Bases de la technique en courant alternatif · E-mail : [email protected] L'acheteur obtient un...

58
Livre d’exercices Avec CD-ROM Festo Didactic 567221 fr Bases de la technique en courant alternatif G U R IR C IC IL L I P S QL 90° φ QC Y 2 Y 1

Transcript of Bases de la technique en courant alternatif · E-mail : [email protected] L'acheteur obtient un...

  • Livre d’exercices

    Avec CD-ROM

    Festo Didactic

    567221 fr

    Bases de la technique en courant alternatif

    G U R

    IR

    C

    IC IL

    L

    I P

    S

    QL

    90°φ

    QC

    Y2

    Y1

  • Référence : 567221

    Édition : 10/2010

    Auteur : Christine Löffler

    Graphiques : Thomas Ocker, Doris Schwarzenberger

    Mise en page : 09/2011, Susanne Durz

    © Festo Didactic GmbH & Co. KG, 73770 Denkendorf, Allemand, 2013

    Internet : www.festo-didactic.com

    E-mail : [email protected]

    L'acheteur obtient un droit d'utilisation simple, non exclusif, non limité dans le temps et restreint

    géographiquement au site /siège de l'acheteur comme suit.

    L'acheteur est autorisé à utiliser les contenus de l'ouvrage pour la formation continue du personnel du site

    et à utiliser aussi des éléments du contenu pour la réalisation de son propre matériel de formation continue

    du personnel de son site, à condition d'en mentionner la source, et à les dupliquer pour la formation

    continue sur le site. Pour les écoles/universités et centres de formation, ce droit d'utilisation englobe

    l'utilisation durant les cours par les élèves, stagiaires et étudiants du site.

    En est exlcu dans tous les cas le droit de publication ainsi que de chargement et d'utilisation sur intranet ou

    Internet ou sur plateformes LMS et bases de données telles que Moodle qui permettent à un grand nombre

    d'utilisateurs d'y accéder en dehors du site de l'acheteur.

    Tous les autres droits de transmission, de reproduction, de duplication, d'édition, de traduction, de

    microfilmage ainsi que le transfert, le stockage et le traitement intégral ou partiel sur des systèmes

    électroniques présupposent l'accord préalable de Festo Didactic GmbH & Co. KG.

  • © Festo Didactic GmbH & Co. KG 567221 III

    Table des matières

    Utilisation conforme ______________________________________________________________________ IV Avant-propos ____________________________________________________________________________ V Introduction ____________________________________________________________________________ VII Instructions et consignes de sécurité _______________________________________________________ VIII Ensemble de formation « Bases du courant alternatif » (TP 1011) _________________________________ IX Objectifs pédagogiques – Bases du courant alternatif ____________________________________________X

    Correspondance entre objectifs pédagogiques et travaux pratiques – Bases du courant alternatif ________ XI

    Jeu d’équipement ________________________________________________________________________ XIII

    Correspondance entre composants et travaux pratiques – Bases du courant alternatif _______________ XVII

    Notes à l'intention de l'enseignant ou du formateur ___________________________________________ XVIII

    Structure des travaux pratiques ____________________________________________________________ XIX

    Désignation des composants ______________________________________________________________ XIX

    Contenu du CD-ROM _____________________________________________________________________ XX

    Travaux pratiques et corrigés

    TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif _______________ 1

    TP 2 : Vérification du comportement en puissance d'un condensateur ___________________________ 19

    TP 3 : Sélection d'une capacité appropriée à un filtre passe-haut ________________________________ 39

    TP 4 : Réduction des pics de tension à la commutation de la bobine d'un distributeur _______________ 51

    TP 5 : Détermination de l'inductance d'une bobine ___________________________________________ 65

    TP 6 : Étude par la mesure de circuits RC ___________________________________________________ 77

    TP 7 : Relevé de la réponse en fréquence de filtres passe-haut et passe-bas _______________________ 89

    TP 8 : Compensation de la puissance réactive d'un moteur électrique ___________________________ 101

    TP 9 : Sélection d'un couplage triphasé d'un radiateur mural à accumulation _____________________ 113

    TP 10 : Génération de différents niveaux de puissance sur un radiateur __________________________ 127

    Travaux pratiques et fiches de travail

    TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif _______________ 1

    TP 2 : Vérification du comportement en puissance d'un condensateur ___________________________ 19

    TP 3 : Sélection d'une capacité appropriée à un filtre passe-haut ________________________________ 39

    TP 4 : Réduction des pics de tension à la commutation de la bobine d'un distributeur _______________ 51

    TP 5 : Détermination de l'inductance d'une bobine ___________________________________________ 65

    TP 6 : Étude par la mesure de circuits RC ___________________________________________________ 77

    TP 7 : Relevé de la réponse en fréquence de filtres passe-haut et passe-bas _______________________ 89

    TP 8 : Compensation de la puissance réactive d'un moteur électrique ___________________________ 101

    TP 9 : Sélection d'un couplage triphasé d'un radiateur mural à accumulation _____________________ 113

    TP 10 : Génération de différents niveaux de puissance sur un radiateur __________________________ 127

  • IV © Festo Didactic GmbH & Co. KG 567221

    Utilisation conforme

    L'ensemble de formation « Bases de l'électrotechnique/électronique » ne doit s'utiliser que :

    pour l'usage auquel il est destiné, c'est-à-dire dans le cadre de l'enseignement et de la formation, et en parfait état sur le plan de la sécurité.

    Les composants de l'ensemble de formation sont construits conformément à l’état de l’art et aux règles

    techniques reconnues en matière de sécurité. Leur utilisation peut néanmoins mettre en danger la vie et la

    santé de l’utilisateur ou de tiers ainsi qu'affecter l'intégrité des composants eux-mêmes.

    Le système de formation de Festo Didactic est exclusivement destiné à la formation initiale et continue dans

    le domaine de l’automatisation et de la technique. Il incombe à l’établissement de formation et/ou aux

    formateurs de faire respecter par les étudiants les consignes de sécurité décrites dans le présent manuel de

    travaux pratiques.

    Festo Didactic décline par conséquent toute responsabilité quant aux dommages causés aux étudiants, à

    l’établissement de formation et/ou à des tiers du fait de l'utilisation de ce jeu d’équipement en dehors du

    contexte d’une pure formation, à moins que ces dommages ne soient imputables à une faute intentionnelle

    ou à une négligence grossière de Festo Didactic.

  • © Festo Didactic GmbH & Co. KG 567221 V

    Avant-propos

    Le système de formation « Automatisation et Technique » de Festo Didactic part de différents niveaux

    d’accès à la formation et objectifs professionnels. C’est dans cette optique qu'est structuré le système de

    formation :

    ensembles de formation axés sur les technologies ; mécatronique et automatisation d'usine ; automatisation de process et technique de régulation ; robotique mobile ; usines-écoles hybrides.

    Le système de formation « Automatisation et Technique » fait régulièrement l’objet de mises à jour et

    extensions parallèlement aux évolutions enregistrées dans le domaine de la formation et des pratiques

    professionnelles.

    Les ensembles de formation technologique se penchent sur les technologies suivantes : pneumatique,

    électropneumatique, hydraulique, électrohydraulique, hydraulique proportionnelle, automates

    programmables, capteurs, électricité et actionneurs électriques.

    La structure modulaire du système de formation permet de réaliser des applications allant au-delà des

    limites des différents ensembles. Par exemple, il est possible de commander par API des actionneurs

    pneumatiques, hydrauliques et/ou électriques.

  • VI © Festo Didactic GmbH & Co. KG 567221

    Tous les ensembles de formation se composent des éléments suivants :

    matériel ; supports ; séminaires.

    Matériel Le matériel des ensembles de formation est constitué de composants industriels et systèmes adaptés à une

    approche didactique. Le choix et l'exécution des composants faisant partie des ensembles de formation

    sont spécialement adaptés aux projets des supports d'accompagnement.

    Supports Les supports dédiés aux différents domaines de spécialité sont de deux types : didactiques et logiciels. Les

    supports didactiques, axés sur la pratique, comprennent :

    manuels de fond et de cours (ouvrages standard de dispense de connaissances fondamentales) ; manuels de travaux pratiques (avec explications complémentaires et corrigés types) ; lexiques, manuels, ouvrages spécialisés (donnant des informations plus détaillées sur des thèmes à

    approfondir) ;

    jeux de transparents et vidéos (permettant d'illustrer et de rendre plus vivant l'enseignement) ; posters (pour la visualisation de sujets plus complexes) ;

    Dans le domaine du logiciel, des programmes sont disponibles pour les applications suivantes :

    didacticiels (présentation pédagogique et multimédia de contenus de formation) ; logiciels de simulation ; logiciels de visualisation ; logiciels de mesure ; logiciels de conception et de configuration : logiciels de programmation d'automates programmables industriels.

    Les supports destinés aux formateurs et aux étudiants sont disponibles en plusieurs langues. Ils sont

    conçus pour l’enseignement, mais se prêtent aussi à l’autoformation.

    Séminaires Un large éventail de séminaires consacrés aux contenus des ensembles de formation complète l’offre de

    formation initiale et continue.

    Vous avez des suggestions ou des critiques à propos de ce manuel ?

    N'hésitez pas à nous en faire part par courriel à : [email protected]

    Les auteurs et Festo Didactic se feront un plaisir de tenir compte de vos remarques.

  • © Festo Didactic GmbH & Co. KG 567221 VII

    Introduction

    Le présent manuel de travaux pratiques fait partie du système de formation « Automatisation et Technique »

    de la société Festo Didactic GmbH & Co. KG. Ce système constitue une solide base de formation initiale et

    continue axée sur la pratique. L'ensemble de formation « Bases de l'électrotechnique/électronique »

    TP 1011 traite des thèmes suivants :

    bases du courant continu ; bases du courant alternatif ; bases des semi-conducteurs ; montages de base de l'électronique.

    Le manuel de travaux pratiques « Bases du courant alternatif » poursuit l'initiation à l'électrotechnique/

    électronique. Au premier plan, figure l'étude du comportement d'une résistance. d'un condensateur et

    d'une bobine en alternatif. Un autre centre de gravité pour les montages à condensateur et bobine est le

    déphasage du courant et de la tension en alternatif. La visualisation et l'analyse des déphasages sont

    traitées en détail sur des montages mixtes. Sont également étudiées dans ce contexte les grandeurs

    électriques que sont les puissances active, réactive et apparente. La puissance figure également au premier

    plan dans l'étude des couplages étoile et triangle des systèmes à tension alternative triphasée.

    La réalisation et l'étude des montages supposent de disposer d'un poste de travail de laboratoire équipé

    d'une alimentation secteur protégée, de deux multimètres numériques, d'un oscilloscope à mémoire et de

    cordons de laboratoire sécurisés.

    Le jeu d’équipement TP 1011 permet de réaliser les montages complets des 10 travaux pratiques consacrés

    aux « Bases du courant alternatif ».

    Des fiches techniques des différents composants (résistances linéaires et non linéaires, condensateurs,

    bobines, diodes électroluminescentes, instruments de mesure, etc.) sont en outre disponibles.

  • VIII © Festo Didactic GmbH & Co. KG 567221

    Instructions et consignes de sécurité

    Généralités Les étudiants ne doivent travailler sur les montages que sous la surveillance d’une formatrice ou d’un

    formateur.

    Respectez les indications données dans les fiches techniques des différents composants, en particulier toutes les consignes de sécurité !

    La formation ne doit être à l'origine d'aucune panne susceptible d'affecter la sécurité ; les pannes éventuelles doivent être immédiatement éliminées.

    Partie électrique Danger de mort en cas de coupure du conducteur de protection !

    – Le conducteur de protection (jaune/vert) ne doit être coupé ni à l'extérieur ni à l'intérieur de

    l'appareillage.

    – L'isolation du conducteur de protection ne doit être ni endommagée ni enlevée.

    Dans les établissements industriels ou artisanaux, il conviendra de respecter les directives des organismes professionnels, et notamment celles des mutuelles d'assurance accident applicables aux

    matériels électriques.

    Dans les établissements scolaires et de formation, l'utilisation d'alimentations secteur sera placée sous la responsabilité et la surveillance de personnels qualifiés.

    Attention ! Des condensateurs montés dans l'appareillage peuvent encore être chargés même après coupure de

    toutes les sources de tension.

    En cas de remplacement de fusibles : n'utilisez que les fusibles prescrits et du bon calibre. Ne mettez jamais immédiatement sous tension votre bloc d'alimentation secteur s'il vient de passer

    d'une pièce froide à une pièce chaude. La condensation susceptible de se former pourrait alors détruire

    l'appareil. Laissez d'abord l'appareil prendre la température ambiante.

    N'utilisez pour l'alimentation des montages des différents travaux pratiques que des tensions de 60 V DC et 25 V AC maximum. Tenez compte en outre de la tension maximale de service indiquée pour

    les composants utilisés.

    N'effectuez les branchements électriques qu'en l'absence de tension. N'effectuez les débranchements électriques qu'en l'absence de tension. N’utilisez pour les branchements électriques que des cordons dotés de connecteurs de sécurité. Lors du débranchement de cordons, tirez uniquement sur le connecteur de sécurité, pas sur le câble. Raccordez toujours l'oscilloscope à mémoire au secteur par l'intermédiaire d'un transformateur

    d'isolation.

  • © Festo Didactic GmbH & Co. KG 567221 IX

    Ensemble de formation « Bases du courant alternatif » (TP 1011)

    L'ensemble de formation TP 1011 se compose d’une multitude de moyens de formation. Cette partie de

    l'ensemble de formation TP 1011 a pour objet les bases du courant alternatif. Certains composants de

    l'ensemble de formation TP 1011 peuvent également faire partie d’autres ensembles.

    Composants importants du TP 1011 Poste de travail stable équipé du panneau de montage universel EduTrainer® Jeu de composants « Électrotechnique/électronique » avec cavaliers et cordons de laboratoire sécurisés Bloc d'alimentation de base EduTrainer® Équipements complets de laboratoire

    Supports Les supports associés à l'ensemble de formation TP 1011 comprennent des manuels de travaux pratiques.

    Les manuels de travaux pratiques comportent les fiches de chacun des TP, le corrigé de chaque fiche de

    travail et un CD-ROM. Un jeu de fiches de travaux pratiques et fiches de travail prêtes à utiliser est fourni

    avec chaque manuel de travaux pratiques.

    Des fiches techniques des composants sont fournies sur le CD-ROM.

    Supports

    Manuels de travaux

    pratiques

    Bases du courant continu

    Bases du courant alternatif

    Bases des semi-conducteurs

    Montages de base de l'électronique

    Didacticiels WBT Électricité 1 – Bases de l'électrotechnique

    WBT Électricité 2 – Circuits à courant continu et alternatif

    WBT Électronique 1 – Bases des semi-conducteurs

    WBT Électronique 2 – Circuits intégrés

    WBT Mesures de protection électriques

    Aperçu des supports associés à l'ensemble de formation TP 1011

    Le logiciel disponible pour l'ensemble de formation TP 1011 comprend les didacticiels Électricité 1,

    Électricité 2, Électronique 1, Électronique 2 et Mesures de protection électriques. Ces didacticiels traitent en

    détail des bases de l'électrotechnique/électronique. Les contenus sont abordés à la fois du point de vue

    systématique et en référence aux applications, sous la forme d'exemples pratiques.

    Les supports sont proposés en plusieurs langues. Vous trouverez d’autres moyens de formation dans nos

    catalogues et sur Internet.

  • X © Festo Didactic GmbH & Co. KG 567221

    Objectifs pédagogiques – Bases du courant alternatif

    Savoir décrire les grandeurs caractéristiques utilisées en alternatif et effectuer des calculs sur ces grandeurs.

    Connaître les différents modes de représentation des grandeurs utilisées en alternatif. Savoir mesurer à l'oscilloscope et analyser les grandeurs caractéristiques du courant alternatif. Connaître le comportement de la résistance ohmique en alternatif. Savoir décrire le comportement du condensateur en alternatif. Savoir déterminer et calculer la réactance capacitive d'un condensateur. Savoir déterminer par la mesure et analyser le déphasage du courant et de la tension du condensateur

    en alternatif.

    Savoir déterminer et calculer la puissance réactive capacitive. Savoir calculer la capacité de montages en série et en parallèle de condensateurs. Savoir étudier par la mesure les montages en série et en parallèle de condensateurs et en déduire des

    lois.

    Connaître la structure, l'utilisation et les grandeurs caractéristiques d'une bobine. Savoir analyser par la mesure le comportement d'une bobine à l'excitation et à la désexcitation. Savoir comment se répercute l'auto-induction d'une bobine sur son comportement. Savoir décrire le comportement d'une bobine en alternatif. Savoir déterminer l'inductance et la réactance inductive d'une bobine. Savoir déterminer par la mesure et analyser le déphasage du courant et de la tension de la bobine en

    alternatif.

    Savoir appliquer les diagrammes vectoriels et temporels à l'addition de grandeurs alternatives dans des circuits RC.

    Connaître l'utilisation de circuits RC en diviseurs de tension dépendant de la fréquence. Savoir utiliser des circuits RC en filtres passe-haut et passe-bas. Connaître l'importance de la puissance réactive dans le réseau public de distribution d'électricité. Savoir mesurer et appliquer le facteur de puissance cos �. Savoir calculer et appliquer le montage RLC parallèle comme montage de compensation de la puissance

    réactive.

    Connaître le lien qui existe entre puissances active, réactive et apparente et la représentation de ces puissances.

    Savoir appliquer les diagrammes vectoriels et temporels à l'addition de grandeurs alternatives dans des montage mixtes.

    Connaître le principe de la génération d'une tension alternative triphasée. Connaître les couplages de base étoile et triangle utilisés dans les systèmes triphasés et savoir les

    réaliser.

    Savoir mesurer et calculer la puissance dans les couplages étoile et triangle. Savoir utiliser à dessein les différentes phases d'un système triphasé en vue de la génération de

    puissance.

    Savoir comment se répercute la disparition d'une phase sur la puissance d'un récepteur dans un couplage étoile.

  • © Festo Didactic GmbH & Co. KG 567221 XI

    Correspondance entre objectifs pédagogiques et travaux pratiques – Bases du courant alternatif

    TP 1 2 3 4 5 6 7 8 9 10

    Objectif

    Savoir décrire les grandeurs caractéristiques utilisées en alternatif

    et effectuer des calculs sur ces grandeurs. •

    Connaître les différents modes de représentation des grandeurs

    utilisées en alternatif. •

    Savoir mesurer à l'oscilloscope et analyser les grandeurs

    caractéristiques du courant alternatif. •

    Connaître le comportement de la résistance ohmique en alternatif. •

    Savoir décrire le comportement du condensateur en alternatif. •

    Savoir déterminer et calculer la réactance capacitive d'un

    condensateur. • •

    Savoir déterminer par la mesure et analyser le déphasage du

    courant et de la tension du condensateur en alternatif. •

    Savoir déterminer et calculer la puissance réactive capacitive. •

    Savoir calculer la capacité de montages en série et en parallèle de

    condensateurs. •

    Savoir étudier par la mesure les montages en série et en parallèle

    de condensateurs et en déduire des lois. •

    Connaître la structure, l'utilisation et les grandeurs

    caractéristiques d'une bobine. •

    Savoir analyser par la mesure le comportement d'une bobine à

    l'excitation et à la désexcitation. •

    Savoir comment se répercute l'auto-induction d'une bobine sur

    son comportement. •

  • XII © Festo Didactic GmbH & Co. KG 567221

    TP 1 2 3 4 5 6 7 8 9 10

    Objectif

    Savoir décrire le comportement d'une bobine en alternatif. •

    Savoir déterminer l'inductance et la réactance inductive d'une

    bobine. •

    Savoir déterminer par la mesure et analyser le déphasage du

    courant et de la tension de la bobine en alternatif. •

    Savoir appliquer les diagrammes vectoriels et temporels à

    l'addition de grandeurs alternatives dans des circuits RC. • •

    Connaître l'utilisation de circuits RC en diviseurs de tension

    dépendant de la fréquence. •

    Savoir utiliser des circuits RC en filtres passe-haut et passe-bas. •

    Connaître l'importance de la puissance réactive dans le réseau

    public de distribution d'électricité. •

    Savoir mesurer et appliquer le facteur de puissance cos �. •

    Savoir calculer et appliquer le montage RLC parallèle comme

    montage de compensation de la puissance réactive. •

    Connaître le lien qui existe entre puissances active, réactive et

    apparente et la représentation de ces puissances. •

    Savoir appliquer les diagrammes vectoriels et temporels à

    l'addition de grandeurs alternatives dans des montage mixtes. •

    Connaître le principe de la génération d'une tension alternative

    triphasée. •

    Connaître les couplages de base étoile et triangle utilisés dans les

    systèmes triphasés et savoir les réaliser. •

    Savoir mesurer et calculer la puissance dans les couplages étoile

    et triangle. •

    Savoir utiliser à dessein les différentes phases d'un système

    triphasé en vue de la génération de puissance. •

    Savoir comment se répercute la disparition d'une phase sur la

    puissance d'un récepteur dans un couplage étoile. •

  • © Festo Didactic GmbH & Co. KG 567221 XIII

    Jeu d'équipement

    Le manuel de travaux pratiques « Bases du courant alternatif » dispense des connaissances sur la structure

    et le fonctionnement des composants condensateur et bobine ainsi que sur le comportement de ces

    composants dans des montages de base et applications simples.

    Le jeu d'équipement « Bases de l'électrotechnique/électronique » TP 1011 comprend tous les composants

    nécessaires à l'acquisition des compétences définies par les objectifs pédagogiques fixés. La réalisation et

    l'analyse de montages opérationnels exigent en outre deux multimètres numériques et des cordons de

    laboratoire sécurisés.

    Jeu d'équipement « Bases de l'électrotechnique/électronique », Réf. 571780

    Composant Référence Quantité

    Bloc d'alimentation de base EduTrainer® 567321 1

    Panneau de montage universel EduTrainer® 567322 1

    Jeu de composants Électrotechnique/électronique 567306 1

    Jeu de cavaliers, 19 mm, gris-noir 571809 1

    Aperçu du jeu de composants Électrotechnique/électronique, Réf. 567306

    Composant Quantité

    Résistance, 10 Ω/2 W 1

    Résistance, 22 Ω/2 W 2

    Résistance, 33 Ω/2 W 1

    Résistance, 100 Ω/2 W 2

    Résistance, 220 Ω/2 W 1

    Résistance, 330 Ω/2 W 1

    Résistance, 470 Ω/2 W 2

    Résistance, 680 Ω/2 W 1

    Résistance, 1 kΩ/2 W 3

    Résistance, 2,2 kΩ/2 W 2

    Résistance, 4,7 kΩ/2 W 2

    Résistance, 10 kΩ/2 W 3

    Résistance, 22 kΩ/2 W 3

    Résistance, 47 kΩ/2 W 2

    Résistance, 100 kΩ/2 W 2

    Résistance, 1 MΩ/2 W 1

  • XIV © Festo Didactic GmbH & Co. KG 567221

    Composant Quantité

    Potentiomètre, 1 kΩ/0,5 W 1

    Potentiomètre, 10 kΩ/0,5 W 1

    Thermistance (CTN), 4,7 kΩ/0,45 W 1

    Photorésistance (LDR), 100 V/0,2 W 1

    Varistance (LDR), 14 V/0,05 W 1

    Condensateur, 100 pF/100 V 1

    Condensateur, 10 nF/100 V 2

    Condensateur, 47 nF/100 V 1

    Condensateur, 0,1 μF/100 V 2

    Condensateur, 0,22 μF/100 V 1

    Condensateur, 0,47 μF/100 V 2

    Condensateur, 1,0 μF/100 V 2

    Condensateur, 10 μF/250 V, polarisé 2

    Condensateur, 100 μF/63 V, polarisé 1

    Condensateur, 470 μF/50 V, polarisé 1

    Bobine, 100 mH/50 mA 1

    Diode, AA118 1

    Diode, 1N4007 6

    Diode Zener, ZPD 3,3 1

    Diode Zener, ZPD 10 1

    Diac, 33 V/1 mA 1

    Transistor NPN, BC140, 40 V/1 A 2

    Transistor NPN, BC547, 50 V/100 mA 1

    Transistor PNP, BC160, 40 V/1 A 1

    Transistor JFET canal P, 2N3820, 20 V/10 mA 1

    Transistor JFET canal N, 2N3819, 25 V/50 mA 1

    Transistor unijonction, 2N2647, 35 V/50 mA 1

    Transistor MOSFET canal P, BS250, 60 V/180 mA 1

    Thyristor, TIC 106, 400 V/5 A 1

    Triac, TIC206, 400 V/4 A 1

    Bobine de transformateur, N = 200 1

    Bobine de transformateur, N = 600 2

    Noyau de transformateur avec support 1

    Voyant, 12 V/62 mA 1

    Diode électroluminescente (LED), 20 mA, bleue 1

    Diode électroluminescente (LED), 20 mA, rouge ou verte 1

    Inverseur 1

  • © Festo Didactic GmbH & Co. KG 567221 XV

    Symboles graphiques du jeu d'équipement

    Composant Symbole graphique Composant Symbole graphique

    Résistance

    Diode Zener

    Potentiomètre

    Diac

    Thermistance (CTN)

    Transistor NPN

    Photorésistance (LDR)

    Transistor PNP

    Varistance (VDR)

    U

    Transistor JFET canal P

    Condensateur

    Transistor JFET canal N

    Condensateur, polarisé

    Transistor unijonction

    Bobine

    Transistor MOSFET canal P

    Diode

    Thyristor

  • XVI © Festo Didactic GmbH & Co. KG 567221

    Composant Symbole graphique Composant Symbole graphique

    Triac

    LED bleue

    Bobine de transformateur

    LED rouge ou verte

    Voyant

    Inverseur

  • © Festo Didactic GmbH & Co. KG 567221 XVII

    Correspondance entre composants et travaux pratiques – Bases du courant alternatif

    TP 1 2 3 4 5 6 7 8 9 10

    Composant

    Résistance, 100 Ω/2 W 1

    Résistance, 470 Ω/2 W 1 1

    Résistance, 1 kΩ/2 W 1 1 1 1 1 1 3 3

    Résistance, 4,7 kΩ/2 W 1

    Résistance, 10 kΩ/2 W 1

    Résistance, 22 kΩ/2 W 1

    Varistance (VDR), 14 V/0,05 W 1

    Condensateur, 100 pF/100 V 1

    Condensateur, 10 nF/100 V 1 1

    Condensateur, 47 nF/100 V 1

    Condensateur, 0,1 μF/100 V 1

    Condensateur, 0,22 μF/100 V 1 1 1 1

    Condensateur, 0,47 μF/100 V 1

    Condensateur, 1,0 μF/100 V 1

    Bobine, 100 mH/50 mA 1 1 1

    Bobine de transformateur, N = 200 1

    Bobine de transformateur, N = 600 1 1

    Multimètre numérique 1 1 1 1 1 1 1

    Oscilloscope, 2 voies 1 1 1 1 1 1 1

    Bloc d'alimentation de base EduTrainer® 1 1 1 1 1 1 1 1 1 1

  • XVIII © Festo Didactic GmbH & Co. KG 567221

    Notes à l'intention de l'enseignant ou du formateur

    Objectifs pédagogiques L'objectif pédagogique général du présent manuel de travaux pratiques est l'étude de montages de base

    simples à résistance, condensateur et bobine en courant alternatif. L'acquisition des connaissances se fera

    par des questions théoriques, la réalisation pratique des montages et la mesure de grandeurs électriques.

    Cette interaction directe entre théorie et pratique est le garant de progrès rapides et durables. Les objectifs

    pédagogiques spécifiques sont documentés dans la matrice, Des objectifs pédagogiques plus concrets sont

    affectés à chaque travail pratique.

    Temps alloué Le temps nécessaire à la réalisation d’un travail pratique dépend des connaissances préalables de

    l'étudiant. Chaque travail pratique est prévu pour durer environ 1 heure à 1 heure et demie.

    Composants du jeu d'équipement Manuel de travaux pratiques, recueil de travaux pratiques et jeu d'équipement sont adaptés les uns aux

    autres. Pour les 10 TP, vous n’avez besoin que des composants d’un seul jeu d’équipement TP 1011.

    Normes Le présent manuel de travaux pratiques applique les normes suivantes :

    EN 60617-2 à EN 60617-8 Symbole graphiques pour schémas

    EN 81346-2 Systèmes industriels, installations et appareils, et produits industriels ;

    principes de structuration et désignations de référence

    CEI 60364-1 Édification d´installations à basse tension – Principes généraux,

    (DIN VDE 0100-100) Principes fondamentaux, détermination des caractéristiques générales,

    définitions

    CEI 60364-4-41 Édification d´installations à basse tension – Mesures de protection,

    (DIN VDE 0100-410) Protection contre les chocs électriques

    Repérage dans le manuel de travaux pratiques Le texte des corrigés et les compléments donnés dans les graphiques ou diagrammes sont repérés en

    rouge.

    Exception : Les indications et conclusions concernant le courant sont toujours repérées en rouge, celle

    concernant la tension toujours en bleu.

    Repérage dans le recueil de travaux pratiques Les textes à compléter sont repérés par des lignes d'écriture ou des cases grisées dans les tableaux.

    Les graphiques à compléter sont sur fond tramé.

    Notes à l'intention de l'enseignant Des informations additionnelles sont données ici sur la démarche didactico-méthologique et sur les

    composants. Ces notes ne figurent pas dans le recueil de travaux pratiques.

  • © Festo Didactic GmbH & Co. KG 567221 XIX

    Corrigés Les corrigés indiqués dans le présent manuel de travaux pratiques sont le résultat de mesures effectuées

    lors d'essais. Les résultats de vos mesures peuvent différer de ces valeurs.

    Thèmes d'apprentissage Pour l'apprentissage du métier d'électronicien/ne, le thème « Bases du courant alternatif » fait partie du

    volet 1 du programme du centre de formation.

    Structure des travaux pratiques

    Les 10 travaux pratiques ont la même structure méthodologique. Ils se divisent en :

    Titre Objectifs pédagogiques Problème Montage ou schéma d'implantation Travail à exécuter Aides Fiches de travail

    Le manuel de travaux pratiques contient les corrigés de chacune des fiches de travail du recueil de travaux

    pratiques.

    Désignation des composants

    La désignation des composants représentés dans les schémas s'inspire de la norme EN 81346-2. Des lettres

    sont attribuées en fonction du composant. Les composants existant en plusieurs exemplaires dans un

    circuit sont numérotés en continu.

    Résistances : R, R1, R2, ...

    Condensateurs : C, C1, C2, …

    Bobines : L, L1, L2, …

    Auxiliaires de signalisation : P, P1, P2, ...

    Nota

    Quand des résistances, condensateurs ou bobines sont considérés comme grandeurs physiques, leur

    lettre de désignation est en italique (symbole de formule). Si une numérotation est nécessaire, les

    chiffres sont traités comme indices.

  • XX © Festo Didactic GmbH & Co. KG 567221

    Contenu du CD-ROM

    Le manuel de travaux pratiques figure sous forme de fichier pdf sur le CD-ROM fourni. Celui-ci met en outre

    à votre disposition des supports additionnels.

    Le CD-ROM contient les dossiers suivants :

    Notices d’utilisation Illustrations Informations sur les produits

    Notices d’utilisation Des notices d’utilisation sont ici disponibles pour différents composants de l'ensemble de formation. Elles

    aident à mettre en service et à utiliser les composants.

    Illustrations Des photos et graphiques de composants et applications industrielles sont fournis. Ils permettent d’illustrer

    des travaux pratiques plus personnalisés. Les présentations de projets peuvent également être complétées

    par utilisation de ces illustrations.

    Informations sur les produits Ce dossier contient des informations du fabricant pour un certain nombre de composants. La représentation

    et la description des composants sous cette forme ont pour but de montrer comment sont présentés ces

    composants dans un catalogue industriel. Vous y trouverez en outre des informations complémentaires sur

    les composants.

  • © Festo Didactic GmbH & Co. KG 567221 1

    TP 1 Acquisition et représentation de grandeurs caractéristiques en courant

    alternatif

    Objectifs pédagogiques Quand vous aurez réalisé ce TP, vous aurez appris à

    savoir décrire les grandeurs caractéristiques utilisées en alternatif et effectuer des calculs sur ces grandeurs ;

    connaître les différents modes de représentation des grandeurs utilisées en alternatif ; savoir mesurer à l'oscilloscope et analyser les grandeurs caractéristiques du courant alternatif ; connaître le comportement de la résistance ohmique en alternatif.

    Problème Vous êtes appelé à travailler à l'avenir à l'assurance qualité pour y contrôler des montages électroniques

    défectueux.

    Pour vous initier, vous allez effectuer des mesures sur des montages simples à courant alternatif.

    Montage

    RLUG

    Montage à courant alternatif avec oscilloscope

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    2 © Festo Didactic GmbH & Co. KG 567221

    Travaux à exécuter 1. Décrivez comme est définie la tension alternative. 2. Répondez aux questions concernant la représentation vectorielle et temporelle de grandeurs

    alternatives.

    3. Expliquez les principales grandeurs caractéristiques rencontrées en courant alternatif. 4. Familiarisez-vous avec le mode de fonctionnement de l'oscilloscope et répondez aux questions. 5. Effectuez vos premières mesures à l'oscilloscope. 6. Étudiez l'allure du courant, de la tension et de la puissance dans un montage à simple résistance.

    Aides Manuels de cours, mémentos Fiches techniques Didacticiel Électricité 1 Internet

    Nota

    N’appliquez la tension d'alimentation électrique qu’après avoir réalisé et contrôlé tous les

    branchements. À l'issue du TP, coupez l'alimentation électrique avant de démonter les composants.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 3

    Description de la tension alternative

    – Décrivez comme est définie la tension alternative.

    La tension alternative est une tension dont la polarité (sens) et la valeur varient périodiquement.

    – La figure montre trois évolutions temporelles fréquentes de grandeurs alternatives. Donnez le nom de l'allure de la courbe dans le tableau.

    Allure du signal Désignation

    u

    u

    u

    t

    t

    t

    T

    T

    T

    T2

    T2

    T2

    Signal sinusoïdal

    Signal triangulaire ou en dents de scie

    Signal rectangulaire ou carré

    Formes typiques de signaux électriques

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    4 © Festo Didactic GmbH & Co. KG 567221

    Explication de la représentation vectorielle et de la représentation temporelle d'une tension alternative

    Le vecteur tournant dans le cercle permet de reconstituer l'évolution temporelle sinusoïdale de la tension

    alternative. Le rayon du cercle correspond à l'amplitude de l'oscillation sinusoïdale, désignée par valeur de

    crête Uc.

    α

    u

    u

    α, t180° 360°90° 270°α

    Uc

    -Uc

    Uc

    π

    2π 2π3π

    2

    Représentation vectorielle et représentation temporelle d'une tension alternative sinusoïdale.

    – Indiquez la formule de calcul de la valeur instantanée de la tension u.

    On a :

    c

    PerpendiculairesinHypothenuse

    uU

    On en déduit pour la valeur instantanée u :

    c sinu U

    Plus la fréquence de l'oscillation sinusoïdale est élevée, plus la période est courte, et plus le vecteur associé

    tourne vite. La vitesse de rotation du vecteur s'exprime par la pulsation ω.

    – Indiquez la formule de calcul de la valeur instantanée u en fonction de ω. – Complétez également à cet effet le diagramme de la courbe sinusoïdale en inscrivant sous l'indication

    de l'angle en degrés celle de l'angle en radians.

    Formule de calcul des valeurs instantanées u :

    c sinu U ( t )

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 5

    Description des grandeurs caractéristiques en alternatif

    Pour travailler en alternatif, il vous faut bien maîtriser les grandeurs caractéristiques du courant alternatif.

    – Décrivez brièvement les principales grandeurs caractéristiques utilisées en alternatif. Complétez à cet effet les cases correspondantes du tableau.

    Grandeur caractéristique

    Symbole et/ou formule Description

    Tension de crête Uc

    Uc Valeur maximale ou minimale de la tension alternative, également appelée amplitude ou valeur de crête.

    Courant de crête Ic

    Ic Valeur maximale ou minimale du courant alternatif

    Tension crête à crête

    Ucc cc c2U U Différence entre valeurs de crête positive et négative

    Pour une tension sinusoïdale : Ucc est le double de l'amplitude.

    Tension efficace Ueff

    Ceff 2

    UU La valeur efficace est la valeur d'une tension alternative donnant aux bornes d'une résistance ohmique la même puissance qu'une tension continue de

    cette valeur.

    Courant efficace Ieff

    Seff 2

    II La valeur efficace est la valeur d'un courant alternatif donnant aux bornes d'une résistance ohmique la même puissance qu'un courant continu de cette

    valeur.

    Période T en s

    T Une oscillation complète formée d'une alternance positive et d'une alternance négative dure un certain temps. Ce temps s'appelle la période T.

    Fréquence f en Hz

    1fT

    Nombre de périodes par seconde

    Pulsation en 1s

    2 f Angle décrit en radians par unité de temps

    Valeur instantanée u

    cu U sin ( t ) Valeur momentanée d'une tension alternative sinusoïdale à l'instant considéré

    Valeur instantanée i

    c sini I ( t ) Valeur momentanée d'un courant alternatif sinusoïdal à l'instant considéré

    Grandeurs caractéristiques utilisées en alternatif

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    6 © Festo Didactic GmbH & Co. KG 567221

    – Dessinez quelques-unes des grandeurs caractéristiques dans la représentation de la tension alternative sinusoïdale. Donnez dans le tableau les désignations des grandeurs correspondant aux chiffres

    indiqués.

    u

    t0

    3 1

    4

    2

    Tension alternative sinusoïdale

    Chiffre Désignation

    1 Valeur de crête Uc

    2 Valeur crête à crête Ucc

    3 Tension efficace Ueff

    4 Période T

    Description des fonctions de base d'un oscilloscope

    Un oscilloscope dispose de multiples possibilités de réglage et de branchement, qui diffèrent selon le type

    et le modèle. Un certain nombre de réglages de base sont en général présents sur tout oscilloscope.

    USB

    Flash Drive

    PRINT

    SAVE

    CH1

    MENU

    MATH

    MENU

    CH2

    MENU

    VOLT/DIV

    CH1 CH2 EXT.TRIG.

    SEC/DIV

    HORIZ

    MENU

    SET TO

    ZERO

    VERTICAL

    POSITION

    HORIZONTAL

    POSITION

    TRIGGER

    LEVEL

    TRIG

    MENU

    SET TO

    50%

    FORCE

    TRIG

    TRIG

    VIEW

    REF

    MENU

    SINGLE

    SEQ

    RUN/

    STOP

    AUTOSETHELP

    DEFAULT SETUP

    AUTORANGE SAVE/RECALL MEASURE ACQUIRE

    UTILITY CURSOR DISPLAY

    Exemple d'oscilloscope

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 7

    – Informez-vous sur le mode de fonctionnement de l'oscilloscope mis à votre disposition pour les mesures.

    – Complétez dans le tableau la désignation des éléments de commande permettant de déclencher les fonctions décrites.

    Élément de commande Description sommaire

    Interrupteur 0/I Interrupteur secteur (M/A).

    Bouton rotatif POSITION CH1 Positionne verticalement le signal de la voie 1 (CH1).

    Bouton rotatif VOLTS/DIV (CH1) Règle la sensibilité verticale du signal d’entrée CH1.

    Touche CH1 MENU Active ou désactive l'affichage de la voie 1.

    Bouton rotatif POSITION Positionne horizontalement tous les signaux.

    Bouton rotatif SEC/DIV Règle le balayage temporel des signaux.

    Touche CH1 MENU -> Sonde Réglage de la sonde de la voie 1.

    Touche CH1 MENU -> Couplage Règle sur la voie 1 : DC, AC, Ground.

    Ground signifie : mise à la masse de la voie.

    Touche CH1 MENU -> Inverser Représente inversé le signal de la voie CH1.

    Touche TRIG MENU Réglage du déclenchement

    Touche TRIG MENU -> Front Règle le déclenchement sur front

    Connecteur d'entrée EXT. TRIG. Connecteur d'entrée pour source de déclenchement externe.

    CH1 Voie de mesure 1

    CH2 Voie de mesure 2

    Fonctions de base d'un oscilloscope

    Note à l'intention de l'enseignant

    Les fonctions de base et éléments de commande sont présentés sur la base de l'oscilloscope à mémoire

    numérique à 2 voiesTektronix TDS 1002B.

    – Décrivez ce que fait la fonction de déclenchement dans les visualisations à l'oscilloscope.

    La fonction de déclenchement fait en sorte que dans le cas de signaux périodiques, le point de départ

    du faisceau à l'écran soit à la même valeur d'amplitude que dans la visualisation précédente du

    signal. On obtient ainsi un oscillogramme apparemment stable.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    8 © Festo Didactic GmbH & Co. KG 567221

    Pour créer des oscillogrammes, procédez comme suit : Assurez-vous que le balayage en X et Y est étalonné. Vérifiez que l'axe zéro est bien là où vous voulez qu'il soit. Si vous réglez une fréquence sur le générateur de fonctions, mesurez la fréquence à l'oscilloscope pour

    être sûr qu'elle est correcte.

    Quand vous dessinez une courbe, représentez toujours au moins une période du signal. Tracez toujours l'axe zéro sur le dessin. Notez toujours le balayage temporel sur le dessin. Notez toujours sur le dessin le balayage de tension adopté sur chaque voie utilisée (CH1 et CH2). Veillez à la référence de temps des signaux entre eux quand vous les dessinez. Déclenchez toujours sur le signal le plus lent.

    TUcc

    Réglages sur l'oscilloscope :

    Y = 2 V/DIV

    X = 0,1 ms/DIV

    Exemple de mesure à l'oscilloscope

    – Analysez les résultats des mesures à l'oscilloscope. Déterminez la tension crête à crête Ucc et la période T.

    Tension crête à crête Ucc :

    Ucc correspond à 4 divisions (DIV).

    ccV4 DIV 2 8 V

    DIVU

    Période T :

    T correspond à 6 divisions.

    ms6 DIV 0 1 0 6 msDIV

    T , ,

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 9

    Mesure à l'oscilloscope

    Étudiez à l'oscilloscope l'évolution dans le temps d'une tension alternative.

    – Réalisez le montage.

    Y1

    UG

    Montage d'étude à l'oscilloscope d'une tension alternative sinusoïdale

    Désignation Dénomination Valeurs

    – Oscilloscope 2 voies

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel

    – Raccordez le générateur de fonctions. – Procédez aux réglages indiqués des calibres sur l'oscilloscope. – Réglez le générateur de fonctions à la fréquence et à la tension nécessaires à l'obtention de la courbe

    de tension représentée sur l'oscillogramme ci-dessous.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    10 © Festo Didactic GmbH & Co. KG 567221

    0 (Y )1

    Réglages sur l'oscilloscope

    Voie 1 :

    Y1 = 1 V/DIV

    Balayage :

    X = 0,1 ms/DIV

    Oscillogramme de la tension alternative à étudier

    – Mesurez la tension crête à crête Ucc et la période T.

    Tension crête à crête Ucc : ccV6 DIV 1 6 V

    DIVU

    Période T : ms10 DIV 0 1 1 msDIV

    T ,

    – Déterminez par le calcul, à partir des valeurs mesurées, la tension de crête Uc, la tension efficace Ueff et la fréquence f.

    Tension de crête Uc : ccc6 V 3 V

    2 2UU

    Tension efficace Ueff : ceff3 V 2 12 V

    2 2U

    U ,

    Fréquence f : 31 1 11 10 1 kHz

    1 ms sf

    T

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 11

    – Mesurez la valeur efficace Ueff au multimètre numérique. – Comparez la valeur efficace mesurée à la valeur efficace déterminée par le calcul.

    Ueff mesurée :

    Ueff = 2,01 V

    Ueff calculée :

    Ueff = 2,12 V

    Les faibles écarts entre valeurs mesurées et valeurs calculées sont dus aux erreurs de mesure et aux

    tolérances des composants.

    Mesure de tension, de courant et de puissance sur résistance ohmique

    Représentez l'allure dans le temps de la tension alternative aux bornes d'une résistance ohmique et celle du

    courant alternatif qui la traverse. Tracez à partir des valeurs instantanées du courant et de la tension la

    courbe de puissance de la résistance. Comparez cette courbe de puissance à celle obtenue avec une tension

    continue comparable.

    – Décrivez comment visualiser l'allure de courants à l'oscilloscope.

    Pour pouvoir mesurer le courant, il faut ajouter au circuit une résistance ampèremétrique RM. On détermine alors à l'oscilloscope la chute de tension URM aux bornes de la résistance ampèremétrique et on en déduit par le calcul le courant qui circule dans le montage.

    – Décrivez ce que l'on entend par résistance réelle.

    Une résistance ohmique s'appelle en alternatif résistance réelle. La résistance réelle a en alternatif le

    même effet qu'en continu. Elle agit sur l'énergie électrique et la convertit en chaleur, en lumière ou en

    énergie mécanique. La puissance transformée dans la réactance se désigne aussi par puissance

    active.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    12 © Festo Didactic GmbH & Co. KG 567221

    – Indiquez la formule de calcul du courant I traversant la résistance réelle R.

    UIR

    Tension et courant sur résistance réelle

    Y1

    Y2

    URM

    U

    f

    C = 6,6 V(sinusoïdale)

    = 1 kHz

    URL

    G

    RL

    RM

    Montage à résistances avec RL = 1 k, RM = 100, Uc = 6,6 V, f = 1 kHz

    Désignation Dénomination Valeurs

    RL Résistance 1 kΩ/2W

    RM Résistance 100 Ω/2 W

    – Oscilloscope 2 voies

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel

    Nota Pour pouvoir visualiser en même temps les tensions URL et URM à l'oscilloscope, on fixe le point de référence des deux tensions entre les deux résistances. Ceci implique de devoir inverser le signal de

    tension URM. Veillez à ce que les branchements aux deux voies de mesure de l'oscilloscope n'entraînent pas de boucles de masse via les conducteurs de protection. Insérez donc un transformateur d'isolation.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 13

    – Réalisez le montage. – Raccordez le générateur de fonctions. – Réglez une tension sinusoïdale Uc = 6,6 V de fréquence f = 1 kHz. – Procédez sur l'oscilloscope aux réglages nécessaires aux mesures. – Mesurez à l'oscilloscope la tension sinusoïdale URL présente aux bornes de la résistance RL. – Reportez l'allure de la tension dans l'oscillogramme. – Mesurez à l'oscilloscope la tension sinusoïdale URM aux bornes de la résistance RM. – Reportez également l'allure de la tension dans l'oscillogramme.

    0 (Y ),1 (Y )2

    Y2

    Y1

    Réglages sur l'oscilloscope

    Voie 1 :

    Y1 = 2 V/DIV

    Voie 2 :

    Y2 = 0,5 V/DIV

    (inverser)

    Balayage :

    X = 0,1 ms/DIV

    Centrer les axes zéro

    des voies 1 et 2

    Déclenchement : Y1

    Oscillogramme pour uRL et uRM

    – Déterminez les valeurs instantanées uRL et uRM aux instants indiqués dans le procès verbal de mesure. Notez les valeurs instantanées dans le procès verbal de mesure.

    – Calculez le courant i et la puissances active p aux instants indiqués dans le procès verbal de mesure. Notez également les valeurs. Indiquez aussi la formule de calcul de p.

    Formule de calcul des valeurs instantanées de la puissance :

    p u i

    – Représentez les valeurs de courant i, les valeurs de tension u et la courbe de puissance p dans le diagramme préparé.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    14 © Festo Didactic GmbH & Co. KG 567221

    Temps t (ms) Tension uRL (V) Tension uRM (V) Courant i (mA) Puissance active p (mW)

    0 0 0 0 0

    0,1 3,8 0,38 3,8 14,4

    0,15 5,0 0,5 5,0 25,0

    0,25 6,0 0,6 6,0 36,0

    0,35 5,0 0,5 5,0 25,0

    0,4 3,8 0,38 3,8 14,4

    0,5 0 0 0 0

    0,6 -3,8 -0,38 -3,8 14,4

    0,65 -5,0 -0,5 -5,0 25,0

    0,75 -6,0 -0,6 -6,0 36,0

    0,85 -5,0 -0,5 -5,0 25,0

    0,9 -3,8 -0,38 -3,8 14,4

    1,0 0 0 0 0

    Procès verbal de mesure

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms

    -10-25

    00

    VmA

    615

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1025

    1,0

    Ten

    sio

    nu

    Co

    ura

    nt

    i

    Pu

    issa

    nce

    p

    -50

    0

    mW

    30

    20

    10

    -10

    -20

    -30

    -40

    50

    u

    p

    i

    Courbes de tension, de courant et de puissance sur résistance ohmique RL

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 15

    – Décrivez l’allure des courbes de courant et de tension.

    Le courant et la tension sont en phase. Ils passent au même instant par zéro et atteignent au même

    instant leur valeur de crête.

    – Décrivez l'allure de la courbe de puissance.

    L'allure de la courbe de puissance est de nouveau sinusoïdale, mais ne présente pas de composantes

    négatives. La fréquence a doublé par rapport à l'allure de la tension et du courant.

    L'allure de la courbe de la puissance active sur résistance ohmique peut se remplacer par une valeur

    moyenne constante. C'est la valeur efficace de la puissance.

    – Indiquez la formule de calcul de la valeur efficace de la puissance P.

    eff eff effP U I

    La loi d'Ohm donne deux autres formules de calcul de la puissance :

    2eff effP R I ou

    2eff

    effU

    PR

    – Indiquez la valeur efficace de la puissance pour le montage à résistances.

    c ceff eff eff

    6 V 6 mA 18 mW2 2 2 2

    U IP U I

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    16 © Festo Didactic GmbH & Co. KG 567221

    Puissance en continu et en alternatif Pour pouvoir comparer les puissances en continu et en alternatif, déterminez la puissance dissipée par la

    résistance ohmique RL = 1 kΩ pour une tension continue de U = 4,24 V.

    – Justifiez pourquoi la mesure comparative en continu s'effectue pour une tension continue de U = 4,24 V.

    La tension alternative sinusoïdale Uc = 6 V a pour valeur efficace :

    ceff

    6 V 4 24 V2 2

    UU ,

    Une tension continue U = 4,24 V dissipe dans une résistance ohmique la même puissance que la valeur efficace Ueff = 4,24 V d'une tension alternative.

    – Mesurez la puissance en continu du montage représenté suivant la méthode indirecte et notez les valeurs mesurées.

    U = 4,24 V URLRL

    Montage à résistance avec RL = 1 k, U = 4,24 V

    Désignation Dénomination Valeurs

    RL Résistance 1 kΩ/2W

    – Multimètre numérique –

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel pour le montage à résistance en continu

    Valeurs mesurées des grandeurs électriques pour le calcul de puissance :

    U = 4,24 V

    I = 4,19 mA

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 17

    – Calculez à partir des valeurs mesurées la puissance électrique dissipée par la résistance ohmique dans le montage en continu.

    4 24 V 4 19 mA =17,8 mWP U I , ,

    – Tracez les courbes des grandeurs électriques mesurées et de la puissance électrique calculée dans le diagramme correspondant.

    Circuit en continu Circuit en alternatif

    U = 4,24 V URLRL

    UC = 6 V URLRLG

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms00

    VmA

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1,0

    Ten

    sio

    nU

    Co

    ura

    nt

    I U

    I

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms00

    VmA

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1,0

    Ten

    sio

    nu

    Co

    ura

    nt

    i

    u

    i

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms 1,0

    P

    Pu

    issa

    nce

    P

    0

    mW

    30

    20

    10

    tTemps

    50

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms 1,0

    p

    Pu

    issa

    nce

    p

    0

    mW

    30

    20

    10

    50

    tTemps

    Comparaison : puissance dans le circuit en continu et dans le circuit en alternatif pour RL = 1 kΩ

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    18 © Festo Didactic GmbH & Co. KG 567221

    – Décrivez la relation qui existe entre les deux courbes de puissance.

    • Dans le circuit en continu, la puissance dissipée est invariablement constante.

    • Dans le circuit en alternatif, la puissance dissipée varie beaucoup. • Dans le cas d'une tension alternative sinusoïdale, les deux sources délivrent en moyenne la même

    puissance quand la valeur maximale de la puissance dissipée en alternatif est exactement le

    double de la puissance constante délivrée par la source de tension continue.

  • © Festo Didactic GmbH & Co. KG 567221 I

    Table des matières

    Travaux pratiques et fiches de travail

    TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif _______________ 1

    TP 2 : Vérification du comportement en puissance d'un condensateur ___________________________ 19

    TP 3 : Sélection d'une capacité appropriée à un filtre passe-haut ________________________________ 39

    TP 4 : Réduction des pics de tension à la commutation de la bobine d'un distributeur _______________ 51

    TP 5 : Détermination de l'inductance d'une bobine ___________________________________________ 65

    TP 6 : Étude par la mesure de circuits RC ___________________________________________________ 77

    TP 7 : Relevé de la réponse en fréquence de filtres passe-haut et passe-bas _______________________ 89

    TP 8 : Compensation de la puissance réactive d'un moteur électrique ___________________________ 101

    TP 9 : Sélection d'un couplage triphasé d'un radiateur mural à accumulation _____________________ 113

    TP 10 : Génération de différents niveaux de puissance sur un radiateur __________________________ 127

  • II © Festo Didactic GmbH & Co. KG 567221

  • © Festo Didactic GmbH & Co. KG 567221 1

    TP 1 Acquisition et représentation de grandeurs caractéristiques en courant

    alternatif

    Objectifs pédagogiques Quand vous aurez réalisé ce TP, vous aurez appris à

    • savoir décrire les grandeurs caractéristiques utilisées en alternatif et effectuer des calculs sur ces grandeurs ;

    • connaître les différents modes de représentation des grandeurs utilisées en alternatif ; • savoir mesurer à l'oscilloscope et analyser les grandeurs caractéristiques du courant alternatif ; • connaître le comportement de la résistance ohmique en alternatif.

    Problème Vous êtes appelé à travailler à l'avenir à l'assurance qualité pour y contrôler des montages électroniques

    défectueux.

    Pour vous initier, vous allez effectuer des mesures sur des montages simples à courant alternatif.

    Montage

    RLUG

    Montage à courant alternatif avec oscilloscope

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    2 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    Travaux à exécuter 1. Décrivez comme est définie la tension alternative. 2. Répondez aux questions concernant la représentation vectorielle et temporelle de grandeurs

    alternatives.

    3. Expliquez les principales grandeurs caractéristiques rencontrées en courant alternatif. 4. Familiarisez-vous avec le mode de fonctionnement de l'oscilloscope et répondez aux questions. 5. Effectuez vos premières mesures à l'oscilloscope. 6. Étudiez l'allure du courant, de la tension et de la puissance dans un montage à simple résistance.

    Aides • Manuels de cours, mémentos • Fiches techniques • Didacticiel Électricité 1 • Internet

    Nota

    N’appliquez la tension d'alimentation électrique qu’après avoir réalisé et contrôlé tous les

    branchements. À l'issue du TP, coupez l'alimentation électrique avant de démonter les composants.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 3

    Description de la tension alternative

    – Décrivez comme est définie la tension alternative.

    – La figure montre trois évolutions temporelles fréquentes de grandeurs alternatives. Donnez le nom de l'allure de la courbe dans le tableau.

    Allure du signal Désignation

    u

    u

    u

    t

    t

    t

    T

    T

    T

    T2

    T2

    T2

    Formes typiques de signaux électriques

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    4 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    Explication de la représentation vectorielle et de la représentation temporelle d'une tension alternative

    Le vecteur tournant dans le cercle permet de reconstituer l'évolution temporelle sinusoïdale de la tension

    alternative. Le rayon du cercle correspond à l'amplitude de l'oscillation sinusoïdale, désignée par valeur de

    crête Uc.

    α

    u

    u

    α, t180° 360°90° 270°α

    Uc

    -Uc

    Uc

    Représentation vectorielle et représentation temporelle d'une tension alternative sinusoïdale.

    – Indiquez la formule de calcul de la valeur instantanée de la tension u.

    Plus la fréquence de l'oscillation sinusoïdale est élevée, plus la période est courte, et plus le vecteur associé

    tourne vite. La vitesse de rotation du vecteur s'exprime par la pulsation ω .

    – Indiquez la formule de calcul de la valeur instantanée u en fonction de ω. – Complétez également à cet effet le diagramme de la courbe sinusoïdale en inscrivant sous l'indication

    de l'angle en degrés celle de l'angle en radians.

    Formule de calcul des valeurs instantanées u :

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 5

    Description des grandeurs caractéristiques en alternatif

    Pour travailler en alternatif, il vous faut bien maîtriser les grandeurs caractéristiques du courant alternatif.

    – Décrivez brièvement les principales grandeurs caractéristiques utilisées en alternatif. Complétez à cet effet les cases correspondantes du tableau.

    Grandeur caractéristique

    Symbole et/ou formule Description

    Tension de crête Uc

    Uc

    Courant de crête Ic

    Ic

    Tension crête à crête

    Ucc

    Tension efficace Ueff

    Courant efficace Ieff

    Période T en s

    T

    Fréquence f en Hz

    Pulsation ω en 1s

    Valeur instantanée u

    Valeur instantanée i

    Grandeurs caractéristiques utilisées en alternatif

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    6 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    – Dessinez quelques-unes des grandeurs caractéristiques dans la représentation de la tension alternative sinusoïdale. Donnez dans le tableau les désignations des grandeurs correspondant aux chiffres

    indiqués.

    u

    t0

    3 1

    4

    2

    Tension alternative sinusoïdale

    Chiffre Désignation

    1

    2

    3

    4

    Description des fonctions de base d'un oscilloscope

    Un oscilloscope dispose de multiples possibilités de réglage et de branchement, qui diffèrent selon le type

    et le modèle. Un certain nombre de réglages de base sont en général présents sur tout oscilloscope.

    USB

    Flash Drive

    PRINT

    SAVE

    CH1

    MENU

    MATH

    MENU

    CH2

    MENU

    VOLT/DIV

    CH1 CH2 EXT.TRIG.

    SEC/DIV

    HORIZ

    MENU

    SET TO

    ZERO

    VERTICAL

    POSITION

    HORIZONTAL

    POSITION

    TRIGGER

    LEVEL

    TRIG

    MENU

    SET TO

    50%

    FORCE

    TRIG

    TRIG

    VIEW

    REF

    MENU

    SINGLE

    SEQ

    RUN/

    STOP

    AUTOSETHELP

    DEFAULT SETUP

    AUTORANGE SAVE/RECALL MEASURE ACQUIRE

    UTILITY CURSOR DISPLAY

    Exemple d'oscilloscope

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 7

    – Informez-vous sur le mode de fonctionnement de l'oscilloscope mis à votre disposition pour les mesures.

    – Complétez dans le tableau la désignation des éléments de commande permettant de déclencher les fonctions décrites.

    Élément de commande Description sommaire

    Interrupteur secteur (M/A).

    Positionne verticalement le signal de la voie 1 (CH1).

    Règle la sensibilité verticale du signal d’entrée CH1.

    Active ou désactive l'affichage de la voie 1.

    Positionne horizontalement tous les signaux.

    Règle le balayage temporel des signaux.

    Réglage de la sonde de la voie 1.

    Règle sur la voie 1 : DC, AC, Ground.

    Ground signifie : mise à la masse de la voie.

    Représente inversé le signal de la voie CH1.

    Réglage du déclenchement

    Règle le déclenchement sur front

    Connecteur d'entrée pour source de déclenchement externe.

    Voie de mesure 1

    Voie de mesure 2

    Fonctions de base d'un oscilloscope

    – Décrivez ce que fait la fonction de déclenchement dans les visualisations à l'oscilloscope.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    8 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    Pour créer des oscillogrammes, procédez comme suit : • Assurez-vous que le balayage en X et Y est étalonné. • Vérifiez que l'axe zéro est bien là où vous voulez qu'il soit. • Si vous réglez une fréquence sur le générateur de fonctions, mesurez la fréquence à l'oscilloscope pour

    être sûr qu'elle est correcte.

    • Quand vous dessinez une courbe, représentez toujours au moins une période du signal. • Tracez toujours l'axe zéro sur le dessin. • Notez toujours le balayage temporel sur le dessin. • Notez toujours sur le dessin le balayage de tension adopté sur chaque voie utilisée (CH1 et CH2). • Veillez à la référence de temps des signaux entre eux quand vous les dessinez. • Déclenchez toujours sur le signal le plus lent.

    TUcc

    Réglages sur l'oscilloscope :

    Y = 2 V/DIV

    X = 0,1 ms/DIV

    Exemple de mesure à l'oscilloscope

    – Analysez les résultats des mesures à l'oscilloscope. Déterminez la tension crête à crête Ucc et la période T.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 9

    Mesure à l'oscilloscope

    Étudiez à l'oscilloscope l'évolution dans le temps d'une tension alternative.

    – Réalisez le montage.

    Y1

    UG

    Montage d'étude à l'oscilloscope d'une tension alternative sinusoïdale

    Désignation Dénomination Valeurs

    – Oscilloscope 2 voies

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel

    – Raccordez le générateur de fonctions. – Procédez aux réglages indiqués des calibres sur l'oscilloscope. – Réglez le générateur de fonctions à la fréquence et à la tension nécessaires à l'obtention de la courbe

    de tension représentée sur l'oscillogramme ci-dessous.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    10 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    0 (Y )1

    Réglages sur l'oscilloscope

    Voie 1 :

    Y1 = 1 V/DIV

    Balayage :

    X = 0,1 ms/DIV

    Oscillogramme de la tension alternative à étudier

    – Mesurez la tension crête à crête Ucc et la période T.

    – Déterminez par le calcul, à partir des valeurs mesurées, la tension de crête Uc, la tension efficace Ueff et la fréquence f.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 11

    – Mesurez la valeur efficace Ueff au multimètre numérique. – Comparez la valeur efficace mesurée à la valeur efficace déterminée par le calcul.

    Mesure de tension, de courant et de puissance sur résistance ohmique

    Représentez l'allure dans le temps de la tension alternative aux bornes d'une résistance ohmique et celle du

    courant alternatif qui la traverse. Tracez à partir des valeurs instantanées du courant et de la tension la

    courbe de puissance de la résistance. Comparez cette courbe de puissance à celle obtenue avec une tension

    continue comparable.

    – Décrivez comment visualiser l'allure de courants à l'oscilloscope.

    – Décrivez ce que l'on entend par résistance réelle.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    12 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    – Indiquez la formule de calcul du courant I traversant la résistance réelle R.

    Tension et courant sur résistance réelle

    Y1

    Y2

    URM

    U

    f

    C = 6,6 V(sinusoïdale)

    = 1 kHz

    URL

    G

    RL

    RM

    Montage à résistances avec RL = 1 kΩ, RM = 100 Ω, Uc = 6,6 V, f = 1 kHz

    Désignation Dénomination Valeurs

    RL Résistance 1 kΩ/2W

    RM Résistance 100 Ω/2 W

    – Oscilloscope 2 voies

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel

    Nota Pour pouvoir visualiser en même temps les tensions URL et URM à l'oscilloscope, on fixe le point de référence des deux tensions entre les deux résistances. Ceci implique de devoir inverser le signal de

    tension URM. Veillez à ce que les branchements aux deux voies de mesure de l'oscilloscope n'entraînent pas de boucles de masse via les conducteurs de protection. Insérez donc un transformateur d'isolation.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 13

    – Réalisez le montage. – Raccordez le générateur de fonctions. – Réglez une tension sinusoïdale Uc = 6,6 V de fréquence f = 1 kHz. – Procédez sur l'oscilloscope aux réglages nécessaires aux mesures. – Mesurez à l'oscilloscope la tension sinusoïdale URL présente aux bornes de la résistance RL. – Reportez l'allure de la tension dans l'oscillogramme. – Mesurez à l'oscilloscope la tension sinusoïdale URM aux bornes de la résistance RM. – Reportez également l'allure de la tension dans l'oscillogramme.

    0 (Y ), 1 (Y )2

    Réglages sur l'oscilloscope

    Voie 1 :

    Y1 = 2 V/DIV

    Voie 2 :

    Y2 = 0,5 V/DIV

    (inverser)

    Balayage :

    X = 0,1 ms/DIV

    Centrer les axes zéro

    des voies 1 et 2

    Déclenchement : Y1

    Oscillogramme pour uRL et uRM

    – Déterminez les valeurs instantanées uRL et uRM aux instants indiqués dans le procès verbal de mesure. Notez les valeurs instantanées dans le procès verbal de mesure.

    – Calculez le courant i et la puissances active p aux instants indiqués dans le procès verbal de mesure. Notez également les valeurs. Indiquez aussi la formule de calcul de p.

    Formule de calcul des valeurs instantanées de la puissance :

    – Représentez les valeurs de courant i, les valeurs de tension u et la courbe de puissance p dans le diagramme préparé.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    14 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    Temps t (ms) Tension uRL (V) Tension uRM (V) Courant i (mA) Puissance active p (mW)

    0

    0,1

    0,15

    0,25

    0,35

    0,4

    0,5

    0,6

    0,65

    0,75

    0,85

    0,9

    1,0

    Procès verbal de mesure

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms

    -10-25

    00

    VmA

    615

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1025

    1,0

    Ten

    sio

    nu

    Co

    ura

    nt

    i

    Pu

    issa

    nce

    p

    -50

    0

    mW

    30

    20

    10

    -10

    -20

    -30

    -40

    50

    Courbes de tension, de courant et de puissance sur résistance ohmique RL

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 15

    – Décrivez l’allure des courbes de courant et de tension.

    – Décrivez l'allure de la courbe de puissance.

    L'allure de la courbe de la puissance active sur résistance ohmique peut se remplacer par une valeur

    moyenne constante. C'est la valeur efficace de la puissance.

    – Indiquez la formule de calcul de la valeur efficace de la puissance P.

    – Indiquez la valeur efficace de la puissance pour le montage à résistances.

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    16 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    Puissance en continu et en alternatif Pour pouvoir comparer les puissances en continu et en alternatif, déterminez la puissance dissipée par la

    résistance ohmique RL = 1 kΩ pour une tension continue de U = 4,24 V.

    – Justifiez pourquoi la mesure comparative en continu s'effectue pour une tension continue de U = 4,24 V.

    – Mesurez la puissance en continu du montage représenté suivant la méthode indirecte et notez les valeurs mesurées.

    U = 4,24 V URLRL

    Montage à résistance avec RL = 1 kΩ, U = 4,24 V

    Désignation Dénomination Valeurs

    RL Résistance 1 kΩ/2W

    – Multimètre numérique –

    – Bloc d'alimentation de base EduTrainer® –

    Nomenclature du matériel pour le montage à résistance en continu

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    © Festo Didactic GmbH & Co. KG 567221 Nom : __________________________________ Date : ____________ 17

    – Calculez à partir des valeurs mesurées la puissance électrique dissipée par la résistance ohmique dans le montage en continu.

    – Tracez les courbes des grandeurs électriques mesurées et de la puissance électrique calculée dans le diagramme correspondant.

    Circuit en continu Circuit en alternatif

    U = 4,24 V URLRL UC = 6 V URLRLG

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms00

    VmA

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1,0

    Ten

    sio

    nU

    Co

    ura

    nt

    I

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms00

    VmA

    410

    25

    -2-5

    -4-10

    -6-15

    -8-20

    1,0

    Ten

    sio

    nu

    Co

    ura

    nt

    i

    u

    i

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms 1,0

    Pu

    issa

    nce

    P

    0

    mW

    30

    20

    10

    tTemps

    0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 ms 1,0

    p

    Pu

    issa

    nce

    p

    0

    mW

    30

    20

    10

    50

    tTemps

    Comparaison : puissance dans le circuit en continu et dans le circuit en alternatif pour RL = 1 kΩ

  • TP 1 : Acquisition et représentation de grandeurs caractéristiques en courant alternatif

    18 Nom : __________________________________ Date : ____________ © Festo Didactic GmbH & Co. KG 567221

    – Décrivez la relation qui existe entre les deux courbes de puissance.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages false /GrayImageDownsampleType /Average /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages false /MonoImageDownsampleType /Average /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice