Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser,...

28
Basic Magnetism Thorsten Glaser, University of Münster 1 Basic Magnetism 1. Paramagnetism and Diamagnetism (macroscopic) external magnetic field H r diamagnetic paramagnetic sample sample B r : magnetic induction (magnetic field intensity inside sample) M 4 H B r r r π + = M r : intensity of magnetization (magnetic moment µ r / unit volume) B i < B o B i > B o B i = µ r • B o µ r : relative magnetic permeability µ r < 1 µ r > 1 B i = B o + B‘ B‘ = χ v • B o χ v : volume susceptibility (unit less) χ v < 0 χ v > 0

Transcript of Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser,...

Page 1: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

1

Basic Magnetism 1. Paramagnetism and Diamagnetism (macroscopic) external magnetic field H

r

diamagnetic paramagnetic sample sample Br

: magnetic induction (magnetic field intensity inside sample) M4HBrrr

π+=

Mr

: intensity of magnetization (magnetic moment µr / unit volume)

Bi < Bo Bi > Bo Bi = µr • Bo µr: relative magnetic permeability µr < 1 µr > 1 Bi = Bo + B‘ B‘ = χv • Bo χv: volume susceptibility (unit less) χv < 0 χv > 0

Page 2: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

2

measurement: Faraday balance, SQUID, ...

χmmes: molar susceptibility

χm

mes = χmpara + χm

dia χmdia from tables, Pascal’s constants

χχχχm

para = χmmes - χm

dia 2. Paramagnetism 2.1. Microscopic interpretation

♦ must relate macroscopic susceptibility to the magnetic dipole moments µr of NA molecules

classical

♦ total energy of system lowered by external magnetic field

H∂∂−= E

M

→ sample attracted into field

Boltzman distribution

Page 3: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

3

quantum mechanics ♦ molecule with energy levels En (n = 1, 2, ...) in the presence of

magnetic field Hr

→ microscopic magnetization µn

Hn

∂∂−= E

macroscopic molar magnetization Mm by partition function: (no approximation)

−⋅

∂∂−

=

n

n

n

nn

Am

kT

EkT

E

H

E

NMexp

exp

H∂∂= m

mMχ

in a weak field: χm is independent of H

Hm

mM=χ

2.2. The van Vleck equation

approximation: )...(2)2()1()0( +++= HEHEEE nnnn

)...(2H

)2()1( −−−=∂∂−= HEEE

nnn

( )

++−

++−⋅−−=

n

nnn

n

nnnnn

Am

kT

HEHEE

kT

HEHEEHEE

NM2)2()1()0(

2)2()1()0()2()1(

exp

exp2

Page 4: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

4

further approximations:

♦ 1⟨⟨kT

H

♦ xx +≈1)exp( for 1⟨⟨x

♦ for 00 →⇒→ MH ( )∑ =

−⋅−

n

nn kT

EE 0exp

)0()1(

♦ 02)2( ≈HEn

♦ 0)1()2( ≈nn EE

−⋅

⋅⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

NHM)0(

)0()2(

2)1(

exp

exp2

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

• need energies of the system under investigation • plug into equation (Van Vleck or - better - the partition function) • calculate χm • compare to experiment and gain insight into the electronic

structure of the system under investigation

Page 5: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

5

2.3. S = ½ system, Zeeman effect, Curie law free electron spin S = ½ ms = +1/2, ms = -1/2,

determined: 2

S und Sz

undetermined: Sx und Sy

zSgB ˆˆBH µ=

SS

SSSz

mSSSmSS

mSmmSS

,)1(,ˆ

,,ˆ

2 +=

=

2

1,

2

1

2

1

2

1,

2

1ˆ ∗= gBSgB z BB µµ 2

1,

2

1 gBBµ

21

2

1,

2

1

2

1

2

1,

2

1ˆ −

−∗=− gBSgB z BB µµ

2

1,

2

1 − gBBµ2

1−

Page 6: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

6

Bµ ⋅−=E

♦ gBME Sn Bµ= plug into Van Vleck equation

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

0,,0; )2()1()0(2)2()1()0( ===++= nBSnnnnnn EgMEEBEBEEE µ

( )nnni

S

gM

kT

N n

ni

S

SMBS

A S )1)(12(12 3

12

2

++=+

⋅= ∑∑

−=

+

−= using

µχ

)1(3

mit)1(3

2222 +⋅==+⋅= SSgk

NC

T

CSSg

kT

NB

AB

A µµχ

Curie law

µ = -µB

µ = µB

Page 7: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

7

♦ effective magnetic moment, µeff:

)1(827915.23

2+=⋅⋅=⋅⋅

⋅= SSgTT

N

ke

BAB

eff χχµµ

µ

spin-only !!! ♦ graphical representation calculated for S = ½ and g = 2.00

S χT / cm3 K mol-1 µeff / µB 1/2 0.375 1.73 1 1.000 2.83 3/2 1.876 3.87 2 3.001 4.90 5/2 4.377 5.92

Page 8: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

8

2.4. Saturation effects and Brillouin function

♦ general isotropic system with spin state S

gBME S Bµ= plug into the partition function for Mm

( ) ( )[ ] ( )S

SxSxB

kT

BgxxBSgNM

kT

BMg

kT

BMgM

gNM

x

S

BSBAm

M

sB

M

sBs

BAm

s

s

221

21

21 cothcoth

)(

)(

....

exp

exp

−++=

=⋅=

−⋅

−=∑

with

withµµ

µ

µ

µ

♦ low x values: linear - Curie behavior Note: Curie law: BMm ∝

♦ high x values: saturation - only Ms = - S populated

Page 9: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

9

2.5. Zero-field splitting: SO coupling in system < cubic symmetry

S = 5/2

mS = ± 1/2

mS = ± 3/2

mS = ± 5/2

4D

2D

Ene

rgie

♦ zero-field spin Hamiltonian

( )( )( ) )ˆˆ(1ˆˆ 223

12yxz ESSD SSSH −++−=

♦ combined effect of so coupling and symmetry lowering:

from second order perturbation theory in λLS in D4h: 2

2

)10(

8

DqD

∆= λ

Page 10: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

10

2.6. Temperature Independent Paramagnetism TIP 2. Order Zeeman effect χm

mes = χmpara + χm

dia (χmpara: positive; χm

dia: negative)

χmpara = C / T + χTIP

χTIP positive !!! and small

♦ Example: CuII in octahedral symmetry

13622

molcm106710000

261.064.0410

4 −−⋅=⋅⋅==Dq

Nk BTIP

µχ

with 2BNµ =0.261 , 10 Dq in cm-1 and χ in cm3mol-1 (cgs

emu) compare to χm

para ~ 1500 cm3mol-1 at 300 K ♦ famous example: CoIII l.s. (d6) χTIP ~ 600 cm3mol-1 (S = 0) ♦ Note: χTIP is temperature independent in χ !!!! effects on µeff:

K 300 bei 2.1molcm10600828.2

molcm10600for

828.2828.2

136

136

Beff

TIP

eff

T

TconstTT

µµ

χ

χχµ

=⋅⋅=

⋅=

⋅=⋅=⋅=

−−

−−

Page 11: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

11

2.7. Complete treatment of mononuclear systems

( )( )( ) )ˆˆ(1ˆ

ˆˆˆˆ

223

12yxz

zzzyyyxxx

ESSD

SHgSHgSHg

SSS

H BBB

−++−+

++= µµµ

♦ diagonalization of the spin Hamiltonian matrix

⇒ energies

⇒ plug into equation for χm

⇒ fit parameters to experimental χm vs. T

⇒ interprete spin Hamiltonian parameters to gain insight into the electronic and thus geometric structure of the complex

♦ magnetization measurements: effects of zero-field splitting

example: S = 5/2, g = 2.00

D = 0 corresponds to Brillouin function

Page 12: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

12

♦ variable field - variable temperature (VTVH) measurements

⇒ in some cases, not only magnitude but also sign of zero-field

splitting accessible by bulk magnetization measurement 3. Intramolecular exchange couplings 3.1. Introduction

ex.: [CuII2(OAc)4(H2O)2]

Page 13: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

13

11.258.2)1()1( 2211 ==+++= gSSSSgeff forµ

but experiment:

at 0 K no magnetization → must have diamagnetic ground state antiferromagnetic coupling: ferromagnetic coupling:

Page 14: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

14

3.2. Heisenberg-Dirac-van Vleck (HDvV) Operator

212H SSJ−=

J < 0: antiferromagnetic J > 0: ferromagnetic

212121 ,...,1, SSSSSSSt −−++=

21 SSS +=t

( ) 212

22

12

212 2 SSSSSSS ++=+=t

( ) SSSSt )1(with 222

21

221

21 +=−−= SSSSSS

( )22

21

221 2H SSSSS −−−=−= tJJ

( ) 21212

22

12

21 ,,,,,,H SSSESSSJSSS tttt =−−−= SSS

( ) [ ])1()1()1( 2211 +−+−+−= SSSSSSJSE ttt

Page 15: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

15

♦ General Spin-System

( ) [ ]

( ) [ ] [ ]( ) ( ) [ ]

[ ] [ ] )1(22223

)23()(][1

)23()2)(1(1

][)1(

22

22

2

2

+−=−−−=−−−+−=

=++−−+−=−+=∆

++−=++−=+

+−=+−=

tttttt

tttttt

ttttt

ttttt

SJSJSSSSJ

SSJSSJSESEE

SSJSSJSE

SSJSSJSE

Lande Interval-Regel

Page 16: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

16

St=0

St=1

St=2

St=3

St=4

St=5-30 J

-20 J

-12 J

-6 J

-2 J

0

E

} splitting is not equidistant, but increases with increasing ST

♦ S1 = 5/2 and S2 = 5/2 (FeIII - FeIII) spin system

0 1, , ,2 ,3 ,4 5

,...,1,25

25

25

25

25

25

=

−−++=tS

( ) [ ]

( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ] JJSE

JJSE

JJSE

JJSE

JJSE

JSE

SSJSE

t

t

t

t

t

t

ttt

30)15(55

20)14(44

12)13(33

6)12(22

2)11(11

0)10(00

)1(

−=+−==−=+−==−=+−==−=+−==

−=+−===+−==

+−=

spin ladder

Page 17: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

17

♦ ex. FeIII - O - FeIII dimers (g = 2.00)

- OH2 bridge J ~ -2 cm-1 - OH- bridge J ~ -10 cm-1 - O2- bridge J ~ -100 cm-1

Magnetism - Structure - Relationship Why ? ⇒ mechanism of interaction

Page 18: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

18

3.3. Bleaney-Bowers Equations B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. 1952, A214, 451

Goal: equation for calculation of mχ as function of J and T,

simulation of measured temperature-dependent susceptibilities by using e. g. Excel

van Vleck equation: note: 1⟨⟨kT

H !!!

e.g.: CuIICuII dimer

2)2()1()0( HEHEEE nnnn ++=

Page 19: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

19

Bleaney-Bower equation for S1 = ½ , S2 = ½ system; other spin systems: C.J.O´Conner, Prog. Inorg. Chem. 1982, 29, 203-283

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

gEJEgBJE

EJEgBJE

gEJEgBJE

EEgBE

nnn

nnn

nnn

nnn

B)1(4

)0(4B4

)1(3

)0(3B3

B)1(2

)0(2B2

)1(1

)0(1B1

212

0202

212

0000

µµ

µ

µµ

µ

=−=⋅+−=

=−=⋅−−=

−=−=⋅−−=

==⋅+=

===

===

===

===

+

+

+

+

+

+

−⋅

⋅=

kT

J

kT

J

kT

J

kT

kT

J

kT

g

kT

J

kTkT

J

kT

g

kTkTN

BB

Am 2exp

2exp

2exp

0exp

2exp

2exp

02exp

0exp

0 2222 µµ

χ

⋅+

+

⋅=

kT

J

kT

J

kT

g

kT

J

kT

g

N

BB

Am 2exp31

2exp

2exp

2222 µµ

χ

⋅+

⋅=

kT

JkT

J

kT

gN BAm 2

exp31

2exp222µχ

Page 20: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

20

4. Super Exchange Mechanism 4.1. Fundamental Considerations

interactions between paramagnetic centers

through space through bonds dipolar spin-spin electrostatic interactions interactions (magnetic interaction, (not a magnetic interaction relative small, r-3, < 1 cm-1) relative large, 1 – 200 cm-1)

super exchange direct exchange through overlap direct overlap of metal d-orbitals of metal d-orbitals with orbitals of the bridging ligands

Page 21: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

21

model compound: CuII(A) CuII(B)

ψA

Cu

B

Cu

B

L

L

L

L

ψB

active orbitals (contain some ligand character) neglect all other orbitals (active orbital approximation) ψA ψB

4.2. Anderson Model orthogonalization of the two localized orbitals ψA and ψB:

a b

Page 22: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

22

• ground state configuration:

turn on electron-electron Coulomb repulsion:

1GC

e- -e- a1b1 2 k

3GC

"Hund’s in the molecule": ferromagnetic interaction as in O2 • charge transfer excited configurations

excited configurations by intramolecular electron transfer

a b

a b

CuI CuIII CuIII CuI

− these configurations are – of course – at higher energy − there are only singlet configurations − turn on electron-electron Coulomb repulsion − symmetrize

a b

Page 23: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

23

ab

aa oder bb

U

GC

CTC

3Γu

1Γg

1Γu

1Γg

-2J

3Γu

1Γg

1Γu

1Γg

2k4β2

U-

UkJ

JJJ antiferroferro

244

β−=

+=

potential exchange kinetic exchange β: transfer intergral: transfer of an electron from one site to the

other through bonds

−Ψ

−ΨΨΨ=

BA

BAmit

B

ABA

:

:Hβ

Page 24: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

24

the stronger the bonds, the larger β, the larger the

antiferromagnetic contribution

S−∝β

S: overlap integral

are the magnetic orbitals orthogonal → S = 0 → β = 0

only ferromagnetic contribution remains

4.3. Goodenough-Kanomori-Rules

1. The overlap of magnetic orbitals of two metal centers with an overlap integral S ≠ 0 yields an antiferromagnetic interaction.

2. Are the overlapping magnetic orbitals orthogonal, the overlap S = 0 and the interaction is ferromagnetic.

3. The non-orthogonal overlap of a magnetic orbital of one metal center with a filled or empty orbital of the other metal center yields a ferromagnetic interaction

4.4. Kahn’s Model of the Natural Magnetic Orbitals NMO’s − exchange interactions represents the limit of weak chemical

bonding

− the chemist like to explain chemical bonding by the overlap of localized orbitals

− orthogonalized magnetic orbitals are not localized

Page 25: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

25

natural magnetic orbitals:

NMO a is the singly NMO b is the singly occupied MO occupied MO in the AX fragment in the XB fragment

Exchange coupling arises of overlap of NMO’s:

SkJ β42 += − ET excited states of Anderson’s model energetically too high

(e.g. CuICuIII, FeIIFeIV); here: ground configuration phenomenon

− strong antiferromagnetic coupling would need lower energy excited states

Page 26: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

26

4.5. Examples Fe-OHn-Fe systems

Fe

O

Fe

1.8 Å

Fe

HO

Fe

2.0 Å

Fe

H2O

Fe

2.2 Å

J = -100 cm-1 -10 cm-1 -2 cm-1

Fe 3d

O 2p

Fe 3d

O 2p

Fe 3d

O 2p

Page 27: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

27

Cu(OH)2Cu Hatfield and Hodgson

magneto-structural correlation

Cu

HO

Cu

OH

N

N

N

N

2+

α

Cu(OH)2Cu complex Cu-O-Cu / ° J / cm-1

[Cu(bipy)OH]2(NO3)2 95.5 +172

[Cu(bipy)OH]2(ClO4)2 96.6 +93

[Cu(bipy)OH]2(SO4).5H2O 97 +49

β-[Cu(dmaep)OH]2(ClO4)2 98.4 -2.3

[Cu(eaep)OH]2(ClO4)2 98.8; 99.5 -130

[Cu(2miz)OH]2(ClO4)2.2H2O 99.4 -175

α-[Cu(dmaep)OH]2(ClO4)2 100.4 -200

[Cu(tmen)OH]2(ClO4)2 102.3 -306

[Cu(tmen)OH]2(NO3)2 101.9 -367

α-[Cu(teen)OH]2(ClO4)2 103.0 -410

β-[Cu(teen)OH]2(ClO4)2 103.7 -469

[Cu(tmen)OH]2Br2 104.1 -509

Page 28: Basic Magnetism - uni-bielefeld.deschnack/molmag/material/... · Basic Magnetism Thorsten Glaser, University of Münster 10 2.6. Temperature Independent Paramagnetism TIP 2. Order

Basic Magnetism Thorsten Glaser, University of Münster

28

94 96 98 100 102 104-600

-500

-400

-300

-200

-100

0

100

200

J

/ cm

-1

Cu-O-Cu / °

J = -74 α + 7270

J = 0 for α = 97.5°

J < 0 for α > 97.5° antiferromagnetic

J > 0 for α < 97.5° ferromagnetic

SkJ β42 += α = 90° kJS 204 ==β

α Sβ4 stronger antiferromagnetic contribution