Bayesian Models for Astronomy
-
Upload
rafael-s-de-souza -
Category
Science
-
view
267 -
download
2
Embed Size (px)
Transcript of Bayesian Models for Astronomy

www.elte.hu
Bayesian Models for AstronomyADA8 Summer School
Rafael S. de Souza
May 24, 2016

Chapter 1
Gaussian Models

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Fitting a linear model in RGaussian
Linear ModelYi = β0 + β1xi + εi εi ∼ Norm(0, σ2)
R script
N = 100sd=0.25x1<-runif(nobs)mu <- 1 + 3*x1y<-rnorm(N,mu,sd)# Fit modellm(y ~ x1)
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 3/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Normal Linear ModelsGaussian
Linear ModelYi ∼ Normal(µi , σ
2) Stochastic partµi = β0 + β1x1+ · · ·+ βkxk Deterministic part
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 4/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Normal Linear ModelsGaussian
Linear ModelYi ∼ Normal(µi , σ
2)µi = β0 + β1x1 + β2x2
1
R script
x1<-runif(nobs)mu<-1+5*x1 -0.75*x1^2y<-rnorm(N,mu ,0.5)# Fit modellm(y~x1+I(x^2))
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 5/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Normal Linear ModelsGaussian
Linear ModelYi ∼ Normal(µi , σ
2)µi = β0 + β1x1 + β2x2
R script
mu<-2+3*x1 -1.5*x2y<-rnorm(N,mu,sd)# Fit modellm(y~x1+x2)
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 6/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Normal Linear ModelsGaussian
Linear ModelYi ∼ Normal(µi , σ
2)µi = β0 + β1x1 + β2x2+β3x2
1 + β4x22
R script
mu<-2+3*x1 -4.5*x1^2+ 1.5*x2+1.5*x2^2y<-rnorm(N,mu,sd)# Fit modellm(y~x1+x2+I(x1^2)+I(x2^2))
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 7/34

The Bayesian way
p(θ|y) = p(θ)p(y |θ)p(y)

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
JAGS: Just Another Gibbs Samplerhttp://mcmc-jags.sourceforge.net
A program for analysis of Bayesian hierarchical modelsusing Markov Chain Monte Carlo (MCMC) simulationwritten with three aims in mind:
To have a cross-platform engine for the BUGS (Bayesianinference Using Gibbs Sampling) languageTo be extensible, allowing users to write their ownfunctions, distributions and samplers.To be a platform for experimentation with ideas inBayesian modelling
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 9/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
JAGS: Just Another Gibbs Sampler
An intuitive program for analysis of Bayesian hierarchicalmodels using MCMC.
Normal Model JAGS syntax
Likelihood
Yi ∼ N (µi , σ2) Y [i] ∼ dnorm(mu[i],pow(sigma,−2)
µi = β1 + β2 × Xi mu[i] < −inprod(beta[],X [i , ])
Priorsβi ∼ N (0,104) beta[i] ∼ dnorm(0,0.001)σ ∼ U(0,100) sigma ∼ dunif (0,100)
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 10/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Synthetic Normal model with JAGS
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 11/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Gaussian ModelsErrors-in-measurements
Normal ModelLikelihood
Yobs;i ∼ N (Ytrue;i, ε2Y )
Xobs;i ∼ N (Xtrue;i, ε2X )
Ytrue;i ∼ N (µi , σ2)
µi = β1 + β2 × Xtrue;i
PriorsXtrue;i ∼ N (0,102)β1 ∼ N (0,104)β2 ∼ N (0,104)σ ∼ U(0,100)
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 12/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Astronomical application of Normal modelHubble residuals-data from Wolf, R. et al. arXiv:1602.02674
LINMIXJAGS
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 13/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Astronomical examples of non-Gaussian data
Gaussian models are powerful, but fall short in manysimple applications.
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 14/34

Beyond Gaussian
Generalized Linear Models

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Beyond Normal Linear RegressionThe tip of the iceberg
Non-exhaustive list of Regression Models:Linear/Gaussian models: x ∈ R
Generalized linear modelsGamma: x ∈ R>0Log-normal: x ∈ R>0Poisson: x ∈ Z≥0Negative-binomial: x ∈ Z≥0Beta: {0 < x < 1}Beta-binomial: {0 < x < 1}Bernoulli: x = 0 or x = 1
...
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 16/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Generalized Linear ModelsBeyond Gaussian
Generalized linear model is a natural extension of theGaussian linear regression that accounts for a moregeneral family of statistical distributions.
Linear ModelYi ∼ Normal(µi , σ
2)µi = β0 + β1x1 + · · ·+ βkxk
Generalized Linear ModelsY ∼ f (µi ,a(φ)V (µ))g(µ) = ηη = β0 + β1x1 + · · ·+ βkxk
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 17/34

Chapter II
Bernoulli Models

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Bernoulli Model
Describes a random variable whichtakes the value 1 with successprobability of p and 0 with failureprobability of 1− p.
Logistic Model
Yi ∼ Bernoulli(p) ≡ py (1− p)1−y
log p1−p = η
η = β0 + β1x1 + · · ·+ βkxk
Figure: Coin toss
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 19/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Bernoulli data
Figure: 3D visualization of a Bernoulli distributed data. Redpoints are the actual data and grey curve the fit.Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 20/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Normal vs Bernoulli model
Figure: Linear regression predicts fractional (or probability)values outside the [0,1] range.
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 21/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Bernoulli modelBivariate
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 22/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Bernoulli model in JAGS
Bernoulli ModelYi ∼ Bern(pi)log( pi
1−pi) = ηi
ηi = β0 + β1Xi
JAGSY [i] ∼ Bern(p[i])logit(p[i]) = η[i]η[i] = β[1] + β[2] ∗ X [i]
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 23/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Astronomical application of Bernoulli modelStar formation activity in early Universe, data from Biffi and Maio,arXiv:1309.2283
Bernoulli ModelSFR ∼ Bern(pi)log( pi
1−pi) = ηi
ηi = β0 + β1 log xmol+β2(log xmol)
2 +β3(log xmol)
3
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 24/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Astronomical application of Bernoulli modelStar formation activity in early Universe, data from Biffi and Maio,arXiv:1309.2283, see also de Souza et al. arxiv.org/abs/1409.7696
Bernoulli ModelSFR ∼ Bern(pi)log( pi
1−pi) = ηi
ηi = β0 + β1 log xmol+β2(log xmol)
2 +β3(log xmol)
3
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 25/34

Chapter III
Count Models

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Poisson ModelsNumber of events
Figure: 3D visualization of a Poisson distributed data.
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 27/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Poisson ModelsNumber of events
The Poisson distribution model the number of times anevent occurs in an interval of time or space.
Linear ModelsY ∼ Normal(µ, σ2)µ = β0 + β1x1 + · · ·+ βkxk
Poisson ModelY ∼ Poisson(µ) ≡ µye−µ
y!log(µ) = ηη = β0 + β1x1 + · · ·+ βkxk
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 28/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Poisson modelMean equals variance
Although traditional, it is rarely useful in real situations.
Figure: Poisson distributed data
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 29/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Negative binomial modelVariance exceeds the sample mean
The NB distribution can be seen as a Poisson distribution,where the mean is itself a random variable, distributed asa gamma distribution.
Negative Binomialdistribution
Γ(y+θ)Γ(θ)Γ(y+1)
(θ
µ+θ
)θ (1− θ
µ+θ
)y
Mean = µ Var = µ+ µ2
θ
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 30/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Negative Binomial modelSynthetic data
Accounts for Poisson over-dispersion
Figure: Negative binomial distributed data
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 31/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Astronomical application of COUNT modelsGlobular Cluster Population, see R. S. de Souza, et al. MNRAS, 453, 2,1928, 2015
Figure: Globular Cluster population as a function of the galaxybrightness
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 32/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
Final Remarks
Generalized linear models are a cornerstone of modernstatistics, but nearly Terra incognita in astronomicalinvestigations.Recent examples of GLM applications in astronomy arephoto-z (Gamma-distributed; Elliott et al., 2015), GCspopulation (NB-distributed; de Souza at al. 2015), AGNactivity (Bernoulli-distributed; Souza et al. 2016).
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 33/34

GaussianModels
GLMs
Bernoulli Models
COUNT Models
Final Remarks
References
References
R. S. de Souza, M. L. Dantas, et al. arXiv:1603.06256R. S. de Souza, E. Cameron, et al. A&C, 12, 21, 2015J. Elliott, R. S. de Souza, et al. A&C, 10, 6, 2015R. S. de Souza, J. M. Hilbe, et al. MNRAS, 453, 2,1928, 2015J. Hilbe, R. S. de Souza and E. E. O. Ishida, BayesianModels for Astrophysical data, Cambridge UniversityPress, in prepJ. Hilbe, Practical Guide to Logistic Regression,Chapman and Hall/CRC, 2015S. Andreon & B. Weaver, Bayesian Methods for thePhysical Sciences, Springer, 2015
Rafael S. de Souza Bayesian Models for Astronomy May 24, 2016 34/34