Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field...

28
Basic Magnetism Thorsten Glaser, University of Münster 1 Basic Magnetism 1. Paramagnetism and Diamagnetism (macroscopic) external magnetic field H r diamagnetic paramagnetic sample sample B r : magnetic induction (magnetic field intensity inside sample) M 4 H B r r r π + = M r : intensity of magnetization (magnetic moment µ r / unit volume) B i < B o B i > B o B i = µ r • B o µ r : relative magnetic permeability µ r < 1 µ r > 1 B i = B o + B‘ B‘ = χ v • B o χ v : volume susceptibility (unit less) χ v < 0 χ v > 0

Transcript of Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field...

Page 1: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

1

Basic Magnetism 1. Paramagnetism and Diamagnetism (macroscopic) external magnetic field H

r

diamagnetic paramagnetic sample sample Br

: magnetic induction (magnetic field intensity inside sample) M4HBrrr

π+=

Mr

: intensity of magnetization (magnetic moment µr / unit volume)

Bi < Bo Bi > Bo Bi = µr • Bo µr: relative magnetic permeability µr < 1 µr > 1 Bi = Bo + B‘ B‘ = χv • Bo χv: volume susceptibility (unit less) χv < 0 χv > 0

Page 2: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

2

measurement: Faraday balance, SQUID, ...

χmmes: molar susceptibility

χm

mes = χmpara + χm

dia χmdia from tables, Pascal’s constants

χχχχm

para = χmmes - χm

dia 2. Paramagnetism 2.1. Microscopic interpretation

♦ must relate macroscopic susceptibility to the magnetic dipole moments µr of NA molecules

classical

♦ total energy of system lowered by external magnetic field

H∂∂−= E

M

→ sample attracted into field

Boltzman distribution

Page 3: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

3

quantum mechanics ♦ molecule with energy levels En (n = 1, 2, ...) in the presence of

magnetic field Hr

→ microscopic magnetization µn

Hn

∂∂−= E

macroscopic molar magnetization Mm by partition function: (no approximation)

−⋅

∂∂−

=

n

n

n

nn

Am

kT

EkT

E

H

E

NMexp

exp

H∂∂= m

mMχ

in a weak field: χm is independent of H

Hm

mM=χ

2.2. The van Vleck equation

approximation: )...(2)2()1()0( +++= HEHEEE nnnn

)...(2H

)2()1( −−−=∂∂−= HEEE

nnn

( )

++−

++−⋅−−=

n

nnn

n

nnnnn

Am

kT

HEHEE

kT

HEHEEHEE

NM2)2()1()0(

2)2()1()0()2()1(

exp

exp2

Page 4: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

4

further approximations:

♦ 1⟨⟨kT

H

♦ xx +≈1)exp( for 1⟨⟨x

♦ for 00 →⇒→ MH ( )∑ =

−⋅−

n

nn kT

EE 0exp

)0()1(

♦ 02)2( ≈HEn

♦ 0)1()2( ≈nn EE

−⋅

⋅⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

NHM)0(

)0()2(

2)1(

exp

exp2

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

• need energies of the system under investigation • plug into equation (Van Vleck or - better - the partition function) • calculate χm • compare to experiment and gain insight into the electronic

structure of the system under investigation

Page 5: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

5

2.3. S = ½ system, Zeeman effect, Curie law free electron spin S = ½ ms = +1/2, ms = -1/2,

determined: 2

S und Sz

undetermined: Sx und Sy

zSgB ˆˆBH µ=

SS

SSSz

mSSSmSS

mSmmSS

,)1(,ˆ

,,ˆ

2 +=

=

2

1,

2

1

2

1

2

1,

2

1ˆ ∗= gBSgB z BB µµ 2

1,

2

1 gBBµ

21

2

1,

2

1

2

1

2

1,

2

1ˆ −

−∗=− gBSgB z BB µµ

2

1,

2

1 − gBBµ2

1−

Page 6: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

6

Bµ ⋅−=E

♦ gBME Sn Bµ= plug into Van Vleck equation

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

0,,0; )2()1()0(2)2()1()0( ===++= nBSnnnnnn EgMEEBEBEEE µ

( )nnni

S

gM

kT

N n

ni

S

SMBS

A S )1)(12(12 3

12

2

++=+

⋅= ∑∑

−=

+

−= using

µχ

)1(3

mit)1(3

2222 +⋅==+⋅= SSgk

NC

T

CSSg

kT

NB

AB

A µµχ

Curie law

µ = -µB

µ = µB

Page 7: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

7

♦ effective magnetic moment, µeff:

)1(827915.23

2+=⋅⋅=⋅⋅

⋅= SSgTT

N

ke

BAB

eff χχµµ

µ

spin-only !!! ♦ graphical representation calculated for S = ½ and g = 2.00

S χT / cm3 K mol-1 µeff / µB 1/2 0.375 1.73 1 1.000 2.83 3/2 1.876 3.87 2 3.001 4.90 5/2 4.377 5.92

Page 8: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

8

2.4. Saturation effects and Brillouin function

♦ general isotropic system with spin state S

gBME S Bµ= plug into the partition function for Mm

( ) ( )[ ] ( )S

SxSxB

kT

BgxxBSgNM

kT

BMg

kT

BMgM

gNM

x

S

BSBAm

M

sB

M

sBs

BAm

s

s

221

21

21 cothcoth

)(

)(

....

exp

exp

−++=

=⋅=

−⋅

−=∑

with

withµµ

µ

µ

µ

♦ low x values: linear - Curie behavior Note: Curie law: BMm ∝

♦ high x values: saturation - only Ms = - S populated

Page 9: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

9

2.5. Zero-field splitting: SO coupling in system < cubic symmetry

S = 5/2

mS = ± 1/2

mS = ± 3/2

mS = ± 5/2

4D

2D

Ene

rgie

♦ zero-field spin Hamiltonian

( )( )( ) )ˆˆ(1ˆˆ 223

12yxz ESSD SSSH −++−=

♦ combined effect of so coupling and symmetry lowering:

from second order perturbation theory in λLS in D4h: 2

2

)10(

8

DqD

∆= λ

Page 10: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

10

2.6. Temperature Independent Paramagnetism TIP 2. Order Zeeman effect χm

mes = χmpara + χm

dia (χmpara: positive; χm

dia: negative)

χmpara = C / T + χTIP

χTIP positive !!! and small

♦ Example: CuII in octahedral symmetry

13622

molcm106710000

261.064.0410

4 −−⋅=⋅⋅==Dq

Nk BTIP

µχ

with 2BNµ =0.261 , 10 Dq in cm-1 and χ in cm3mol-1 (cgs

emu) compare to χm

para ~ 1500 cm3mol-1 at 300 K ♦ famous example: CoIII l.s. (d6) χTIP ~ 600 cm3mol-1 (S = 0) ♦ Note: χTIP is temperature independent in χ !!!! effects on µeff:

K 300 bei 2.1molcm10600828.2

molcm10600for

828.2828.2

136

136

Beff

TIP

eff

T

TconstTT

µµ

χ

χχµ

=⋅⋅=

⋅=

⋅=⋅=⋅=

−−

−−

Page 11: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

11

2.7. Complete treatment of mononuclear systems

( )( )( ) )ˆˆ(1ˆ

ˆˆˆˆ

223

12yxz

zzzyyyxxx

ESSD

SHgSHgSHg

SSS

H BBB

−++−+

++= µµµ

♦ diagonalization of the spin Hamiltonian matrix

⇒ energies

⇒ plug into equation for χm

⇒ fit parameters to experimental χm vs. T

⇒ interprete spin Hamiltonian parameters to gain insight into the electronic and thus geometric structure of the complex

♦ magnetization measurements: effects of zero-field splitting

example: S = 5/2, g = 2.00

D = 0 corresponds to Brillouin function

Page 12: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

12

♦ variable field - variable temperature (VTVH) measurements

⇒ in some cases, not only magnitude but also sign of zero-field

splitting accessible by bulk magnetization measurement 3. Intramolecular exchange couplings 3.1. Introduction

ex.: [CuII2(OAc)4(H2O)2]

Page 13: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

13

11.258.2)1()1( 2211 ==+++= gSSSSgeff forµ

but experiment:

at 0 K no magnetization → must have diamagnetic ground state antiferromagnetic coupling: ferromagnetic coupling:

Page 14: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

14

3.2. Heisenberg-Dirac-van Vleck (HDvV) Operator

212H SSJ−=

J < 0: antiferromagnetic J > 0: ferromagnetic

212121 ,...,1, SSSSSSSt −−++=

21 SSS +=t

( ) 212

22

12

212 2 SSSSSSS ++=+=t

( ) SSSSt )1(with 222

21

221

21 +=−−= SSSSSS

( )22

21

221 2H SSSSS −−−=−= tJJ

( ) 21212

22

12

21 ,,,,,,H SSSESSSJSSS tttt =−−−= SSS

( ) [ ])1()1()1( 2211 +−+−+−= SSSSSSJSE ttt

Page 15: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

15

♦ General Spin-System

( ) [ ]

( ) [ ] [ ]( ) ( ) [ ]

[ ] [ ] )1(22223

)23()(][1

)23()2)(1(1

][)1(

22

22

2

2

+−=−−−=−−−+−=

=++−−+−=−+=∆

++−=++−=+

+−=+−=

tttttt

tttttt

ttttt

ttttt

SJSJSSSSJ

SSJSSJSESEE

SSJSSJSE

SSJSSJSE

Lande Interval-Regel

Page 16: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

16

St=0

St=1

St=2

St=3

St=4

St=5-30 J

-20 J

-12 J

-6 J

-2 J

0

E

} splitting is not equidistant, but increases with increasing ST

♦ S1 = 5/2 and S2 = 5/2 (FeIII - FeIII) spin system

0 1, , ,2 ,3 ,4 5

,...,1,25

25

25

25

25

25

=

−−++=tS

( ) [ ]

( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ] JJSE

JJSE

JJSE

JJSE

JJSE

JSE

SSJSE

t

t

t

t

t

t

ttt

30)15(55

20)14(44

12)13(33

6)12(22

2)11(11

0)10(00

)1(

−=+−==−=+−==−=+−==−=+−==

−=+−===+−==

+−=

spin ladder

Page 17: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

17

♦ ex. FeIII - O - FeIII dimers (g = 2.00)

- OH2 bridge J ~ -2 cm-1 - OH- bridge J ~ -10 cm-1 - O2- bridge J ~ -100 cm-1

Magnetism - Structure - Relationship Why ? ⇒ mechanism of interaction

Page 18: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

18

3.3. Bleaney-Bowers Equations B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. 1952, A214, 451

Goal: equation for calculation of mχ as function of J and T,

simulation of measured temperature-dependent susceptibilities by using e. g. Excel

van Vleck equation: note: 1⟨⟨kT

H !!!

e.g.: CuIICuII dimer

2)2()1()0( HEHEEE nnnn ++=

Page 19: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

19

Bleaney-Bower equation for S1 = ½ , S2 = ½ system; other spin systems: C.J.O´Conner, Prog. Inorg. Chem. 1982, 29, 203-283

−⋅

⋅=

n

n

n

nn

n

Am

kT

E

kT

EE

kT

E

N)0(

)0()2(

2)1(

exp

exp2

χ

gEJEgBJE

EJEgBJE

gEJEgBJE

EEgBE

nnn

nnn

nnn

nnn

B)1(4

)0(4B4

)1(3

)0(3B3

B)1(2

)0(2B2

)1(1

)0(1B1

212

0202

212

0000

µµ

µ

µµ

µ

=−=⋅+−=

=−=⋅−−=

−=−=⋅−−=

==⋅+=

===

===

===

===

+

+

+

+

+

+

−⋅

⋅=

kT

J

kT

J

kT

J

kT

kT

J

kT

g

kT

J

kTkT

J

kT

g

kTkTN

BB

Am 2exp

2exp

2exp

0exp

2exp

2exp

02exp

0exp

0 2222 µµ

χ

⋅+

+

⋅=

kT

J

kT

J

kT

g

kT

J

kT

g

N

BB

Am 2exp31

2exp

2exp

2222 µµ

χ

⋅+

⋅=

kT

JkT

J

kT

gN BAm 2

exp31

2exp222µχ

Page 20: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

20

4. Super Exchange Mechanism 4.1. Fundamental Considerations

interactions between paramagnetic centers

through space through bonds dipolar spin-spin electrostatic interactions interactions (magnetic interaction, (not a magnetic interaction relative small, r-3, < 1 cm-1) relative large, 1 – 200 cm-1)

super exchange direct exchange through overlap direct overlap of metal d-orbitals of metal d-orbitals with orbitals of the bridging ligands

Page 21: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

21

model compound: CuII(A) CuII(B)

ψA

Cu

B

Cu

B

L

L

L

L

ψB

active orbitals (contain some ligand character) neglect all other orbitals (active orbital approximation) ψA ψB

4.2. Anderson Model orthogonalization of the two localized orbitals ψA and ψB:

a b

Page 22: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

22

• ground state configuration:

turn on electron-electron Coulomb repulsion:

1GC

e- -e- a1b1 2 k

3GC

"Hund’s in the molecule": ferromagnetic interaction as in O2 • charge transfer excited configurations

excited configurations by intramolecular electron transfer

a b

a b

CuI CuIII CuIII CuI

− these configurations are – of course – at higher energy − there are only singlet configurations − turn on electron-electron Coulomb repulsion − symmetrize

a b

Page 23: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

23

ab

aa oder bb

U

GC

CTC

3Γu

1Γg

1Γu

1Γg

-2J

3Γu

1Γg

1Γu

1Γg

2k4β2

U-

UkJ

JJJ antiferroferro

244

β−=

+=

potential exchange kinetic exchange β: transfer intergral: transfer of an electron from one site to the

other through bonds

−Ψ

−ΨΨΨ=

BA

BAmit

B

ABA

:

:Hβ

Page 24: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

24

the stronger the bonds, the larger β, the larger the

antiferromagnetic contribution

S−∝β

S: overlap integral

are the magnetic orbitals orthogonal → S = 0 → β = 0

only ferromagnetic contribution remains

4.3. Goodenough-Kanomori-Rules

1. The overlap of magnetic orbitals of two metal centers with an overlap integral S ≠ 0 yields an antiferromagnetic interaction.

2. Are the overlapping magnetic orbitals orthogonal, the overlap S = 0 and the interaction is ferromagnetic.

3. The non-orthogonal overlap of a magnetic orbital of one metal center with a filled or empty orbital of the other metal center yields a ferromagnetic interaction

4.4. Kahn’s Model of the Natural Magnetic Orbitals NMO’s − exchange interactions represents the limit of weak chemical

bonding

− the chemist like to explain chemical bonding by the overlap of localized orbitals

− orthogonalized magnetic orbitals are not localized

Page 25: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

25

natural magnetic orbitals:

NMO a is the singly NMO b is the singly occupied MO occupied MO in the AX fragment in the XB fragment

Exchange coupling arises of overlap of NMO’s:

SkJ β42 += − ET excited states of Anderson’s model energetically too high

(e.g. CuICuIII, FeIIFeIV); here: ground configuration phenomenon

− strong antiferromagnetic coupling would need lower energy excited states

Page 26: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

26

4.5. Examples Fe-OHn-Fe systems

Fe

O

Fe

1.8 Å

Fe

HO

Fe

2.0 Å

Fe

H2O

Fe

2.2 Å

J = -100 cm-1 -10 cm-1 -2 cm-1

Fe 3d

O 2p

Fe 3d

O 2p

Fe 3d

O 2p

Page 27: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

27

Cu(OH)2Cu Hatfield and Hodgson

magneto-structural correlation

Cu

HO

Cu

OH

N

N

N

N

2+

α

Cu(OH)2Cu complex Cu-O-Cu / ° J / cm-1

[Cu(bipy)OH]2(NO3)2 95.5 +172

[Cu(bipy)OH]2(ClO4)2 96.6 +93

[Cu(bipy)OH]2(SO4).5H2O 97 +49

β-[Cu(dmaep)OH]2(ClO4)2 98.4 -2.3

[Cu(eaep)OH]2(ClO4)2 98.8; 99.5 -130

[Cu(2miz)OH]2(ClO4)2.2H2O 99.4 -175

α-[Cu(dmaep)OH]2(ClO4)2 100.4 -200

[Cu(tmen)OH]2(ClO4)2 102.3 -306

[Cu(tmen)OH]2(NO3)2 101.9 -367

α-[Cu(teen)OH]2(ClO4)2 103.0 -410

β-[Cu(teen)OH]2(ClO4)2 103.7 -469

[Cu(tmen)OH]2Br2 104.1 -509

Page 28: Basic Magnetism - uni-bielefeld.deobelix.physik.uni-bielefeld.de/~schnack/molmag/...2.5. Zero-field splitting: SO coupling in system < cubic symmetry S = 5/2 m S = ± 1/2 m S = ±

Basic Magnetism Thorsten Glaser, University of Münster

28

94 96 98 100 102 104-600

-500

-400

-300

-200

-100

0

100

200

J

/ cm

-1

Cu-O-Cu / °

J = -74 α + 7270

J = 0 for α = 97.5°

J < 0 for α > 97.5° antiferromagnetic

J > 0 for α < 97.5° ferromagnetic

SkJ β42 += α = 90° kJS 204 ==β

α Sβ4 stronger antiferromagnetic contribution