BSFREQ

REFdF

Σ

SBASEMBASE

PELEC

MAXf

MINfDEADf

Frequency Bias

KORK

11 CsT+ MK

−+

TREFN

Measuring Transducer

Σ 11 EHPsT+Σ

+

Hydro Converter

DEADs

Frequency Bias

STATK

ΣREGY

Governor

+

REGY

Regulation Valves

HPK

Turbine

1

UT1s

MAXG

MING

MAXV

MINV

Σ1SWITCH =

0SWITCH =

11 HPsT+

11 RsT+

1 HPK−

1

MKΣ+

+

HP Part

Reheater

Steam Unit

PMECH

311 2HsT+

2 1

MK+

− ΣPMECH

Hydro Unit

2 3 4 5 61

Page 181: Block Diagrams

Governor URCSCT

Combined Cycle on Single Shaft Model URCSCT

( , )STOUT A POUT A

Steam Turbine Output (MW)

( )

PlantOutputMW

( , )STOUT B POUT B

( , )STOUT C POUT C(Steam Turbine Rating, Steam & Gas Turbine Rating)

2 3 4 5 61

Page 182: Block Diagrams

Governor HYGOVM

Hydro Turbine-Governor Lumped Parameter Model HYGOVM

( )TAILHV

( )LAKEHV

BSCHH

( )SCHHV

SCHQ

TUNQ

PENQ

TUNNELTUNL / A, TUNLOS

SCHARE

SURGECHAMBER

PENSTOCKPENL / A, PENLOS

TURBINE

Hydro Turbine Governor Lumped Parameter Model

SCHLOS

Page 183: Block Diagrams

Governor HYGOVM

Hydro Turbine-Governor Lumped Parameter Model HYGOVM

INPUT OUTPUT

Gate +Relief Valve

π 2O ÷

PENLOS2

2PEN tQ AO gv

s PENL A

πtA

Σ

2PENQ

+

+ − +

gvsTUNL A

TUNLOS

Σ ΣBSCHH

TAILH

Σ −+LAKEH

BSCHH

gvsTUNL A

ΣSCHH

+

+

SCHLOS

+

π2SCHQ

SCHQ

Σ TUNQ+

PENQ

π

2TUNQ

PENQ

gv Gravitational accelerationTUNL/A Summation of length/cross section of tunnel SCHARE Surge chamber cross section PENLOS Penstock head loss coeficient FSCH

LEGEND :

Surge chamber orifice head loss coeficientPENL/A Summation of length/cross section of penstock, scroll case and draft tube

tA Turbine flow gainO Gate + relief valve opening HSCH Water level in surge chamber QPEN Penstock flow QTUN Tunnel flowQSCH Surge chamber flow

Hydro Turbine Governor Lumped Parameter Model

2 3 4 5 61

Page 184: Block Diagrams

Governor HYGOVM

Hydro Turbine-Governor Lumped Parameter Model HYGOVM

SpeedReference

11 fsT+

+

+−

Speed

+

R

1s

RVLMAX

0

1 r

r

sTrsT+

MAXG

MING

0.01

+

+ Σ

1

gT1s

MXJDOR

MXJDCR

Σ−

DeflectorPosition

1

gT1s

MXGTOR orMXBGOR

MXGTCR orMXBGCR

GateOpening

Σ

Σ−

+

Σ

RVLVCR

Governor Gate Servo

Relief ValveOpening

Jet Deflector

Relief Valve

r

f

R Permanent droopr Temporary droopT Governor time constant T Filter time constantT Servo time constant MXG

g

LEGEND :

TOR Maximum gate opening rateMXGTCR Maximum gate closing rateMXBGOR Maximum buffered gate opening rate

MXBGCR Maximum buffered gate closing openingGMAX Maximum gate limitGMIN Minimum gate limit RVLVCR Relief valve closing rateRVLMAX Maximum relief valve limit MXJDOR Maximum jet deflector opening rateMXJDCR Maximum jet deflector closing rate

2 3 4 5 61

Page 185: Block Diagrams

Governor HYGOVT

Hydro Turbine-Governor Traveling Wave Model HYGOVT

( )TAILHV

( )LAKEHV

BSCHH

( )SCHHV

SCHQ

TUNQ

PENQ

TUNNEL

SCHARE

SURGECHAMBER

PENSTOCK

TURBINE

SCHLOS

( , , , )TUNNEL

TUNLGTH TUNSPD TUNARE TUNLOS

Time

Tunnel InletConstraint

TUN

BSCH

VAR(L+45+ ICON(M +2))= QVAR(L+65+ ICON(M +2))= H

Space

Surge ChamberConstraints

/ ( ( 2) 1)TUNLGTH ICON M + +)

)VAR(L+46VAR(L+66

FlowsHeads

* ( 3)DELT ICON M+

Hydro Turbine Governor Traveling Wave Model

Page 186: Block Diagrams

Governor HYGOVT

Hydro Turbine-Governor Traveling Wave Model HYGOVT

+ +1

sSCHARE SCHH

SCHLOS

+

2SCHQ

SCHQTUNQ

PENQ

Surge Chamber

BSCHHΣ

π

Σ

( , , , )PENSTOCK

PENLGTH PENSPD PENARE PENLOS

Time

TurbineConstraint

VAR(L+55+ ICON(M))VAR(L+25+ ICON(M))

Space

Surge ChamberConstraints

/ ( ( ) 1)PENLGTH ICON M +

))

PEN

BSCH

VAR(L+6 QVAR(L+26 H

==

FlowsHeads

* ( 1)DELT ICON M+

Hydro Turbine Governor Traveling Wave Model

Page 187: Block Diagrams

Governor HYGOVT

Hydro Turbine-Governor Traveling Wave Model HYGOVT

SpeedReference

11 fsT+

+

+−

Speed

+

R

1s

RVLMAX

0

1 r

r

sTrsT+

MAXG

MING

0.01

+

+ Σ

1

gT1s

MXJDOR

MXJDCR

Σ−

DeflectorPosition

1

gT1s

MXGTOR orMXBGOR

MXGTCR orMXBGCR

GateOpening

Σ

Σ−

+

Σ

RVLVCR

Governor Gate Servo

Relief ValveOpening

Jet Deflector

Relief Valve

r

f

R Permanent droopr Temporary droopT Governor time constant T Filter time constantT Servo time constant MXG

g

LEGEND :

TOR Maximum gate opening rateMXGTCR Maximum gate closing rateMXBGOR Maximum buffered gate opening rate

MXBGCR Maximum buffered gate closing openingGMAX Maximum gate limitGMIN Minimum gate limit RVLVCR Relief valve closing rateRVLMAX Maximum relief valve limit MXJDOR Maximum jet deflector opening rateMXJDCR Maximum jet deflector closing rate

Hydro Turbine Governor Traveling Wave Model

2 3 4 5 61

Page 188: Block Diagrams

Governor TGOV4

Modified IEEE Type 1 Speed-Governor Model with PLU and EVA Model TGOV4

Generator Power1

REVA

REVA

sTsT+

EVA RateLevel>

EVAUnbalance

Level

>

AND

Y

Y−

1RPLU

RPLU

sTsT+

Σ

Reheat Pressure

+

Generator CurrentPLU Rate

Level> Timer

AND LATCH

1IVT

2IVT

#1IV

#2IVOR

1CVT

2CVT

3CVT

4CVT

#1CV

#2CV

#3CV

#4CVPLU

UnbalanceLevel

> YΣ+

Y

N

PLU and EVA Logic Diagram2 3 4 5 61

Page 189: Block Diagrams

Governor TWDM1T

Tail Water Depression Hydro Governor Model TWDM 1T

Speed

11 fsT+

1 rsT+

+REFN

R

1s

1

rrT1

1 gsT+

GATE MAX

GATE MIN

VELM OPEN

VELM CLOSE

Σ

+

e c

1

WsT tA 1.0π π÷ Σ+

+

+Σ Σh q

1 qNL turbD

Speed

PMECH

0.

g

Tail Water Depression Model 1

2s f sF∆ <

2f F∆ <

1f F∆ <

Measured Frequency

FREQ∆ 11 ftsT+ 2FT LATCH

1FT LATCH

ANDOR

Trip TailWater

Depression

Tail Water Depression Trip Model

f∆

2 3 4 5 61

Page 190: Block Diagrams

Governor TWDM2T

Tail Water Depression Hydro Governor Model TWDM 2T

+

−SPEEDω∆

1s

11 BsT+

ATMXG

ATMNG

ELMXV

ELMNV

+

1

WsT tA 1.0π π÷ Σ+

+

+Σ Σh q

1 qNL

turbD

PMECH

0.

Tail Water Depression Model 2

2s f sF∆ <

2f F∆ <

1f F∆ <

Measured Frequency

FREQ∆ 11 ftsT+ 2FT LATCH

1FT LATCH

ANDOR

Trip TailWater

Depression

Tail Water Depression Trip Model

f∆

( )21

1 AsT+LOGIC

1s

TWD Lock MAX

TWD Lock MIN TwoTrip

PK

DsK

Σ+

++

1 REG

RegsT+

ELECTP

REFP

Σ

Σ

2 3 4 5 61

Page 191: Block Diagrams

Governor SHAF25

25 Masses Torsional Shaft Governor Model SHAF25

Model supported by PSSE

State # State number containing delta speed Var # Variable number containing electrical torque Xd - Xdp Xd - X'd Tdop T'do Exciter # Exciter number Gen # Generator number H 1 to H 25 H of mass 1 to H of mass 25 PF 1 to PF 25 Power fraction of 1 to power fraction of 25 D 1 to D 25 D of mass 1 to D of mass 25 K 1-2 to K 24-25 K shaft mass 1-2 to K shaft 25-25

Page 192: Block Diagrams

Governor HYGOVR

Fourth Order Lead-lag Governor and Hydro Turbine Model HYGOVR

Model supported by PSLF

+ Pmech

Velcl

db2

-

H0

Velop

+

-

+

At

R

-

π π

Δω CV

qn1

gmin

gmax Pref

-

Pelec

Pmax

Pmin

db1

GV

-

+

+

-

Δω

GV Pgv

q/Pgv

H q

Dturb

π

CV 87

10

2 3 4 5 6

1

9

States: 1 – Input Speed 5 – LL78 9 – Flow 2 – LL12 6 – Governor 10 – Pelec 3 – LL34 7 – Velocity 4 – LL56 8 – Gate

Page 193: Block Diagrams

Governor WT2T

Governor Model WT2T

Model supported by PSLF

H Inertia Damp Damping factor Htfrac Turbine inertia fraction Freq1 First shaft torsional frequency DShaft Shaft damping factor

Page 194: Block Diagrams

Line Relays SERIESCAPRELAY

Line Relay Model SERIESCAPRELAY

Model supported by ???

Tfilter Voltage filter time constant in sec. tbOn Switching time On in sec. tbOff Switching time Off in sec. V1On First voltage threshold for switching series capacitor ON in p.u. t1On First time delay for switching series capacitor ON in sec. V2On Second voltage threshold for switching series capacitor ON in p.u. t2On Second time delay for switching series capacitor ON in sec. V1Off First voltage threshold for switching series capacitor OFF in p.u. t1Off First time delay for switching series capacitor OFF in sec. V2Off Second voltage threshold for switching series capacitor OFF in p.u. t2Off Second time delay for switching series capacitor OFF in sec.

Page 195: Block Diagrams

Line Relays OOSLEN

Out-of-step relay with 3 zones OOSLEN

Model supported by PSLF

Alpha

“Lens” x

R

Wl

Rf

Rr

Alpha

“Tomato” x

R

Wl

Rf

Rr

Nf Nt Nfar

Page 196: Block Diagrams

Line Relays TLIN1

Under-voltage or Under-frequency Relay Tripping Line Circuit Breaker(s) TLIN1

Model supported by PSLF

Time

Input v1

t1

Nf Nt Nfar

Page 197: Block Diagrams

Load Characteristic CIM5

Load Characteristic CIM5 Induction Motor Load Model

Model supported by PSSE

A AR jX+

mjX1jX

1Rs

2jX

2Rs

Type 1

A AR jX+

mjX 1Rs

2jX

2Rs

Type 2

Impedances on Motor MVA Base

1jX

2 2

DL

Model Notes: 1. To model single cage motor: set R = X = 0.

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE 3. Load Torque, T = T(1+ D ) 4. For mot

ω

nom 0

|

or starting, T=T is specified by the user in CON(J+18). For motor online studies, T=T is calculated in the code during initialization and stored in VAR(L+4). 5. V is the per unit vo

|

|

ltage level below which the relay to trip the motor will begin timing. To display relay, set V=0 6. T is the time in cycles for which the voltage must remain below the threshold for t Bhe relay to trip. T is the breaker delay time cycles.

Page 198: Block Diagrams

Load Characteristic CIM6

Load Characteristic CIM6 Induction Motor Load Model

Model supported by PSSE

A AR jX+

mjX1jX

1Rs

2jX

2Rs

Type 1

A AR jX+

mjX 1Rs

2jX

2Rs

Type 2

Impedances on Motor MVA Base

( )

2 2

D2L 0

Model Notes: 1. To model single cage motor: set R = X = 0.

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE

3. Load Torque, T = T A + B + C + D

4.

E

ω ω ω

nom 0

|

For motor starting, T=T is specified by the user in CON(J+22). For motor online studies, T=T is calculated in the code during initialization and stored in VAR(L+4). 5. V is the per

|

|

unit voltage level below which the relay to trip the motor will begin timing. To display relay, set V=0 6. T is the time in cycles for which the voltage must remain below the threshol Bd for the relay to trip. T is the breaker delay time cycles.

1jX

Page 199: Block Diagrams

Load Characteristic CIMW

Load Characteristic CIMW Induction Motor Load Model

Model supported by PSSE

A AR jX+

mjX1jX

1Rs

2jX

2Rs

Type 1

A AR jX+

mjX 1Rs

2jX

2Rs

Type 2

Impedances on Motor MVA Base

( )

2 2

D2L 0

Model Notes: 1. To model single cage motor: set R = X = 0.

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE

3. Load Torque, T = T A + B + C + D where C0E

ω ω ω 0 0

2

0

|

=1 A B D .

4. This model cannot be used formotor starting studies. T is calculated in the code during initialization and stored in VAR(L+4). 5. V is the per unit voltage

Eω ω ω− − −

|

|

level below which the relay to trip the motor will begin timing. To display relay, set V=0 6. T is the time in cycles for which the voltage must remain below the threshold for the rel Bay to trip. T is the breaker delay time cycles.

1jX

Page 200: Block Diagrams

Load Characteristic CLOD

Load Characteristic CLOD Complex Load Model

Model supported by PSSE

P jQ+

Tap

O

R jXP+

Load MW input on system baseOP =

I

V

I

V

ConstantMVA 2

*

*

PKRO

RO

P P VQ Q V=

=

LargeMotors

SmallMotors

DischargeMotors

TransformerSaturation

RemainingLoads

M M

Page 201: Block Diagrams

Load Characteristic EXTL

Load Characteristic EXTL Complex Load Model

PKs

PMLTMX

PMLTMN

1

initialP−

+

Σπ

initialP

MULTPactualPQK

s

QMLTMX

QMLTMN

1

initialQ−

+

Σπ

initialQ

MULTQactualQ

States: 1 – PMULT 2 - QMULT

Page 202: Block Diagrams

Load Characteristic IEEL

Load Characteristic IEEL Complex Load Model

Model supported by PSSE

( )( )

( )( )

31 2

5 64

1 2 3 7

4 5 6 8

1

1

nn nload

n nnload

P P a v a v a v a f

Q Q a v a v a v a f

= + + + ∆

= + + + ∆

Page 203: Block Diagrams

Load Characteristic LDFR

Load Characteristic LDFR Complex Load Model

Model supported by PSSE

m

OO

n

OO

r

p poO

s

q qoO

P P

Q Q

I I

I I

ωω

ωω

ωω

ωω

=

=

=

=

Page 204: Block Diagrams

Load Characteristic BPA INDUCTION MOTOR I

Load Characteristic BPA Induction MotorI Induction Motor Load Model

S SR jX+

mjX

RjX

RRRs

= , MWST E

MECHANICALLOAD

2

2

Model Notes: Mechanical Load Torque, ( ) where C is calculated by the program such that 1.0 1

OT A B C T

A B C

ω ω

ω ωω ω

= + +

+ + == −

Model in the public domain, available from BPA

Page 205: Block Diagrams

Load Characteristic BPA TYPE LA

Load Characteristic BPA Type LA Load Model

( )( )20 1 2 3 4 1 * DPP P PV PV P P f L= + + + + ∆

Model in the public domain, available from BPA

Page 206: Block Diagrams

Load Characteristic BPA TYPE LB

Load Characteristic BPA Type LB Load Model

( )( )20 1 2 3 1 * DPP P PV PV P f L= + + + ∆

Model in the public domain, available from BPA

Page 207: Block Diagrams

Load Characteristic DLIGHT

Load Characteristic Model DLIGHT

Model supported by PW

Real Power Coefficient Real Power Coefficient Reactive Power Coefficient Reactive Power Coefficient Breakpoint Voltage Breakpoint Voltage Extinction Voltage Extinction Voltage

Page 208: Block Diagrams

Load Characteristic LD1PAC

Load Characteristic Model LD1PAC

Model supported by PSLF

Pul Fraction of constant power load TV Voltage input time in sec. Tf Frequency input time constant in sec. CompPF Compressor Power Factor Vstall Compressor Stalling Voltage in p.u. Rstall Compressor Stall resistance in p.u. Xstall Compressor Stall impedance in p.u. Tstall Compressor Stall delay time in sec. LFadj Vstall adjustment proportional lo loading

factor KP1 to KP2 Real power coefficient for running states,

p.u.P/p.u.V NP1 to NP2 Real power exponent for running states KQ1 to KQ2 Reactive power coefficient for running

states, p.u.Q/p.u. NQ1 to NQ2 Reactive power exponent for running states Vbrk Compressor motor breakdown voltage in

p.u Frst Restarting motor fraction Vrst Restart motor voltage in p.u. Trst Restarting time delay in sec. CmpKpf Real power frequency sensitivity,

p.u.P/p.u. CmpKqf Reactive power frequency sensitivity,

p.u.Q/p.u.

Vc1off Voltage 1 contactor disconnect load in p.u. Vc2off Voltage 2 contactor disconnect load in p.u. Vc1on Voltage 1 contactor re-connect load in p.u. Vc2on Voltage 2 contactor re-connect load in p.u. Tth Compressor heating time constant in sec. Th1t Compressor motors begin tripping Th2t Compressor motors finished tripping fuvr Fraction of compressor motors with

undervoltage relays uvtr1 to uvtr2 Undervoltage pickup level in p.u. ttr1 to ttr2 Undervoltage definite time in sec.

Page 209: Block Diagrams

Load Characteristic WSCC

Load Characteristic Model WSCC

Model supported by PSLF

p1 Constant impedance fraction in p.u. q1 Constant impedance fraction in p.u. p2 Constant current fraction in p.u. q2 Constant current fraction in p.u. p3 Constant power fraction in p.u. q3 Constant power fraction in p.u. p4 Frequency dependent power fraction in p.u. q4 Frequency dependent power fraction in p.u. lpd Real power frequency index in p.u. lqd Reactive power frequency index in p.u.

Page 210: Block Diagrams

Load Characteristic CMPLD

Composite Load Model CMPLD

Model supported by PSLF

1st motor Polynomial load Psec + jQsec

2nd motor

Polynomial load Pfar + jQfar

Discrete Tap Change Control

V4 Vsec V3

r4 x4

Vsec_measured Vsec_init

i4 isec

Page 211: Block Diagrams

Load Characteristic CMPLDW

Composite Load Model CMPLDW

Model supported by PSLF

Motor A

System bus (230, 115, 69 – kV)

Low-side

Electronic Load

Feeder R.X.

Load Bus

LTC

Static Load

Substation

Motor B

Motor C

Motor D

M

M

M

M

Bss Bf1 Bf2

Page 212: Block Diagrams

Load Characteristic MOTORW

Two-cage or One-cage Induction Machine for Part of a Bus Load Model MOTORW

Model supported by PSLF

�⬚ + -

�⬚ 1𝑇𝑝𝑝

�⬚ + E''q

-

- 1

𝑠

1𝑇𝑝𝑝𝑝

�⬚ +

+

1𝑠

d-axis

ωo SLIP TPO

E'q

ωo SLIP Lp-Lpp

Ls-Lp �⬚ +

+ id

-

+

�⬚ + + �⬚ 1

𝑇𝑝𝑝 �⬚ +

E''d

+

- 1

𝑠

1

𝑇𝑝𝑝𝑝 �⬚ +

+

1

𝑠

q-axis

ωo SLIP TPO

E'd

ωo SLIP

Lp-Lpp

Ls-Lp �⬚ -

+ Iq

-

-

Page 213: Block Diagrams

Load Relays DLSH

Rate of Frequency Load Shedding Model DLSH

Model supported by PSSE

f1 to f3 Frequency load shedding point t1 to t3 Pickup time Frac1 to frac3 Fraction of load to shed tb Breaker time df1 to df3 Rate of frequency shedding point

Page 214: Block Diagrams

Load Relays LDS3

Underfrequency Load Shedding Model with Transfer Trip LDS3

Model supported by PSSE

Tran Trip Obj Transfer Trip Object SC Shed Shunts f1 to f5 Frequency load shedding point t1 to t5 Pickup time tb1 to tb5 Breaker time Frac1 to frac5 Fraction of load to shed ttb Transfer trip breaker time

Page 215: Block Diagrams

Load Relays LDSH

Underfrequency Load Shedding Model LDSH

Model supported by PSSE

f1 to f3 Frequency load shedding point t1 to t3 Pickup time frac1 to frac3 Fraction of load to shed tb Breaker time

Page 216: Block Diagrams

Load Relays LDST

Time Underfrequency Load Shedding Model LDST

Model supported by PSSE

f1 to f4 Frequency load shedding point z1 to z4 Nominal operating time tb Breaker time frac Fraction of load to shed freset Reset frequency tres Resetting time

Page 217: Block Diagrams

Load Relays LSDT1

Shed (p.u.) Bus Frequency

Definite-Time Underfrequency Load Shedding Relay Model LSDT1

Model supported by PSLF

Tfilter Input transducer time constant tres Resetting time f1 to f3 Frequency load shedding point t1 to t3 Pickup time tb1 to tb3 Breaker time frac1 to frac3 Fraction of load to shed

Definite Time Characteristic

Page 218: Block Diagrams

Load Relays LSDT2

Shed (p.u.) Bus Frequency

Definite-Time Undervoltage Load Shedding Relay Model LSDT2

Model supported by PSLF

Rem Bus Remote Bus Voltage Mode Voltage mode: 0 for deviation; 1 for absolute Tfilter Input transducer time constant tres Resetting time v1 to v3 Voltage load shedding point t1 to t3 Pickup time tb1 to tb3 Breaker time frac1 to frac3 Fraction of load to shed

Definite Time Characteristic

Page 219: Block Diagrams

Load Relays LSDT8

Shed (p.u.) Bus Frequency

Definite-Time Underfrequency Load Shedding Relay Model LSDT8

Model supported by PSLF

Tfilter Input transducer time constant tres Resetting time f1 to f3 Frequency load shedding point t1 to t3 Pickup time tb1 to tb3 Breaker time frac1 to frac3 Fraction of load to shed df1 to df3 Rate of frequency shedding point

Definite Time Characteristic

Page 220: Block Diagrams

Load Relays LSDT9

Shed (p.u.) Bus Frequency

Definite Time Underfrequency Load Shedding Relay Model LSDT9

Model supported by PSLF

Tfilter Input transducer time constant tres Resetting time f1 to f9 Frequency load shedding point t1 to t9 Pickup time tb1 to tb9 Breaker time frac1 to frac9 Fraction of load to shed

Definite Time Characteristic

Page 221: Block Diagrams

Load Relays LVS3

Undervoltage Load Shedding Model with Transfer Trip LVS3

Model supported by PSSE

FirstTran Trip Obj First Transfer Trip Object SecondTran Trip Obj First Transfer Trip Object SC Shed Shunts v1 to v5 Voltage load shedding point t1 to t5 Pickup time tb1 to tb5 Breaker time Frac1 to frac5 Fraction of load to shed ttb1 to ttb2 Transfer trip breaker time

Page 222: Block Diagrams

Load Relays LVSH

Undervoltage Load Shedding Model LVSH

Model supported by PSSE

v1 to v3 Voltage load shedding point t1 to t3 Pickup time frac1 to frac3 Fraction of load to shed tb Breaker time

Page 223: Block Diagrams

Machine Model CBEST

POUT > 0

POUT < 0

𝐼𝑄𝑄𝑄𝑄 = �𝐼𝑄𝐴𝑄𝑄𝑄2 − �𝑃𝑄𝐴𝑉𝑄𝐴

�2

-

VREF

+

-IQMAX

+

+

�⬚

+ + PAC

-PMAX

PMAX

�⬚

POUT

PAUX

EPRI Battery Energy Storage Model CBEST

Model supported by PSSE

1𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

1 1

- IACMAXVAC

IACMAXVAC

POUT

PINIT

𝑂𝑈𝑈𝑀𝐹𝐹𝑠

𝐼𝑁𝑁𝑀𝐹𝐹𝑠

EOUT

IQ

VMIN

VMAX

(1 + 𝑠𝑇1)(1 + 𝑠𝑇1)(1 + 𝑠𝑇3)(1 + 𝑠𝑇4)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

POUT

�⬚ π 𝐾𝑄𝐴𝐴𝑠

IQMAX ECOMP

VOTHSG

+ -

DROOP

1 2 3

4

5 States: 1 – VLL1 2 – VLL2 3 – IQ 4 – EnergyIn 5 - EnergyOut

Page 224: Block Diagrams

Machine Model CIMTR1

Induction Generator Model CIMTR1

Model supported by PSSE

Tp T' - Transient rotor time constant Tpp T'' – Sub-transient rotor time constant in sec. H Inertia constant in sec. X Synchronous reactance Xp X' – Transient Reactance Xpp X'' – Sub-transient Reactance Xl Stator leakage reactance in p.u. E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 SE2 Saturation value at E2 Switch Switch Ra Stator resistance in p.u.

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki 5 – Speed wr

Page 225: Block Diagrams

Machine Model CIMTR2

Induction Motor Model CIMTR2

Model supported by PSSE

Tp T' - Transient rotor time constant Tpp T'' – Sub-transient rotor time constant in sec. H Inertia constant in sec. X Synchronous reactance Xp X' – Transient Reactance Xpp X'' – Sub-transient Reactance Xl Stator leakage reactance in p.u. E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 SE2 Saturation value at E2 D Damping

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki 5 – Speed wr

Page 226: Block Diagrams

Machine Model CIMTR3

Induction Generator Model CIMTR3

Model supported by PSSE

Tp T' - Transient rotor time constant Tpp T'' – Sub-transient rotor time constant in sec. H Inertia constant in sec. X Synchronous reactance Xp X' – Transient Reactance Xpp X'' – Sub-transient Reactance Xl Stator leakage reactance in p.u. E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 Switch Switch SYN-POW Mechanical power at synchronous speed (p.u. > 0)

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki 5 – Speed wr

Page 227: Block Diagrams

Machine Model CIMTR4

Induction Motor Model CIMTR4

Model supported by PSSE

Tp T' - Transient rotor time constant Tpp T'' – Sub-transient rotor time constant in sec. H Inertia constant in sec. X Synchronous reactance Xp X' – Transient Reactance Xpp X'' – Sub-transient Reactance Xl Stator leakage reactance in p.u. E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 D Damping SYN-TOR Synchronous torque (p.u. < 0)

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki 5 – Speed wr

Page 228: Block Diagrams

Machine Model CSTATT

ILMAX0 = ILMAX when VT ≥VCUTOUT

Limit Max = VT + XTICMAX0 Limit Min = VT + XTILMAX0 Limit Max ≤ Elimit Where: ICMAX0 = ICMAX when VT ≥VCUTOUT

Limit Max

ET

𝐼𝐴𝑄𝑄𝑄0 =𝐼𝐴𝑄𝑄𝑄 ∙ 𝑉𝑈𝑉𝐴𝑈𝑈𝐶𝑈𝑈

-

VREF

+

Limit Min

Static Condenser (STATCON) Model CSTATT

Model supported by PSSE

VAR(L)

VMIN

VMAX

(1 + 𝑠𝑇1)(1 + 𝑠𝑇1)(1 + 𝑠𝑇3)(1 + 𝑠𝑇4)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

ISTATC VAR(L+1)

�⬚ 𝐾𝑠

|V|

VOTHSG

+ -

DROOP

�⬚ -

+ 1𝑋𝑡

otherwise

𝐼𝐿𝑄𝑄𝑄0 =𝐼𝐿𝑄𝑄𝑄 ∙ 𝑉𝑈𝑉𝐴𝑈𝑈𝐶𝑈𝑈

otherwise

Note: |V| is the voltage magnitude on the high side of generator step-up transformer, if present.

States: 1 – Regulator 1 2 – Regulator 2 3 – Thyristor

1 2 3

Page 229: Block Diagrams

Machine Model GENCLS_PLAYBACK

Machine Model GENCLS_PLAYBACK Synchronous machine represented by “classical” modeling or

Thevenin Voltage Source to play Back known voltage/frequency signal

Model supported by PSLF

RecordedVoltage

RespondingSystem0.03

on 100 MVA baseabZ =

A B

gencls

RespondingSystem

ppdI

B

RespondingSystem0.03

on 100 MVA baseabZ =

A Bgencls

ppdI

States: 1 – Angel 2 – Speed w

Page 230: Block Diagrams

Machine Model GENDCO

Round Rotor Generator Model Including DC Offset Torque Component GENDCO

Model supported by PSSE

H Inertia constant in sec. D Damping Ra Stator resistance in p.u. Xd Xd – Direct axis synchronous reactance Xq Xq – Quadrature axis synchronous reactance Xdp X'd – Direct axis synchronous reactance Xqp X'q – Quadrature axis synchronous reactance Xl Stator leakage reactance in p.u. Tdop T'do – Open circuit direct axis transient time constant Tqop T'qo – Quadrature axis transient time constant Tdopp T''do – Open circuit direct axis subtransient time constant Tqopp T''qo – Quadrature axis subtransient time constant S(1.0) Saturation factor at 1.0 p.u. flux S(1.2) Saturation factor at 1.2 p.u. flux Ta Ta

Page 231: Block Diagrams

Machine Model GEPWTwoAxis

Model GENPWTwoAxis

Model supported by PW

H Inertia constant in sec. D Damping Ra Stator resistance in p.u. Xd Xd – Direct axis synchronous reactance Xq Xq – Quadrature axis synchronous reactance Xdp X'd – Direct axis synchronous reactance Xqp X'q – Quadrature axis synchronous reactance Tdop T'do – Open circuit direct axis transient time constant Tqop T'qo – Quadrature axis transient time constant

States: 1 – Angel 2 – Speed w 3 – Eqp 4 – Edp

Page 232: Block Diagrams

Machine Model GENIND

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki 5 – Speed wr

𝐿𝑚 𝑠𝑠𝑡′′ =

1𝐾𝑠𝑠𝑡 𝐿𝑚⁄ + 1 𝐿𝑙𝑙1⁄ + 1 𝐿𝑙𝑙2⁄

Ψmd

Ψmq

E''q = ψ'd

-E''d = ψ'q

Ψqr2

-

ids

Two Cage or One Cage Induction Generator Model GENIND

Model supported by PSLF

ψdr2

iqs

𝜔𝑜 ∙ 𝑅𝑙2𝐿𝑙𝑙2

�⬚ +

L''m sat

�⬚

-

+

1𝐿𝑙𝑙2

ωo SLIP

Ψqr1

-

ψdr1

𝜔𝑜 ∙ 𝑅𝑟1

𝐿𝑙𝑟1 �⬚ + �⬚

-

+ 1

𝐿𝑙𝑟1

ωo SLIP

�⬚

+

+

Ψdr1

-

Ψqr1

𝜔𝑜 ∙ 𝑅𝑟1

𝐿𝑙𝑟1 �⬚ + �⬚

+

+ 1

𝐿𝑙𝑟1

ωo SLIP

�⬚

+

+

Ψdr2

-

Ψqr2

𝜔𝑜 ∙ 𝑅𝑟2

𝐿𝑙𝑟2 �⬚ + �⬚

+

+ 1

𝐿𝑙𝑟2

ωo SLIP

�ψ𝑚𝑚2 + ψ𝑚𝑚

2 Se

Ψm

�⬚ L''m sat

L''m sat

L''m sat

�⬚

-

-

+

+

Ksat = 1 + Se(ψm)

𝐿𝑚 = 𝐿𝑠 − 𝐿𝑙 𝐿𝑚′ = 1/(1/𝐿𝑚 + 1/𝐿𝑙𝑙1) = 𝐿′ − 𝐿𝑙 𝐿𝑚′′ = 1/(1/𝐿𝑚 + 1/𝐿𝑙𝑙1 + 1/𝐿𝑙𝑙2)

= 𝐿′′ − 𝐿𝑙 𝑇𝑜′ = 𝐿𝑙𝑙1 ∙ 𝐿𝑚/(𝜔𝑜 ∙ 𝑅𝑙1 ∙ 𝐿𝑚′ )

= (𝐿𝑙𝑙1 + 𝐿𝑚)/(𝜔𝑜 ∙ 𝑅𝑙1) 𝑇𝑜′′ = 𝐿𝑙𝑙2 ∙ 𝐿𝑚′ /(𝜔𝑜 ∙ 𝑅𝑙2 ∙ 𝐿𝑚′′ )

= (𝐿𝑙𝑙2 + 𝐿𝑚′ )/(𝜔𝑜 ∙ 𝑅𝑙2)

Page 233: Block Diagrams

Machine Model GENROE

Round Rotor Generator Model GENROE

Model supported by PSSE

H Inertia constant in sec. D Damping factor in p.u. Ra Stator resistance in p.u. Xd Xd – Direct axis synchronous reactance Xq Xq – Quadrature axis synchronous reactance Xdp X'd – Direct axis synchronous reactance Xqp X'q – Quadrature axis synchronous reactance Xdpp X''d – Direct axis subtransient reactacne Xl Stator leakage reactance in p.u. Tdop T'do – Open circuit direct axis transient time constant Tqop T'qo – Quadrature axis transient time constant Tdopp T''do – Open circuit direct axis subtransient time constant Tqopp T''qo – Quadrature axis subtransient time constant S(1.0) Saturation factor at 1.0 p.u. flux S(1.2) Saturation factor at 1.2 p.u. flux Rcomp Compensating resistance for voltage control in p.u. Xcomp Compensating reactance for voltage control in p.u.

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – PsiDp 5 – PsiQpp 6 – Edp

Page 234: Block Diagrams

Machine Model GENSAE

Salient Pole Generator Model GENSAE

Model supported by PSSE

H Inertia constant in sec. D D Ra Stator resistance in p.u. Xd Xd – Direct axis synchronous reactance Xq Xq – Quadrature axis synchronous reactance Xdp X'd – Direct axis synchronous reactance Xqp X'q – Quadrature axis synchronous reactance Xdpp X''d – Direct axis subtransient reactacne Xl Stator leakage reactance in p.u. Tdop T'do – Open circuit direct axis transient time constant Tqop T'qo – Quadrature axis transient time constant Tdopp T''do – Open circuit direct axis subtransient time constant Tqopp T''qo – Quadrature axis subtransient time constant S(1.0) Saturation factor at 1.0 p.u. flux S(1.2) Saturation factor at 1.2 p.u. flux Rcomp Compensating resistance for voltage control in p.u. Xcomp Compensating reactance for voltage control in p.u.

States: 1 – Angle 2 – Speed w 3 – Eqp 4 – PsiDp 5 – PsiQpp

Page 235: Block Diagrams

Machine Model GENTPJ

φ''d E''q E'q

𝑀𝑒 = 1 + 𝑓𝑠𝑓𝑓�𝜑𝑠𝑎 + 𝐾𝑖𝑠 ∙ 𝐼𝑡 ∙ 𝑠𝑠𝑠𝑠(𝑠𝑚)�

- +

Generator Represented by Uniform Inductance Ratios Rotor Modeling to Match WSCC Type F Model GENTPJ

Model supported by PSLF

1𝑠𝑇𝑚𝑜′

�⬚ Se Efd

+ -

�⬚ -

+

Se 𝐿𝑚 − 𝐿𝑚′

𝐿𝑚′ − 𝐿𝑚′′

𝐿𝑚 − 𝐿𝑚′′

𝐿𝑚′ − 𝐿𝑚′′

1

𝑠𝑇𝑑𝑜′′

𝐿𝑚′ − 𝐿𝑚′′ id

𝑀𝑒 = 1 +𝐿𝑚𝐿𝑚𝑓𝑠𝑓𝑓�𝜑𝑠𝑎 + 𝐾𝑖𝑠 ∙ 𝐼𝑡 ∙ 𝑠𝑠𝑠𝑠(𝑠𝑚)�

Q – Axis similar except: States: 1 – Angle 2 – Spped w 3 – Eqp 4 – Eqpp 5 – Edp 6 – Edpp

Page 236: Block Diagrams

Machine Model STCON

Vt∠ ∥θ

Static Synchronous Condenser Model STCON

Model supported by PSLF

qset

qterm

�⬚ -

UMIN = S3

UMAX = S2

UMIN

UMAX + +

VMIN

VMAX �⬚

Vctr

11 + 𝑠𝑇𝑓

𝐾𝑖𝑠

Kp

iterm

𝐾𝑖𝑚𝑠

R

�⬚

Vref

+

Vsig + +

+

�⬚ -

+

Vint π

If S4 > Imax +

𝐾𝑠𝑙𝑠

�⬚

𝐾𝑠𝑙𝑠

-

�⬚ Vmax

+ If S4 < (Imax - Imxeps) and

vterm > vthresh

-

If qterm ≥ 0

If qterm ≤ 0

If S4 > Imax +

𝐾𝑠𝑙𝑠

�⬚

𝐾𝑠𝑙𝑠

-

�⬚ Vmin

+ If S4 < (Imax - Imxeps) and

vterm > vthresh

-

𝐾𝑠𝑙𝑠

-

�⬚ Vmin

+

𝐾𝑠𝑙𝑠

-

�⬚ Vmax

+

iterm, qterm pterm = 0

Vint∠ ∥θ

1

1 + 𝑠𝑇𝑓

|iterm|

Xt

1

2

3

States: 1 – Vsens 2 – Integrator 3 – Umax 4 – Umin 5 – ItermSens 6 – Qerr

4

5

6

3

4

3

4

5

5

5

5

5

5

Page 237: Block Diagrams

Machine Model SVCWSC

Static Var Device Model SVCWSC

Model supported by PSLF

�⬚ -

-

+

BMIN

BMAX

�⬚ Vbus

�⬚

Vref

Vscs + Vs

+ + +

Bsvs

π

1 + 𝑠𝑇𝐶1 + 𝑠𝑇𝑠1

1 + 𝑠𝑇𝑠2

1 + 𝑠𝑇𝑠3

1 + 𝑠𝑇𝑠4

𝑏 + 𝑠𝑇𝑠5

1

1 + 𝑠𝑇𝑠6

XC

KSVS

Vs (from external PSS)

VeMIN

VeMAX

V1MIN

V1MAX

Kvc·V2MIN

Kvc·V2MAX Fast Over Ride

If Vbus < V1vd, Kvc = 0. If Vbus > V2vd for Tdvcl sec., Kvc = 1.

Voltage Clamp Logic

𝐾𝑠1

1 + 𝑠𝑇𝑠7

1 + 𝑠𝑇𝑠8

1 + 𝑠𝑇𝑠9

𝐾𝑠2

1 + 𝑠𝑇𝑠10

1 + 𝑠𝑇𝑠11

1 + 𝑠𝑇𝑠12

�⬚

+

+

KS3 𝑠𝑇𝑠13

1 + 𝑠𝑇𝑠14

Input 1

Input 2 VscsMIN

VscsMAX

Vscs

1 2 3 4

5 6

7

9

8

States: 1 – LLVbus 2 – Regulator1 3 – Regulator2 4 – Thyristor 5 – Transducer1 6 – LL1 7 – Transducer2 8 - LL2 9 – WO13

Page 238: Block Diagrams

Machine Model VWSCC

Static Var Device Model VWSCC

Model supported by PSLF

�⬚ -

-

+

BMIN

BMAX

�⬚ Vbus

�⬚

Vref

Vscs + +

+ Bsvs

π

1 + 𝑠𝑇𝐶1 + 𝑠𝑇𝑠1

𝑀 + 𝑠𝑇𝑠2

𝑀 + 𝑠𝑇𝑠3

1 + 𝑠𝑇𝑠4

1 + 𝑠𝑇𝑠5

1

1 + 𝑠𝑇𝑠6

XC

KSVS

(from Stabilizer)

VeMIN

VeMAX

Fast Over Ride

e-sTd1

1 2 3

States: 1 – LLVBus 2 – Regulator1 3 – Regulator2 4 – Thyristor

4

Page 239: Block Diagrams

Machine Model WT1G

𝐿𝑚 𝑠𝑠𝑡′′ =

1𝐾𝑠𝑠𝑡 𝐿𝑚⁄ + 1 𝐿𝑙𝑙1⁄ + 1 𝐿𝑙𝑙2⁄

Ψmd

Ψmq

E''q = ψ'd

-E''d = ψ'q

Ψqr2

-

ids

Generator Model for Generic Type-1 Wind Turbines WT1G

Model supported by PSLF

ψdr2

iqs

𝜔𝑜 ∙ 𝑅𝑙2𝐿𝑙𝑙2

�⬚ +

L''m sat

�⬚

-

+

1𝐿𝑙𝑙2

ωo SLIP

Ψqr1

-

ψdr1

𝜔𝑜 ∙ 𝑅𝑟1

𝐿𝑙𝑟1 �⬚ + �⬚

-

+ 1

𝐿𝑙𝑟1

ωo SLIP

�⬚

+

+

Ψdr1

-

Ψqr1

𝜔𝑜 ∙ 𝑅𝑟1

𝐿𝑙𝑟1 �⬚ + �⬚

+

+ 1

𝐿𝑙𝑟1

ωo SLIP

�⬚

+

+

Ψdr2

-

Ψqr2

𝜔𝑜 ∙ 𝑅𝑟2

𝐿𝑙𝑟2 �⬚ + �⬚

+

+ 1

𝐿𝑙𝑟2

ωo SLIP

�ψ𝑚𝑚2 + ψ𝑚𝑚

2 Se

Ψm

�⬚ L''m sat

L''m sat

L''m sat

�⬚

-

-

+

+

Ksat = 1 + Se(ψm)

𝐿𝑚 = 𝐿𝑠 − 𝐿𝑙 𝐿𝑚′ = 1/(1/𝐿𝑚 + 1/𝐿𝑙𝑙1) = 𝐿′ − 𝐿𝑙 𝐿𝑚′′ = 1/(1/𝐿𝑚 + 1/𝐿𝑙𝑙1 + 1/𝐿𝑙𝑙2)

= 𝐿′′ − 𝐿𝑙 𝑇𝑜′ = 𝐿𝑙𝑙1 ∙ 𝐿𝑚/(𝜔𝑜 ∙ 𝑅𝑙1 ∙ 𝐿𝑚′ )

= (𝐿𝑙𝑙1 + 𝐿𝑚)/(𝜔𝑜 ∙ 𝑅𝑙1) 𝑇𝑜′′ = 𝐿𝑙𝑙2 ∙ 𝐿𝑚′ /(𝜔𝑜 ∙ 𝑅𝑙2 ∙ 𝐿𝑚′′ )

= (𝐿𝑙𝑙2 + 𝐿𝑚′ )/(𝜔𝑜 ∙ 𝑅𝑙2)

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki

Page 240: Block Diagrams

Machine Model WT1G1

Direct Connected Type 1 Generator Model WT1G1

Model supported by PSSE

Tpo T' – Open circuit transient rotor time constant Tppo T'' – Open circuit sub-transient rotor time constant in sec. Ls Synchronous reactance Lp L' – Transient Reactance Lpp L'' – Sub-transient Reactance Ll Stator leakage reactance (p.u. > 0) E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 SE2 Saturation value at E2

States: 1 – Epr 2 – Epi 3 – Ekr 4 – Eki

Page 241: Block Diagrams

Machine Model WT2G

Model WT2G

Model supported by PSLF

Ls Synchronous reactance, (p.u. > 0) Lp Transient reactance, (p.u. > 0) Ll Stator leakage reactance, (p.u. > 0) Ra Stator resistance in p.u. Tpo Transient rotor time constant in sec. S(1.0) Saturation factor at 1.0 p.u. flux S(1.2) Saturation factor at 1.2 p.u. flux spdrot Initial electrical rotor speed, p.u. of system frequency Accel Factor Acceleration factor

States:

1 – Epr 2 – Epi 3 – Ekr 4 – Eki

Page 242: Block Diagrams

Machine Model WT2G1

Induction Generator with Controlled External Rotor Resistor Type 2 Model WT2G1

Model supported by PSSE

Xa Stator reactance Xm Magnetizing reactance X1 Rotor reactance R_Rot_Mach Rotor resistance R_Rot_Max Sum of R_Rot_Mach and total external resistance E1 Field voltage value E1 SE1 Saturation value at E1 E2 Field voltage value E2 SE2 Saturation value at E2 Power_Ref1 to Power_Ref_5 Coordinate pairs of the power-slip curve Slip_1 to Slip_5 Power-Slip

States:

1 – Epr 2 – Epi 3 – Ekr 4 – Eki

Page 243: Block Diagrams

Machine Model WT3G

Generator/converter Model for Type-3 (Double-Fed) Wind Turbines WT3G

Model supported by PSLF

𝐼�̅�𝑜𝑟𝑠

Vterm∠ θ

1

1 + 0.02𝑠

−1

𝑋′′

T

1

1 + 0.02𝑠

E''q cmd

(efd) From exwtge

IP cmd

(ladifd) From exwtge

E''q

IP

IYinj

IXinj

jX''

Low Voltage Active Current

Regulation

1

2

3

States: 1 – Eq 2 – Ip 3 – Vmeas

Page 244: Block Diagrams

Machine Model WT3G1

Double-Fed Induction Generator (Type 3) Model WT3G1

Model supported by PSEE

𝐼�̅�𝑜𝑟𝑠

Vterm∠ θ

1

1 + 0.02𝑠

−1

𝑋𝑒𝑒

T

1

1 + 0.02𝑠

Eq cmd

(efd) From Converter Control

IP cmd

Eq

IP

IYinj

IXinj

jX''

�⬚

-Pllmax

Pllmax

𝐾𝑝𝑙𝑙𝜔𝑜

𝐾𝑠𝑝𝑙𝑙𝑠

+ T

-1

𝜔𝑜

𝑠

-Pllmax

Pllma 𝑉�𝑓𝑒𝑟𝑡

VX

δ +

Notes: 1. 𝑉�𝑡𝑒𝑙𝑚 and 𝐼�̅�𝑜𝑙𝑠 are complex values on network reference frame. 2. In steady-state, V

Y = 0, V

X = V

term, and δ = θ.

3. Xeq

= Imaginary (ZSOURCE)

VY

1

2

3

States: 1 – Eq 2 – Iq 3 – Vmeas 4 – PLL1 5 – Delta

4

5

Page 245: Block Diagrams

Machine Model WT3G2

Double-Fed Induction Generator (Type 3) Model WT3G2

Model supported by PSEE

𝐼�̅�𝑜𝑟𝑠 −1

𝑋𝑒𝑒

T

1

1 + 𝑠𝑇𝑠𝑒𝑠𝑡𝑑

WIPCMD

�⬚ PLLMIN

PLLMAX

𝐾𝑃𝐿𝐿𝜔𝑜

𝐾𝐼𝑃𝐿𝐿𝑠

+ T

-1

𝜔𝑜

𝑠

PLLMIN

PLLMAX

VX

+ VY

Angle of VT If KPLL = 0 and KIPLL = 0

1

𝑠𝑇𝑠𝑝𝑠𝑡𝑑

Rip_LVPL LVPL

WEPCMD

�⬚ +

-

High Voltage Reactive Current

Logic

Low Voltage Reactive Current

Logic

1

1 + 𝑠𝑇_𝐿𝑉𝑃𝐿

VT

VT LVPL

GLVPL

VLVPL1 VLVPL2 V

LVPL

States: 1 – Eq 2 – Iq 3 – Vmeas 4 – PLL1 5 – Delta

1

2

3

4

5

Page 246: Block Diagrams

Machine Model WT4G1

Wind Generator Model with Power Converter WT4G1

Model supported by PSEE

𝐼�̅�𝑜𝑟𝑠 1

1 + 𝑠𝑇𝑒𝑒𝑠𝑡𝑑

WIPCMD 1

𝑠𝑇𝑠𝑝𝑠𝑡𝑑

Rip_LVPL LVPL

WEPCMD

�⬚ +

-

High Voltage Reactive Current

Logic

Low Voltage Reactive Current

Logic

1

1 + 𝑠𝑇_𝐿𝑉𝑃𝐿

VT LVPL

GLVPL

VLVPL1 VLVPL2 V

LVPL

1

2

3

States: 1 – Eq 2 – Iq 3 – Vmeas

Page 247: Block Diagrams

Machine Model WT4G

Model WT4G

Model supported by PSLF

Tiqcmd Q command time constant Tipcmd P command time constant VLVPL1 Low voltage regulation breakpoints VLVPL2 Low voltage regulation breakpoints GLVLP Low voltage regulation breakpoints VHVRCR High Voltage limit in p.u. CurHVRCR High voltage reactive current limit RIP_LVPL Maximum Ip rate in p.u. T_LVLP Voltage sensor time constant

States: 1 – Eq 2 – Ip 3 – Vmeas

Page 248: Block Diagrams

Stabilizer BPA SF, BPA SP, BPA SS, and BPA SG

Stabilizer BPA SF, BPA SP, BPA SS, and BPA SG Stabilizer Models

+

QV

QV

K1+sT

QS

QS

K1+sT

Q

Q

sT1+sT

'Q2

Q2

1+sT1+sT

'Q1

Q1

1+sT1+sT

T TO TV =V V−

SHAFT SLIP, FREQ. OR

ACCEL. POWER∆

'Q3

Q3

1+sT1+sT

'CUTOFF S S

CUTOFF'

S S T CUTOFF

S T CUTOFF

T TO T

If V 0.0, then V =VIf V >0.0, then

V =V if V V

V =0.0 if V >V V =V V

∆ ≤

∆ −

STV

Model in the public domain, available from BPA

SMAXV

SMINV

ΣQSKtse+

ZERO

'SV

TV∆

CHOICE OFINPUT SIGNALS

QS

QV

Q

Q1

Q2

Q3

1 - K2 - K3 - T4 - T5 - T6 - T

States

1

2

3 4 5 6

Page 249: Block Diagrams

Stabilizer BPA SH, BPA SHPLUS, and BPA SI

Stabilizer BPA SH, BPA SHPLUS, and BPA SI Stabilizer Models

No block diagrams have been created

Page 250: Block Diagrams

Stabilizer IEE2ST

Stabilizer IEE2ST IEEE Stabilizing Model with Dual-Input Signals

+

1

1

K1+sT

2

2

K1+sT

3

4

sT1+sT

7

8

1+sT1+sT

9

10

1+sT1+sT

SMINL

SMAXLS SS CU CT CL

S CT CL

S CT CU

V = V if (V > V > V )V = 0 if (V < V )V = 0 if (V > V )

5

6

1+sT1+sT

SSV

Output Limiter

Input Signal #1

Input Signal #2

STV

Model supported by PSSE

1

2

3 4 5

6

1 - Transducer12 - Transducer23 - Washout4 - LL15 - LL26 - Unlimited Signal

States

Page 251: Block Diagrams

Stabilizer IEEEST

Stabilizer IEEEST IEEE Stabilizing Model

3

4

1+sT1+sT

5S

6

sTK1+sT

SMINL

SMAXLS SS CU CT CL

S CT CL

S CT CU

V = V if (V > V > V )V = 0 if (V < V )V = 0 if (V > V )

1

2

1+sT1+sT

SSV

Output Limiter

Input Signal2

5 62 2

1 2 3 4

1+A s+A s(1+A s+A s )(1+A s+A s )

Filter

Model supported by PSLF with time delay that is not implemented in SimulatorModel supported by PSSE

STV

1 2 3 4 5 6

1 - Filter 12 - Filter 23 - Filter 34 - Filter Out5 - LL16 - LL27 - Unlimited Signal

States

7

Page 252: Block Diagrams

Stabilizer PFQRG

Stabilizer PFQRG Power-Sensitive Stabilizing Unit

-MAX

MAX+

+Σ I

PKKs

+

Model supported by PSLF

STV

ReactivePower

PowerFactor

J=1

J=0

Reference Signal,Reactive power or Power Factor

To VoltageRegulator

SupplementarySignal

1

1 - PIStates

Page 253: Block Diagrams

Stabilizer PSS1A

Stabilizer PSS1A Single-Input Stabilizer Model

5S

6

sTK1+sT

SMINL

SMAXL

Output Limiter

Input Signal

Filter

Model supported by PSLF with time delay that is not implemented in SimulatorModel supported by PSSE

STV1

2

1+sT1+sT

3

4

1+sT1+sT

11 + sT6

1

1 + A1s+A2s2

If (Vcu and (Vct > Vcu)) VST = 0.0 If (Vcl and (Vct < Vcu)) VST = 0.0 Else VST = Vllout

Vllout

Page 254: Block Diagrams

Stabilizer PSS2A

Stabilizer PSS2A IEEE Dual-Input Stabilizer Model

+

+

Σ

STMINV

STMAXV

Input Signal #2

W1

W1

sT1+sT 6

11+sT

W2

W2

sT1+sT

W3

W3

sT1+sT

S2

7

K1+sT

W4

W4

sT1+sT

S3K

N

8M

9

1+sT(1+sT )

+

−S1K 1

2

1+sT1+sT

3

4

1+sT1+sT

STV

A B S4

Model supported by PSLFModel supported by PSSE without T ,T lead/lag block and with K 1=

A+sT1+sT

A

B

S4K

Σ

7 81 2 3

4 5 6

Input Signal #1

1 - WOTW1 11 - RampFilter32 - WOTW2 12 - RampFilter43 - Transducer1 13 - RampFilter54 - WOTW3 14 - RampFilter65 - WOTW4 15 - RampFilter76 - Transducer2 16 - RampFilter87 - LL1 17 - RampFilter98 - LL2 18

States

- RampFilter109 - RampFilter1 19 - LLGEOnly10 - RampFilter2

19

9 18−

Page 255: Block Diagrams

Stabilizer PSS2B

Stabilizer PSS2B IEEE Dual-Input Stabilizer Model

+

+

Σ

STMINV

STMAXV

W1

W1

sT1+sT 6

11+sT

W2

W2

sT1+sT

W3

W3

sT1+sT

S2

7

K1+sT

W4

W4

sT1+sT

S3K

N

8M

9

1+sT(1+sT )

+

S1K 1

2

1+sT1+sT

3

4

1+sT1+sT

STV

10

11

1+sT1+sTΣS1V

S2V

S1MAXV

S1MINV

S2MAXV

S2MINV

7 81 2 3

4 5 6

20

19

A B S4

Model supported by PSLFModel supported by PSSE without T ,T lead/lag block and with K 1=

A+sT1+sT

A

B

S4K

1 - WOTW1 11 - RampFilter32 - WOTW2 12 - RampFilter43 - Transducer1 13 - RampFilter54 - WOTW3 14 - RampFilter65 - WOTW4 15 - RampFilter76 - Transducer2 16 - RampFilter87 - LL1 17 - RampFilter98 - LL2 18

States

- RampFilter109 - RampFilter1 19 - LLGEOnly10 - RampFilter2 20 - LL3

9 18−

Page 256: Block Diagrams

Stabilizer PSSSB

Stabilizer PSSSB IEEE PSS2A Dual-Input Stabilizer Plus Voltage Boost Signal

Transient Stabilizer and Vcutoff

+

+

Σ

STMINV

STMAXV

Input 1

Input 2

W1

W1

sT1+sT 6

11+sT

W2

W2

sT1+sT

W3

W3

sT1+sT

S2

7

K1+sT

W4

W4

sT1+sT

S3K

N

8M

9

1+sT(1+sT )

+

−S1K 1

2

1+sT1+sT

3

4

1+sT1+sT

STV

Model supported by PSLF

S4K

Σ

7 81 2 3

4 5 6

19

KV

TΔV >Vcutoff

Sw1

01

0 d1

11+sT

d2

d2

sT1+sT

ΣVcutoff

tlV

0

0≤+

+

T T0 TΔV =V -V

20

9 18−

1 - WOTW1 11 - RampFilter32 - WOTW2 12 - RampFilter43 - Transducer1 13 - RampFilter54 - WOTW3 14 - RampFilter65 - WOTW4 15 - RampFilter76 - Transducer2 16 - RampFilter87 - LL1 17 - RampFilter98 - LL2 18

States

- RampFilter109 - RampFilter1 19 - TransducerTEB10 - RampFilter2 20 - WOTEB

Page 257: Block Diagrams

Stabilizer PTIST1

Stabilizer PTIST1 PTI Microprocessor-Based Stabilizer

Δω 1 3

2 4

K(1+sT )(1+sT )(1+sT )(1 sT )+

+− Σ π

F

Ms1+sT

+

+

−Σ

P

11+sT

MP' TapSelection

Table

tE

eP on machine MVA base

1

Model supported by PSSE but not yet implemented in Simulator

STV

Page 258: Block Diagrams

Stabilizer PTIST3

Stabilizer PTIST3 PTI Microprocessor-Based Stabilizer

Δω 1 3

2 4

K(1+sT )(1+sT )(1+sT )(1 sT )+

+− Σ π

F

Ms1+sT

+

+

Σ+

Σ

P

11+sT

MP'

TapSelection

Table

tE

eP on machine MVA base

1

5

6

1+sT1+sT

AveragingFunction

2 20 1 2 3 4 5

2 20 1 2 3 4 5

(A +A s+A s )(A +A s+A s )(B +B s+B s )(B +B s+B s )

LimitFunction

DL−

DL

AL−

AL

Switch 0=

Switch 1=

Model supported by PSSE but not yet implemented in Simulator

STV

Page 259: Block Diagrams

Stabilizer ST2CUT

Stabilizer ST2CUT Stabilizing Model with Dual-Input Signals

+

1

1

K1+sT

2

2

K1+sT

3

4

sT1+sT

7

8

1+sT1+sT

SMAXLS SS CU TO T CL TO

S T TO CL

S CT TO CU

V = V if (V +V >V >V +V )V = 0 if (V < V +V )V = 0 if (V > V +V )

5

6

1+sT1+sT

SSV

Output Limiter

Input Signal #1

Input Signal #2

9

10

1+sT1+sT

SMINL

TO

T

V = initial terminal voltageV = terminal voltage

Model supported by PSSE

STV

1

2

3 4 5 6

1 - Transducer12 - Transducer23 - Washout4 - LL15 - LL26 - Unlimited Signal

States

Page 260: Block Diagrams

Stabilizer STAB1

Stabilizer STAB1 Speed-Sensitive Stabilizing Model

Ks1+sT

1

3

1+sT1+sT

2

4

1+sT1+sTSpeed (pu)

LIM-H

LIMH

Model supported by PSSE

STV1 2 3

1 - Washout2 - Lead-lag 13 - Lead-lag 2

States

Page 261: Block Diagrams

Stabilizer STAB2A

Stabilizer STAB2A Power-Sensitive Stabilizing Unit

3

2 2

2

K sT1+sT

3

3

K1+sT

eP on machine MVA base

LIM-H

LIMH+

4K

2

5

5

K1+sT

Model supported by PSSE

STV

4

1 3− 5 6−

3

1 - Input State 12 - Input State 23 - Input State 34 - T5 - Output State 16 - Output State 2

States

Page 262: Block Diagrams

Stabilizer STAB3

Stabilizer STAB3 Power-Sensitive Stabilizing Unit

eP on machine MVA base

LIM-V

LIMV−

+ Σ X1

11+sT

X

X2

-sK1+sTt

11+sT

refP

Model supported by PSSE

STV1 2 3

t

X1

1 - Int T2 - Int T3 - Unlimited Signal

States

Page 263: Block Diagrams

Stabilizer STAB4

Stabilizer STAB4 Power-Sensitive Stabilizer

eP on machine MVA base

L1

L2−

+Σ X

X2

sK1+sT

a

X1

1+sT1+sTt

11+sT

refP

b

c

1+sT1+sT d

11+sT e

11+sT

Model supported by PSSE

STV1

2 3 4 5 6

d

1 - Input2 - Reset3 - LL14 - LL25 - T6 - Unlimited Signal

States

Page 264: Block Diagrams

Stabilizer STBSVC

Stabilizer STBSVC WECC Supplementary Signal for Static var Compensator

Input Signal #1

Input Signal #2

S1

S7

K1+sT

S3K+

+Σ S13

S14

sT1+sT

SCS-V

SCSV

S3K

S2

S10

K1+sT

S11

S12

1+sT1+sT

S8

S9

1+sT1+sT

Model supported by PSSE

STV

1 2

3 4

5

1 - Transducer12 - LL13 - Transducer24 - LL25 - Washout

States

Page 265: Block Diagrams

Stabilizer WSCCST

Stabilizer WSCCST WSCC Power System Stabilizer

+

qv

qv

K1+sT

T0V

signal j

speed 1accpw 2freq 3

− − − − − −

SMAXV

SLOWV

+

Model supported by PSLFBlocks in gray have not been implemented in Simulator

q

q

sT1+sT

'q2

q2

1+sT1+sT

'q1

q1

1+sT1+sT

'q3

q3

1+sT1+sT

TVΣ+−

1

11+sT

2

2

sT1+sT qsK+f(U)

k

+

'Vs

qs

11+sT

3

3

sT1+sT 4

s1+sT

tK−

+

Σ Σ

ΣU

1

2

3 4 5 6

KV

Sw1

01

0

d1

11+sT

d2

d2

sT1+sT

tlV

SV

TΔV >Vcutoff

ΣVcutoff

0

0≤+

+

T T0 TΔV =V -V

1 - Transducer12 - Transducer23 - WashoutTq4 - LL15 - LL26 - LL3

States

Page 266: Block Diagrams

Stabilizer WT12A1 and WT1P

Stabilizer WT12A1 and WT1P Pseudo Governor Model for Type 1 and Type 2 Wind Turbines

Speed

genP

2

11+sT

−+Σ

1s

MINPI

MAXPI

IK

PE

11+sT

1

11+sT

II

1WT12A1 supported by PSSE with K =T

WT1P supported by PSLF

12

3 4

gen

I

1

mech

1 - P

2 - K3 - T4 - P

States

refω

droopKΣ

Σ

PK

refP

mechP+

+

−+

+

Page 267: Block Diagrams

Stabilizer WT2P

Stabilizer Model WT2P

Model supported by PSLF

Tpe T'e – Time constant in sec. Kdroop Droop gain Kp PI proportional gain Ki PI proportional gain Pimax Maximum pitch in deg. Pimin Minimum pitch in deg. T1 Lead/lag time constant in sec. T2 Lead/lag time constant in sec. Kw Speed gain in p.u.

Page 268: Block Diagrams

Stabilizer WT3P and WT3P1

Stabilizer WT3P and WT3P1 Pitch Control Model for Type 3 Wind Generator

ORDP

MAX-RTheta

MAXRTheta

P

1sT

P PI MAX MAX MIN MIN MAX RATE

WT3P supported by PSLF T =T , Theta =PI , Theta =PI , and RTheta PI

WT3P1 supported by PSSE with no non-windup limits on pitch control=

12

3

1 - Pitch2 - PitchControl3 - PitchComp

States

refω

Σ

Σ

setP

Pitch

+

+

ω IPPP

KK +s

ICPC

KK +s

Σ

MAXTheta

MINTheta

MAXTheta

MINTheta

0

− −

+ +

Page 269: Block Diagrams

Switched Shunt Relay CAPRELAY

Switched Shunt Relay CAPRELAY

Model supported by PSLF

Rem Bus Remote Bus Tfilter Voltage filter time constant in sec. tbClose Circuit breaker closing time for switching shunt ON in sec. tbOpen Circuit breaker closing time for switching shunt OFF in sec. V1On First voltage threshold for switching shunt capacitor ON in sec. T1On First time delay for switching shunt capacitor ON in sec. V2On Second voltage threshold for switching shunt capacitor ON in sec. T2On Second time delay for switching shunt capacitor ON in sec. V1Off First voltage threshold for switching shunt capacitor OFF in sec. T1Off First time delay for switching shunt capacitor OFF in sec. V2Off Second voltage threshold for switching shunt capacitor OFF in sec. T2Off Second time delay for switching shunt capacitor OFF in sec.