Basic human requirements - MIT OpenCourseWare · PDF fileBasic human requirements C 20 oo C...
date post
05-Nov-2019Category
Documents
view
1download
0
Embed Size (px)
Transcript of Basic human requirements - MIT OpenCourseWare · PDF fileBasic human requirements C 20 oo C...
Basic human requirements
35o C20o C0o C
280 C
310 C
320 C
340 C
360 C
370 C
Room Temperature
Core Temperature
Image by MIT OCW.
Black body at 800 K
Solar radiation at atmosphere’s boundaries
0 0.5 1.0 1.5 2.0 2.5 0
0.5
1.0
1.5
2.0
-
-
-
Wavelength [μm]
visibleUV IR
Clear sky, sun at 30° above the horizon
Solar radiation at sea level
-
-
Energy [kW/(m²·μm)]
Solar radiation
Solar radiation
Ground Reflection 5%
Cloud Reflection 20%+
Atmospheric Absorption & Scattering 25%
Image by MIT OCW.
Solar radiation Earth’s orbit
seasons
Equinox March 22
Summer solstice June 21
Equinox Sept 21
Winter solstice Dec 21
Image by MIT OCW.
Earth’s orbit seasons latitude and elevation’s impact
Solar course
0
500
1000
1500
2000
2500
0 10 20 30 40 50 60 70
Latitude du lieu
[k W
h/ m
2 an
] Dakar Cairo
HelsinkiParis Hambourg
Carpentras
Rom e
Lisbon
Alger
yr ] 0
200
400
600
800
1000
1200
1400
0 10 20 30 40 50 60 70 80 90
0 m 500 m 3000 m
1385 [W/m2]
Height above sea level
η [°]
Parameters in incoming radiation
Earth’s orbit seasons latitude and elevation’s impact earth’s inertia
a 16°F difference for
the same solar elevation
Critical for solar protections
Solar elevation
Average outside temperature
21 juin
0o
30o
60o
90o h
23 sept 21 mars 21 juin
0o
10o
20o
oC T
57o F
41 o F
22 dec
Image by MIT OCW.
cc_mphato Line
cc_mphato Line
Solar radiation
Earth’s orbit seasons
day
Solar radiation
Apparent movement of the sun lococentric (local) referential
elevation η latitude L
azimuth φ declination δ
solar time Hsolar
ηnoon = 90° - L + δ
δ
N
Z
h
↔
Zenith
Azimuth
S'
Equatorial Plane
N
N'
Latitude
Elevation
Image by MIT OCW.
Image by MIT OCW.
Solar radiation
Apparent movement of the sun lococentric (local) referential
Image by MIT OCW.
Solar radiation
Apparent movement of the sun lococentric (local) referential cylindrical projection
0 30 60 90 120 150 180 150 120 90 60 30 0
10 20
30
40
50
60
70
80
90
NS5 h
6 h
7 h
8 h
9 h
10 h
11 h 12 h
Latitude: 49o
F E G D H
C I B J
A K L
13 h 14 h
h
S
W
E a
N
15 h
16 h 17 h
18 h
19 hN
Sun
Image by MIT OCW.
Solar radiation
Apparent movement of the sun lococentric (local) referential
cylindrical projection
Solar radiation
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Zenith
Nadir
Sun
Image by MIT OCW.
Solar radiation Apparent movement of the sun
lococentric (local) referential
cylindrical projection
stereographic projection
21 Juin
23 Sept. - 21 Mar
21 Dec.
N
0o 15o
30 o
45 o
60 o 7 5 o2
8 5 o
3 00 o
31
5 o
33 0 o
345 o
180o 1 65 o
15 0 o
13 5 o
1 2 0 o
1 0 5 o2
5 5 o
2 4 0 o
225 o
210 o 195o
90o270o
Ja n 2 1 1 8
16
14 12 10
8
6
M ay 2 6
Ju l 2 1
A ug 31
A pr il 14
Sep 23 Ma rs 21
Oct 17 Feb 26
Nov 27 Jan 1 6
Dec 21
10o
47 o N
20o
30o
40o
50o
60o
70o
80o
90o+
Images by MIT OCW.
cc_mphato Line
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Solar radiation
60o
120o
45o
30o
15o N
345o
330o
315o
J F M
A
M J
9
10
11 12 13
14 15
16
19
18
J A
S O
N
6
D
135o 150o 165 o 180o 195o 210o 225o
240o 255o
270o
285o
300o
17
105o
90o
75o
7
8
Image by MIT OCW.
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Solar radiation
Site plan
D
A
36'
A
E
C
B
tan E = y/x
y 20 '
60
30
0
120
150
180
60
12 0
June 2 1 J
ul 21 / May
21 Jul
21/ Ma
y 21
w ES
ep 21
/ M ar
21 N ov
21 /Ja
n 2 1
5' 10' 15' 20' 25'
+
+
30 150
60
12 0
11
1 2
10 3
9
4
8
5
7
6
6
78
11
1 2
103
9
4
8
5
7
6
6
7 5
Oc t 2
1/F eb
21
De c 2
1
40
150
0 180
30150
12 0 60
Jul 21/
Ma y 2
1 Jun
21
Dec 21 Nov 21
/Jan 21
Oct 21 /Feb 21
Sep t 21
/M ar2
1
Au g 2
1/A pr 2
1
W E
80o 70o
60o
50o
40o 30o 20o
10o
Image by MIT OCW.
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Solar radiation
Horizontal sun protections
0 1010 20 30
40 50
60
70
80
90
20 30
40 50
60
70
80
90
40 50
80 70 60
Image by MIT OCW.
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Solar radiation
Vertical sun protections
0 1010 20
30
40
50
60
70
80
90
20 30
40
50
60
70
80
90
40 50
80 70 60
30 20
10
Image by MIT OCW.
Apparent movement of the sun lococentric (local) referential
cylindrical projection
stereographic projection
Solar radiation
Combined protection
20
10
20
30
40
50
60
70
80
10
30
40 50 60 70 80
F G
6 H
E
100
110
120
130
140
150160
I
J
L
260
280
A
W
290
300
310
330
320
340
350 F
N
8
10 12
14
16
18
E
D
C
B
3
250
240
23 0
22 0
21 0
20 0
19 0 S
170
+
-
Image by MIT OCW.
Solar radiation
Daylight
Image by MIT OCW.
Sky type Clear Milky-white Partly cloudy Whitish Light grey Dark grey Dark
Sun Shiny Clear Partly veiled Veiled Still visible Barely visible Invisible
Global radiation
[W/m2] 800 to 900 600 to 800 300 to 700 250 to 400 200 to 300 100 to 200 20 to 100
Diffuse component 10 to 20% 20 to 40% 20 to 50% 40 to 80% 50 to 100% 75 to 100% 100%
Solar radiation
Daylight
Climate Atmospheric phenomena (global climate)
Wind flows and Coriolis force
Prevailing westerlies
HH
H
H
H
H
H
H
L L L
L L
L
W
W
W
E
E
E
E
Subpolar low-pressure belt
Subpolar low-pressure belt
Subtropical high-pressure belt
Subtropical high-pressure belt
Intratropical convergences
Polar high
South Pole
Tropopause
North Pole
Cold front E = Easterly windsWarm front
Convergence Warm wind
Cold wind H = High pressure L = Low pressure
W = Westerly winds
LLLow pressure
High pressure High pressure
Wind flow from high to low pressure zones
Images by MIT OCW.