Birdasm Wind, Wind ergy

of 108/108
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διπλωματική Εργασία : Επιβλέπων : Ν.Λαγαρός Λέκτορας ΕΜΠ
  • date post

    29-Nov-2015
  • Category

    Documents

  • view

    21
  • download

    3

Embed Size (px)

description

Wind Energy

Transcript of Birdasm Wind, Wind ergy

  • :

    : .

    , 2012

  • 2

    .

    .

    , .

  • 3

    20% 2020. .

    . , . , . SAP2000

    80, 100, 120, 140, 160 , Vestas V90-MW . Optimus , , . Optimus (3 2 ) 5 .

    (20 ), 10 . , (6 ) .,

    Vestas V90-3MW 3 , .

  • 4

  • 5

    Abstract

    Wind Energy is growing rapidly over the last years and main reason for this would be theEuropean Unions firm target to produce a significant amount of its energy (20%) fromrenewable sources by 2020. New technologies lower the cost of harvesting energy from thewind and on the other hand the cost of extracting fossil fuel is growing.

    This thesis raises a dual purpose. First objective would be the optimal minimum coststructural design of a horizontal-axis wind turbine tubular steel tower, depending on its size.Second objective would be to develop a methodology for finding the optimal placement of awind turbine based on the profit of its life cycle, as a function of the available wind energypotential of a region.To achieve this dual objective five models of the tower were designed in the SAP2000

    finite element program, in five different heights of 80, 100, 120, 140, 160 meters. The windturbine model of Vestas V90-MW was decided to be placed in all 5 models and all loadsacting on the tower were applied. Then the models were passed into the Optimusoptimization program in which the full optimization problem regarding the objective design,the design variables, default parameters and design constraints, was stated. The Optimusprogram using optimization algorithm based on differential evolution method gives theoptimal design based on the cost of six cases (3 steel grades and 2 geometric shapes of thetower) for each of the 5 models of different heights.

    To achieve the second objective a methodology was developed that calculates thekilowatt per hour (kWh) generated for each level of the tower in the life cycle of a windturbine (20 years), for a range of average annual wind speed based on measurements at aheight of 10 meters. From the kWh generated, the expected gross profits from the operationof the wind turbine were calculated and after deducting the initial total cost of the windturbine, the expected profit for each of the optimized wind turbine models (6 cases for eachheight) for the whole range of average annual reference wind speed was calculated.As a result, this thesis concludes by suggesting the optimum mounting height of the

    Vestas V90-3MW on 3 separate available wind resources occasions and the optimalstructural design of the corresponding supporting tower, based on the maximum profitobtained in the lifecycle of the wind turbine.

  • 6

    , , ,

  • 7

    1. ...9

    1.1. 91.1.1. 10

    1.2. 111.2.1. ..121.2.2. .141.2.3. ...15

    1.3. ...161.3.1. .171.3.2. ......................................................171.3.3. 191.3.4. Vestas V90-3MW..221.3.5. .26

    1.4. ..302. ..312.1 312.2 .33

    2.2.1 332.2.2 .36

    2.2.3 ..492.2.4 502.2.5 ..53

    3. .543.1 543.2 ...55

  • 8

    3.3 .613.4 63

    4.- 694.1 .694.2 ..694.3 .704.4 73

    4.4.1 734.4.2 .744.4.3 754.4.4 ..774.4.5 ..79

    4.5 814.5.1 814.5.2 .824.5.3. ..844.5.4 .97

    4.6 ..985. 1036..104

  • 9

    1:

    1.1

    () . , , . , , , . .

    () . , , , . , .

    ( ) ( ). ' . , .

  • 10

    1.1.1

    : (.. ). .

    . ( ) , .

    . , . .

    . ( , ) ' . . , . .

    . ' . , .. . .

    o .

    , . , .

    o . .

    o . , . .

  • 11

    1.1

    1.2

    . " " "" , . () . .

    , . , . , . . , .

    . , . ,

  • 12

    . , .

    1.2

    1.2.1 -

    :

    :

    .

    , , , , , .

    . ,

    12

    . , .

    1.2

    1.2.1 -

    :

    :

    .

    , , , , , .

    . ,

    12

    . , .

    1.2

    1.2.1 -

    :

    :

    .

    , , , , , .

    . ,

  • 13

    , .

    . , (KWh) .

    , , .

    , . .

    :

    . . ,

    , , .

    , .

    / . .

    , , .

    . .

    .

  • 14

    1.2.2

    , , , , .

    , 20% 2020. 20% , , 14-18%.

    1.3 2000-2011.

  • 15

    :

    . 2010, 13 ., 2,6 offshore. 2010, 40% . 17%. 190.000 2010. 271.000 2020.

    . 84 GW 2010 , 119 CO2. , 192 2011 - 2020 85 CO2 .

    . , 70% 20 30 . 2010, , 5,3% . 2011 - 2020 138 .

    1.2.3

    , . / .

    . .. .

  • 16

    . . .

    :

    (-).

    , . .

    ( , ).

    .

    .

    1.3

    , , . , . , , . , .

    , . . , , .

    .

  • 17

    , , .

    1.3.1

    . . . , . , , , .

    1.4 : 2

  • 18

    1.3.2

    . . . . . , , . .

    Darrieus Savonius. Darrieus George Darrieus 1931. . (AC). .

    1.5 : Darrieus

  • 19

    Savonius . . . () , Savonius . , .

    1.6 : Savonius

    1.3.3

    . , . ,

  • 20

    .

    1.7 :

    , . . , .

  • 21

    :

    (tower). . .

    (rotor). (blades) . . .

    (nacelle). : , , , , , , , . fiber glass.

    1.8 :

  • 22

    1.3.4 Vestas V90-3MW

    Vestas V90-3MW 90 3,0MW. (pitch control), . . OptiTip . , . OptiTip (RPM) / , .

    1.3.4.1 (nacelle)

    fiberglass. . , . , .

  • 23

    1.9 V90-3MW

    : (machine foundation).

    . .

    (gearbox). .

    (yaw system). . .

    (brake system). . . .

    (generator). . . , ., , .

    . , . .

  • 24

    1.3.4.2

    fiber glass . . . .

    ( ) , .

    V90 () OptiTip. , . . , 95 . .

    1.3.4.3 (power curve)

    (VESTAS) . , , , .

  • 25

    1.10 V90-3MW

    . (Vcut-in) 4(m/s). (Vrated), 3,0 W, 15(m/s). (Vcut-out) 25 (m/s).

  • 26

    1.3.5 (wind turbine tower)

    O , ( ), : , .

    , 20 80 5%. . , , . , , .

    1.11 : 1985-2010

    80. / .

  • 27

    , , MW.

    . , , . fiber glass . (tubular tower), (latticetower), (three-legged tower) (guy-wired pole tower).

    1.12 :

    , :

    (lattice tower).

    , ( MW), . , . , , 50% . .

    .

  • 28

    . , , . . .

    Laasow (Brandenburg) , 160 . 2,9 , , 29 .

    (tubular steel tower).

    . . 4,5 2 , 3 4 ( ). 20 30 . , . , .

    100 5 , 4,9 . .

    / (concrete/steel hybrid tower).

    / . , . . .

  • 29

    / ( ). . . Enercon.

    1.13 : /

  • 30

    1.4 .

    . , . , .

    1 . Vestas V90-3MW . .

    2 . .

    3 , . . .

    4 .

    5 .

  • 31

    2 : .

    2.1

    , , , , . .

    . , 4,5 m. 40 mm.

    . von Mises .

    . .

    . 1,00% .

    . , . 0,23 0,52 Hz , 0,10 0,30 . , 1,1 2, .

  • 32

    . (HV) . .

    . .

  • 33

    2.2. .

    2.2.1

    , . . .

    {}

    , . ( , .) .

    ,

    , [1-1-4].

  • 34

    C.C.Baniotopoulos (Topics on thedesign of tubular steel turbine towers) :

    [z] [D], (z, D [m], Fw [k/m]):

    Z 2,00m : Fw = 0,51DZ> 2,00m : Fw = 0,013ln(20z)([ln(20z) +7]D

    D [] .

    {}

    [1-4] :

  • 35

    {} [1-4]

    , . . , , , , .

    {} FD(t) FD(t) Nigam N, Narayanan S. (Applications of random vibrations.Delhi: Springer-Verlag ; 1994) :

    FD(t) = CDA[V(t)]2

    : CD V(t)

  • 36

    :

    : FyT FzT -MxT zT ( )

    2.2.2. -

    [G] [W] 2 :1) G + 1,50W2) G + W

    [G] , [W] .

    1) (ultimate limit state, ULS) (plastic limit state, LS1) (buckling limit state, LS3) 2) (serviceability limit state, SLS)

  • 37

    . (fatigue limitstate, LS4), .

    2.2.2.1 (LS1)

    . . . .

    [3-1-6,.4] :- - (linear elastic analysis, LA)- (materially nonlinear analysis, MNA)- (geometrically and

    materially nonlinear analysis with imperfections included, GMNA)- , [3-1-6]

    , , . .

    (LA) :

    d = +

    : d d

  • 38

    Md W

    :

    = 2rt W = r2t

    r, t .

    {}

    :

    d = Vd . 1 Bredt :

    d = , Mz,d , r , t . 0,5 . `` von-Mises :

    = + y + z + x y + x z + y z + 3y + 3z + 3yz

  • 39

    :

    = + 3 :

    R,d= fyM R,d= fy3 M R,d , R,d , fy , , .

    2.2.2.2 (LS3)

    , . , .

    [3-1-6,.4.1.3] LS3:- .- (linear elastic analysis, LA),

    , .- (linear elastic bifurcation analysis, LBA),

    .

    - (materially nonlinear analysis, MNA), .

    - GMNIA (geometrically and materially nonlinear analysis with imperfections included) MNA, LBA GMNA, .

    - [3-1-6] LS3

    ,

  • 40

    . [3-1-6] :- : - : - :

    [3-1-6,.8.4] LS3 :

    (1)

    Ur (. {}) :

    : dmax dmin dnom

    ) ) {}

  • 41

    Ur :Ur Ur,max

    Ur,max {} [3-1-6,.8.4.2,.8.1) :

    {} Ur,max

    (2) ,

    , , {}, , etot , , eint , :

    ea= etot - eint

    {}

  • 42

    , ea , , , {} ( 3-1-6,.8.4.3,.8.2) :

    {}

    (3)

    {}. :

    : w0 lg

  • 43

    {}

    , U0,max , , , {} ( 3-1-6,.8.4.4,.8.4) :

    {} .

    [3-1-6] .

  • 44

    GMNIA [E 3-1-6,.8.7]

    . .

    Rd Fd , :

    Fd Rd Fd Rd 1 Rd :

    Rd= RkM1 :- 1

    1= 1,1.

    - Rk Rk

    , RGMNIA , ,kGMNIA :

    Rk= kGMNIA RGMNIA kGMNIA 0,8< kGMNIA

  • 45

    {} GMNIA

    RGMNIA , C1, C2, C3 : C1 : . C2 : , -. C3 : , - .

    LBA [E 3-1-6,.8.6]

    . .

    Rd Fd :

    Fd Rd Fd Rd 1 Rd :

    Rd= RkM1

  • 46

    :- 1

    1=1,1.

    - Rk Rk :

    Rk= Rpl Rpl :

    : , Rpl , - () {} [3-1-6,.8.6.2,.8.5]:

    {} Rpl MNA LBA.

    , , ,, , , , n .

    = Rpl , , =0,20 , [ 3-1-6, D,. 1.2.2]

  • 47

    = 0,60 , [ 3-1-6, D,. 1.2.2]n = 1,00 , [ 3-1-6, D,. 1.2.2]

    = 0,621+( 1,91Q )1,44 ( rt )0,72 , r, t Q {} [ 3-1-6, D,. 1.2.2, . D.2] :

    {} Q

    , , := 1 , = 1 - [( - , ) / (p - , )] ,< < p = /2 p

    p= , .

  • 48

    [E 3-1-6,.8.5]

    .

    , ,Ed , ,d , x,d (LA) . :

    ,Rd= ,Rk / 1 , ,Rd= ,Rk / 1 , ,Rd= ,Rk / 1 :- 1

    1= 1,1.

    - ,Rk , ,Rk , ,Rk :

    ,Rk= fy,k , ,Rk= fy,k , ,Rk= fy,k /3 :- : .- fy,k : .

    :,Ed ,Rd , ,d ,Rd , x,d ,Rd

  • 49

    2.2.3

    . . . Morleigh :

    2= g [1/Hz], g, Qi i, ni .

    . . .

    {} (. Schaumann et al.(2007-01))

  • 50

    2.2.4

    (HV) 30 48. 70 120 . HV- 64 20 . . (. {}). , .

    {} (. Seidel(2001) , .7)

    , .

    . -. ,

    50

    2.2.4

    (HV) 30 48. 70 120 . HV- 64 20 . . (. {}). , .

    {} (. Seidel(2001) , .7)

    , .

    . -. ,

    50

    2.2.4

    (HV) 30 48. 70 120 . HV- 64 20 . . (. {}). , .

    {} (. Seidel(2001) , .7)

    , .

    . -. ,

  • 51

    . {} .

    {} HV- (.Seidel (2001))

    . 2 , :

    Fv= 0,7 Asfy,b,k As fy,b,k . , 0,7 0,9.

    . ({} , range 1) Fv. . (range 2). . .

  • 52

    . , (range 4).

    . Seidel (2001) Schmidt/Neuper (1997).

    . , . Seidel (2001) :

    b + s/2 2da 1,45(b + s/2)c/d 2 d/s 10

    t 1,5d : t 4s r/s 50

    t 3s r/s = 100t 2s r/s 200

    t , s , d , b , a .

    {} (. Seidel (2001), .2)

    52

    . , (range 4).

    . Seidel (2001) Schmidt/Neuper (1997).

    . , . Seidel (2001) :

    b + s/2 2da 1,45(b + s/2)c/d 2 d/s 10

    t 1,5d : t 4s r/s 50

    t 3s r/s = 100t 2s r/s 200

    t , s , d , b , a .

    {} (. Seidel (2001), .2)

    52

    . , (range 4).

    . Seidel (2001) Schmidt/Neuper (1997).

    . , . Seidel (2001) :

    b + s/2 2da 1,45(b + s/2)c/d 2 d/s 10

    t 1,5d : t 4s r/s 50

    t 3s r/s = 100t 2s r/s 200

    t , s , d , b , a .

    {} (. Seidel (2001), .2)

  • 53

    (mm). Seidel (2001) {}.

    M16 M20 M22 M24 M27 M30 M36 M39 M42 M48min (b-s/2) 30 35 40 40 45 45 50 55 55 65

    min c 45 55 60 65 70 75 90 95 100 110

    {} [mm]

    2.2.5

    . [3-1-8].

    :

    Fw,Ed Fw,Rd Fw,Ed Fw,Rd . :

    Fw,Rd= fVW,d= / fVW,d , , w , M2 . M2 1,25 [3-1-8,.6.1] w [3-1-8, 4.1].

  • 54

    3 :

    3.1 .

    - - . .. , , ... , / , . ( ). , , , , .

    (design variables), (objective function). , , (constraint functions), , .

    :

    . , , .

    . .

  • 55

    3.2 .

    :

    .

    .

    3.2.1 .

    . , (mathematical programming). .

    :

    - (Linear Programming LP). . . () .

    - (Non Linear Programming NLP). , . / . . . .

  • 56

    .

    - (Integer Programming IP). , . . , .

    - (Geometric Programming GP). . .

    - (Dynamic Programming DP). . . .

    3.2.2 .

    . , . . ) , . , .

  • 57

    (Selection), (Recombination) (Mutation), (Survival of the fittest) .

    , . , . , , , .

    :

    - (Genetic Algorithms GA). J. Holland Michigan. , . (Fitness Quality function), . (binary), (strings). , , .

    - (Evolution Strategies ES). I. Rechenberg H.P. Schwefel . .

    - (Evolutionary Programming EP). L.J. Fogel et al.

  • 58

    . .

    - (Genetic Programming GP). , J.R. Koza, / (.. ).

    - (Differential Evolution-DE). .

    3.2.3

    1997 Kenneth Price Rainer Storn , , . .

    NP :

    x i, G , i=0, 1, 2, ., NP-1

    G. . . , , . . , xbest G, . , , .

    .

  • 59

    DE1

    , x i, G , i=0, 1, 2, ., NP-1, v :

    vi, G+1= x r1, G +F(xr2 G xr3, G) (3.12)

    r1,r2,r3 G F > 0.

    [0, NP-1]. F (xr2 G xr3, G). , DE1.

    3.1. v

    DE1.

    , , u , = (u , u , . u ) , x i, G vi, G+1 vi, G+1 x i, G.

  • 60

    xi, G u , f:

    u , , f (u , )f (x i, G)x i, G+1 =

    x i, G

    DE2

    vi, G+1, x i, G+1, :

    vi, G+1= x i, G+(x best, G- x i, G) +F( xr2 G xr3, G)

    x best, G . . (3.2) vi, G+1.

  • 61

    3.2 : v

    DE2.

    3.3 .

    , :

    Structural design optimization of wind turbine towersHani M. Negm, Karam Y. Maalawi, (1999)

    . , , . / , . : , , -, .

  • 62

    . 100-kW (ERDA-NASA MOD-0), .

    Optimization of a steel tower for a wind turbine structureP.E. Uys, J. Farkasb, K. Jarmai, F. van Tonder, (2006)

    . , 45m, , , 15m. [1-2-4]. . . , , . H , . .

    Optimization of Wind Turbine Tubular TowersRajesh katyal, S Gomathinayagam, Saleem Akhtar, and Siraj Ahmed, (2012)

    , (NWP), , . NWP , . , 30m 73m, STAADPRO , , , . , .

    A model for yawing dynamic optimization of a wind turbine structure

  • 63

    Karam Y. Maalawi,(2007)

    //. . --. . , .

    Wind turbine tower optimization under various requirements using geneticalgorithm. Serdar Yldrm, brahim zkol (2010)

    1.5 MW (GA). ASCE 7-98, AISC-89 IEC61400-1, GA. , 1m 26mm 12mm . .

    Formulations for the optimal design of RC wind turbine towersMarcelo A Silva, Reyolando MLRF Brasil, Jasbir S Arora

    , , . . . . , .

  • 64

    3.4

    , :

    .

    . .

    3.4.1

    , . . . . . : , , , .

    , , . , . , , . .

    . .

  • 65

    . .

    3.4.2

    , . . . .

    , D, , t.

    3.4.3

    :- .- ,(80m, 100m, 120m, 140m, 160m)- (S235, S275, S355)- ,

    D(z) = -a + Do (), D(z) = -a z + Do (), z Do .

    - , t(z ) = bD(z)().

  • 66

    3.4.4

    . , , . , . .

    -, . , . . .

    , , , , , :

    , Do , 4,5 . . 0,1 :

    0,1 Do 4,5

  • 67

    , Dt , . 3,4 . . 0,1 :

    0,1 Dt 3,4

    , 40 . , . 0,001 :

    0,001 t 0,040

    , , fn , , fr , 1,1 2, . 1,1 :

    1,1 fr fn

  • 68

    , ut , 1,00% , , . :

    ut0,0100

  • 69

    4 :

    4.1

    . .

    4.2

    . . :

    . . , .

    . , . (Vestas V90-3MW) .

    . (20 ), , . 20 .

  • 70

    , . , , . .

    4.3

    SAP2000. 80, 100, 120,140, 160 . (beamelements) 2,5 . 80 32 , 100 40 , 120 48 , 140 56 160 64 .

    . -. .

    3 (. 3.1) . (Vestas V90-3MW) , 1100() . 804,75(KNm) (0,75 m) . , 600(). (. 3 . 3.1.2) . 3 (.3.1.3). ( 4.1) ( 4.2) 80 . 100,120,140,160 .

  • 71

    4.1 : 80m

    4.2 : (), ()

  • 72

    Optimus (. 3 .--). , 3 (.--). (S235,S275,S355) , , 80,100,120,140,160 .

    , , (). , . , , , , ..

    , . . 20% . , .

    , 3 12 (m/s) 0,5(m/s). 10 80,100,120,140,160 . , 365 24, 0,30 . 20 , . . .

  • 73

    4.4

    , , .

    4.4.1

    Vestas V90 3MW :

    : 90 m : 6,362 m2 (Vcut-in) : 4m/s (Vrated) : 15 m/s (Vcut-out) : 25 m/s (Cp = 0,41)

    4.3 V90-3.0MW

  • 74

    4.4.2

    , 10 , . 3 m/s 12 m/s 0,5m/s.

    EXCEL :

  • 75

    4.1

    3 m/s 80 4 m/s , .

    4.4.3

    :

  • 76

    20C (=293K), :

    p = 01325 (1-0,000022557Z) 5,25588

    . EXCEL :

    4.2 -

  • 77

    4.4.4

    :

    () (Vestas V90-3MW) 6,362 m2 . . . 0,41.

    , EXCEL :

  • 78

    4.3 .

    356 () 24 () 0,30 . EXCEL :

  • 79

    4.4 :

    4.4.5

    , , , , .. : S235 1,7 / kg S275 2,0 / kg S355 2,3 / kg

    . 1

  • 80

    / KW , 3.000.000 Vestas V90 3MW.

    0,05 / KWh. . :

    4.5 :

  • 81

    4.5

    4.5.1

    (S235,S275,S355) , (linear),(nonlinear) ( ) :

    4.6 :

    0,00

    500000,00

    1000000,00

    1500000,00

    2000000,00

    2500000,00

    3000000,00

    3500000,00

    Cost()

    Cost()

    Cost()

    Cost()

    Cost()

    80m 100m 120m 140m 160m

    235 235 275 275 355 355

  • 82

    4.4 : .

    . , . 80, 100 140 , 120 , 160 S275 300.000 .

    S235 (non-linear). , 100,120,140. 50.000 80 160 230.000, S235 .

    4.5.2

    , 20% . , , .

  • 83

    4.7 :

    4.5 : .

    0,00

    1000000,00

    2000000,00

    3000000,00

    4000000,00

    5000000,00

    6000000,00

    7000000,00

    8000000,00

    TotalCost()

    TotalCost()

    TotalCost()

    TotalCost()

    TotalCost()

    80m 100m 120m 140m 160m

    235 235 275 275 355 355

  • 84

    4.5.3

    . 20 , , . 20 . 6 , , , Vestas V90-3MW, ( 10 ) 3-12 m/s 0,5 m/s,

  • 85

    4.5.3.1 - S235.

    4.8 : () S235.

  • 86

    4.6 : () S235.-6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12

    80m100m120m140m160m

  • 87

    4.5.3.2 - S235.

    4.9 : () S235.

  • 88

    4.7 : () S235.-6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12

    80m100m120m140m160m

  • 89

    4.5.3.3 - S275.

    4.10 : () S275.

  • 90

    4.8 : () S275.

    -8000000

    -6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 1280m100m120m140m160m

  • 91

    4.5.3.4 - S275.

    4.11 : () S275.

  • 92

    4.9 : () S275

    -6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12

    80m100m120m140m160m

  • 93

    4.5.3.5 - S355.

    4.12 : () S355.

  • 94

    4.10 : () S355.

    -8000000

    -6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 1280m100m120m140m160m

  • 95

    4.5.3.6 - S355.

    4.13 : () S355.

  • 96

    4.11 : () S355.

    -8000000

    -6000000

    -4000000

    -2000000

    0

    2000000

    4000000

    6000000

    3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 1280m100m120m140m160m

  • 97

    4.5.4 .

    :

    ( 10m) 6,5m/s 140 S235, 350.000 20 . 6,5 m/s 3.500.000. , .

    7 m/s 8,5 m/s 140 . (8m/s) .

    9m/s 120 20 (). .

    9,5 m/s , , 80 . 10 m/s 20 . .

  • 98

    4.6 .

    . 8, 9 ,10 m/s .

    4.6.1 8 m/s.

    ( 10m) 8 m/s 140m. 20 8 m/s.

    4.14 : () 8 m/s.

  • 99

    4.12 : () 8 m/s.

    (8 m/s), 140 . S235 (20.000 ). 3.335.000 74% (4.550.000).

    , 140m, S235 S275 350.000 S355 140m 160m S235( ). S355 140m, (46%).

    0

    500000

    1000000

    1500000

    2000000

    2500000

    3000000

    3500000

    4000000

    ()

    ()

    ()

    ()

    ()

    80m 100m 120m 140m 160m

    235 235 275 275 355 355

  • 100

    4.6.2 9 m/s.

    ( 10m) 8 m/s 140m. 20 8 m/s.

    4.15 : () 9 m/s.

    4.13 : () 9 m/s.

    0500000

    10000001500000200000025000003000000350000040000004500000

    ()

    ()

    ()

    ()

    ()

    80m 100m 120m 140m 160m

    235 235 275 275 355 355

  • 101

    (9 m/s), 120. S235 . 4.000.000 100% (3.910.000).

    , 120m, S235 S275 180.000 S355 120m 140 S235 100m, , 3.300.000.

    4.6.3 10 m/s.

    ( 10m) 10 m/s 80m. . 20 8 m/s.

    4.16 : () 10 m/s.

  • 102

    4.14 : () 10 m/s.

    (10 m/s), 80 . . S235 4.370.000 125% (3.510.000). S235 ,S275 S355 40.000 .

    (4.370.00) 10 m/s . .

    0500000

    100000015000002000000250000030000003500000400000045000005000000

    ()

    ()

    ()

    ()

    ()

    80m 100m 120m 140m 160m

    235 235 275 275 355 355

  • 103

    5 :

    5.1

    S235. S235 80, 120, 160 , 100, 140 .

    Vestas V90-3MW :

    6,5 m/s .

    7 8,5 m/s 140 S235.

    9 m/s 120 S235.

    10 m/s 80 S235.

    5.2

    / :

    - . .

    - .

  • 104

    - -.

    - ( 10m/s).

    - .

  • 105

    6 :

    [1] Baniotopoulos, Charalambos; Borri , Claudio; Stathopoulos, Theodore (2011) -Environmental Wind Engineering and Design of Wind Energy Structures.[2] Hani M. Negm, Karam Y. Maalawi, (1999)-Structural design optimization of wind turbinetowers[3] P.E. Uys, J. Farkasb, K. Jarmai, F. van Tonder, (2006) - Optimization of a steel tower for awind turbine structure.[4] Rajesh katyal, S Gomathinayagam, Saleem Akhtar, and Siraj Ahmed, (2012) - Optimizationof Wind Turbine Tubular Towers.[5] Karam Y. Maalawi, (2007) - A model for yawing dynamic optimization of a wind turbinestructure.

    [6] Serdar Yldrm, brahim zkol (2010) - Wind turbine tower optimization under variousrequirements using genetic algorithm.[7] Marcelo A Silva, Reyolando MLRF Brasil, Jasbir S Arora, - Formulations for the optimaldesign of RC wind turbine towers[8] Eurocode 3.1.06. Strength and Stability of Shell Structures (2004)[9] (2000) - .[10] (2012) - .

    [11] E. (2001) - [12] (2012) - .

  • 106

  • 107

  • 108