BJT - Ebers Moll Equation

12
ECE 3040 - Dr. Alan Doolittle Georgia Tech Lecture 19 Bipolar Junction Transistors (BJT): Part 3 Ebers Moll Large Signal BJT Model, Using CVD model to solve for DC bias point Reading: Pierret 11.1

Transcript of BJT - Ebers Moll Equation

Page 1: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Lecture 19

Bipolar Junction Transistors (BJT): Part 3

Ebers Moll Large Signal BJT Model, Using CVD model to solve for DC bias point

Reading:

Pierret 11.1

Page 2: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Bipolar Junction Transistor (BJT) Quantitative SolutionInsight into transistor performance

If LB>>W (most of the minority carriers make it across the base),

DC

DC

BE

EEB

BEEB

BE

DC

DC

DC

EEB

BE

BEEB

BE

DC

WNDNLD

LW

NLDWND

and

NLDWND

LW

NLDWND

αα

β

ββ

α

−=⇒

+

=

+=

+⇒

++

=

1

21

1

11

1

211

1

2

2

Page 3: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

−−

−=

−−

−=

11

11

0

0

TCB

TEB

TCB

TEB

VV

RV

V

C

VV

VV

FE

eIeAI

eAeII

+−

=

+=

1sinh

cosh1

sinh

1

1sinh

11sinh

cosh

TCB

TEB

TCB

TEB

VV

B

B

B

BoBCo

C

CVV

B

B

BoBC

VV

B

B

BoBVV

B

B

B

BoBEo

E

EE

e

LW

LW

LpD

nLD

qAe

LWL

pDqAI

e

LWL

pDqAe

LW

LW

LpD

nLD

qAI

IF0

IR0

A

A

*

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

Page 4: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

−−

−=

−−

−=

11

11

0

0

TCB

TEB

TCB

TEB

VV

RV

V

C

VV

VV

FE

eIeAI

eAeII

When VCB=0,

gaincurrentbasecommonIIbut

eIIandeII

ThusseeAI

but

eAIandeII

DCFEFC

VV

FFCV

V

FE

F

VV

CV

V

FE

TEB

TEB

TEB

TEB

ααα

α

=→=

−=

−=

>

−=

−=

,

11

,*)(

,

11

00

0

0

VEB

IB

IC

IE

Looks like an Ideal diode

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

The collector current is the fraction of the emitter current “collected”

Page 5: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

−−

−=

−−

−=

11

11

0

0

TCB

TEB

TCB

TEB

VV

RV

V

C

VV

VV

FE

eIeAI

eAeII

When VEB=0,

DCRCRE

VV

RCV

V

RRE

R

VV

RCV

V

E

IIbut

eIIandeII

ThusseeAI

but

eIIandeAI

TCB

TCB

TCB

TCB

ααα

α

≠→=

−−=

−−=

>

−−=

−−=

,

11

,*)(

,

11

00

0

0VCB

IB

IC

IE

Looks like an Ideal diode

In Inverse Active mode, the emitter current is the fraction of the collector current “collected”

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

Page 6: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Note: A=αRIRo= αFIFo

IE IC

IB

Collector

Base

Emitter

αFIFαRIR

IF IR

−=

−= 11 00

TCB

TEB

VV

RRV

V

FF eIIandeII

DiodesIdeal

−−

−=

−−

−=

11

11

00

00

TCB

TEB

TCB

TEB

VV

RV

V

FFC

VV

RRV

V

FE

eIeII

eIeII

α

α

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

PNP

Page 7: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

IE IC

IB

Collector

Base

Emitter

αFIFαRIR

IF IR

−=

−= 11 00

TBC

TBE

VV

RRV

V

FF eIIandeII

DiodesIdealNPN

−−

−=

−−

−=

11

11

00

00

TBC

TBE

TBC

TBB

VV

RV

V

FFC

VV

RRV

V

FE

eIeII

eIeII

α

α

Page 8: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Using the Ebers-Moll model requires mathematical complexity (and much pain). Thus, we have an approximate solution

method* that allows a quick solution.

*I refer to as the “CVD/Beta Analysis”. This is just my term, not a universal name.

Page 9: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Quick Solution using a CVD/Beta Approach

Consider the following pnp BJT circuit with a common emitter current gain, βDC=180.7. Find Ib, Ic, and Ie assuming a turn on voltage of 0.7V.

0=-4V+IB(12000)+VEB+IE(15000)4V=IB(12000)+0.7V+IC(1/αDC)(15000)

4V=IB(12000)+0.7V+[βDCIB][(1+βDC)/ βDC](15000)3.3V=IB[(12000)+(1+180.7)(15000)]

IB= 1.2uA IC=180.7IB=218uA IE=(181.7/180.7)IC=219uA

CBoEdcC III +=α

CEoBdcC III += β

Neglect Leakage currents

R1(Ib)

R3(Ie)

Ie

Ib

Ic

CBE III +=

Page 10: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

Compare our results using the CVD/Beta model to the full Ebers-Moll solution used in PSPICE...

Actual Vbe=0.662V not 0.7V as assumed

Actual Ibase=1.05uA not 1.2uA as calculated

Only 1% error in the

collector and emitter

currents

Current into various nodes Voltage at various nodes

Page 11: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

IV curve looks like a diode

Real shows variation due to “base width modulation” dependent on the applied VCB

After the base-collector junction is reverse biased (starts collecting), IE~=IC

Real IV is limited by breakdown of the base-collector junction

Development of the Large Signal Model of a BJT (Ebers-Moll Model)Common Base

Input

IE and VEB

Output

IC and (-VCB)

Input Output

Page 12: BJT - Ebers Moll Equation

ECE 3040 - Dr. Alan DoolittleGeorgia Tech

IV curve looks like a diode but has a DC shift associated with the reverse biased base-collector junction current

After the base-collector junction is reverse biased (starts collecting), IC=βIB

Development of the Large Signal Model of a BJT (Ebers-Moll Model)

Input

IB and VEB

Output

IC and VEC

Real IV is limited by breakdown of the base-

collector junction

Real shows finite slope due to “base width modulation” dependent on the applied VCB

Input

Output

Common Emitter