Base Plate Verification Example - asdip Plate Verification... · V / Vn/Ω Shear Design Ratio ........

download Base Plate Verification Example - asdip Plate Verification... · V / Vn/Ω Shear Design Ratio ..... 0.00 OK Tension-Shear Interaction ... ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN

If you can't read please download the document

Transcript of Base Plate Verification Example - asdip Plate Verification... · V / Vn/Ω Shear Design Ratio ........

  • 60 / DESIGN GUIDE 1, 2ND EDITION / BASE PLATE AND ANCHOR ROD DESIGN

    2. Assume a 14-in. 14-in. base plate. The effective ec-centricity is

    Then, e > ekern; therefore, anchor rods are required to resist the tensile force. The anchor rods are assumed to be 1.5 from the plate edge.

    3. Determine the length of bearing.

    thus,

    8. Determine required plate thickness:

    Note: Since the Mpl is expressed in units of kip-in./in., the plate thickness expressions can be formatted with-out the plate width (B) as such:

    9. Use plate size:

    N = 19 in.

    B = 19 in.

    t = 14 in.

    B.5.2 Example: Large Moment Base Plate Design, Triangular Pressure Distribution Approach

    Design the base plate shown in Figure B.4 for an ASD and LRFD required strength of 60 and 90 kips, respectively, and moments from the dead and live loads equal to 480 and 720 kip-in., respectively. The ratio of the concrete to base plate area (A2/A1) is 4.0. Bending is about the strong axis for the wide flange column W831 with d = bf = 8 in.; Fy of the base plate and anchor rods is 36 ksi and fc of the concrete is 3 ksi.

    1.

    LRFD ASD

    tM

    Fu requ crit

    y

    kip-in.

    ksi in.

    =

    =

    =

    4

    4 11 1

    0 90 361 17

    .

    ..

    tM

    Fa reqa crit

    y

    kip-in.

    ksi in.

    =

    =

    =

    4

    4 7 68 1 67

    361 19

    . .

    .

    LRFD ASD

    P

    M

    P

    A

    u

    u

    p

    =

    =

    =

    90

    720

    0 60 0 85 3 0 2

    0 60 1 71

    kips

    kip-in.

    . ( . )( . )( )

    . ( . )(( . )3 0

    P

    M

    P

    A

    a

    a

    p

    =

    =

    =

    60

    480

    0 85 3 0 2

    2 50

    1 7 3 01

    kips

    kip-in.

    ( . )( . )( )

    .

    ( . )( . ))

    .

    .

    2 50

    2 041

    P

    Ap

    = ksi

    LRFD ASD

    e = 720 kip-in./90 kips = 8.00 in. e = 480 kip-in./60 kips = 8.00 in.

    Figure B.4. Design example with large eccentricity.

    LRFD ASD

    =

    =

    f3 06 14 12 5

    2268

    . . ksi in. in.

    kips

    =

    =

    f 2 04 14 12 5

    2178

    . . ksi in. in.

    kips

    LRFD ASD

    A=

    ( )+

    268268 4

    3 06 146

    90 5 5 720

    3 06 143

    2 .

    .

    .

    = in.5 27.

    A=

    ( )+

    178178 4

    2 04 146

    60 5 5 480

    2 04 143

    2 .

    .

    .

    = in.5 27.

    PA

    p

    1

    3 06= . ksi

    AISC Design Guide 1, 2nd EditionBase Plate and Anchor Rod Design

    Verification Example

  • DESIGN GUIDE 1, 2ND EDITION / BASE PLATE AND ANCHOR ROD DESIGN / 61

    Anchor rods are placed at a 12-in. edge distance. The required moment strength, Mu pl or Ma pl, for a 1-in. strip of plate due to the tension in the anchor rods is

    The required moment strength due to the bearing stress distribution is critical.

    The required plate thickness is:

    Use a 14 14 1-in. base plate.

    4. Determine the required tensile strength of the anchor rod.

    5. Determine the required plate thickness.

    The moment for this determination is to be taken at the critical plate width. This is determined by assuming that the load spreads at 45 to a location 0.95d of the col-umn. The width is then taken as twice the distance from the bolt to the critical section for each bolt, provided that the critical section does not intersect the edge of the plate.

    The critical section, as shown in Figure B.5, is at 14 0.95(8)/2 = 3.2 in.

    The required moment strength, Mu pl or Ma pl, for a 1-in. strip of plate, determined from the bearing stress distri-bution in Figure B.4, is

    LRFD ASD

    T

    T T

    u

    rod u

    =

    == =

    3.06 ksi 5.27 in. 14 in. kips

    kips2

    90

    22 8

    2 11

    .

    / ..4 kips

    T

    T T

    a

    rod a

    =

    == =

    2.04 ksi 5.27 in. 14 in. kips

    kips2

    60

    15 2

    2 7

    .

    / .660 kips

    LRFD ASD

    Mu pl =( )

    +

    1 20 3 2

    2

    3 06 1 20

    2

    23

    . .

    ( . . )

    ksi in.

    ksi ksi ( . )3 2

    2

    2 in.

    = 12.5 in-kips/in.

    Ma pl ksi in.

    ksi ksi

    =( )

    +

    0 80 3 2

    2

    2 04 0 80

    2

    23

    . .

    ( . . )) ( . ) 3 22

    2 in.

    = 8.33 in-kips/in.

    LRFD ASD

    M u pl =

    kips in. in.

    in in.

    22 8 3 2 1 5

    2 3 2 1 5

    . ( . . )

    ( . . . )

    in.-kips/in.=11 4.

    M a pl =

    =

    kips in. in.

    in. in.

    i

    15 2 3 2 1 5

    2 3 2 1 5

    7 60

    . ( . . )

    ( . . )

    . nn.-kips/in.

    LRFD ASD

    t p = =

    4 12 5

    0 90 361 24

    ( . )

    ..

    in.-kips

    ksi in. t p = =

    4 8 33 1 67

    361 24

    ( . )( . ).

    in.-kips

    ksi

    Figure B.5. Critical plate width for anchor bolt (tension side).

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    GEOMETRY

    Column Section .................

    Width Length

    Column ..........

    Plate ..............

    ConcreteSupport

    Rod Offset .....

    Thickness of Grout ............

    Wp1

    Wp2

    Lp1

    Lp2

    W8X31

    8.0 8.0

    14.0 14.0

    14.0 14.0

    14.0 14.0

    5.5 5.5

    1.5

    in

    in

    in

    in

    in

    in

    OK

    OK

    OK

    OK

    SERVICE LOADS (ASD)

    Vertical Load P ................

    Bending Moment M .........

    Horizontal Load V ............

    Design Eccentricity e .......

    Design Eccentricity Is > L/2

    60.0

    40.0

    0.0

    8.0

    kip

    k-ft

    kip

    in

    MATERIALS

    Plate Steel Strength Fy ....

    Pier Concrete Strength f'c

    36.0

    3.0

    ksi

    ksi

    AXIALLY LOADED PLATES

    Cantilever Model

    Bearing Stress fp .............

    Critical Section @ Long m

    Critical Section @ Short n

    Plate Thickness tp ..........

    0.31

    3.20

    3.80

    0.64

    ksi

    in

    in

    in

    OK

    Thornton Model

    Bearing Strength Fp/ .....

    Critical Section @ Int n' .

    Design Moment @ Plate ...

    Plate Thickness tp ............

    2.04

    0.81

    0.10

    0.14

    ksi

    in

    k-in/in

    in

    BASE PLATES WITH MOMENT

    Blodgett Method

    Max. Bearing Stress fp ......

    Bearing @ Critical Section

    Moment @ Critical Section

    Moment due to Rod Tension

    Design Moment @ Plate ....

    Plate Thickness tp .............

    1.64

    0.88

    7.11

    4.86

    7.11

    1.15

    ksi

    ksi

    k-in/in

    k-in/in

    k-in/in

    in

    OK

    DeWolf Method

    Max. Bearing Stress fp ......

    Bearing @ Critical Section

    Moment @ Critical Section

    Moment due to Rod Tension

    Design Moment @ Plate ....

    Plate Thickness tp .............

    2.04

    0.80

    8.34

    3.86

    8.34

    1.24

    ksi

    ksi

    k-in/in

    k-in/in

    k-in/in

    in

    OK

    1

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    ANCHORAGE DESIGN

    Rod Material Specification .........

    Anchor Rod Size ..

    F1554-36

    (4) Rods , fya = 36.0 ksi, futa = 58.0 ksi

    1" diam. x 16.0 in emb.

    Concrete Is Cracked at Service Load Level

    Tension Analysis (kip)

    Total Tension Force N ..........

    Tension Force per Rod Ni ....

    Anchor Reinf: Use 2 Bars #5 per Rod

    15.4

    7.7

    kip

    kip

    Failure Mode Nn N / Nn/

    Steel Strength Nsa

    Rebars Strength Nrg

    Conc. Breakout Ncbg

    Pullout Strength Npn

    Side Blowout Nsbg

    N / Nn/ Tension Design Ratio .... OK

    2.00

    2.00

    2.00

    2.00

    2.00

    35.1

    74.4

    N.A.

    36.0

    N.A.

    0.44

    0.41

    N.A.

    0.43

    N.A.

    0.44

    Shear Analysis (kip)

    Shear Taken by Anchor Rods only

    Total Shear Force V ........... 0.0 kip

    Shear Force per Rod Vi ...... 0.0 kip

    All Anchor Rods Are Effective

    No Reinforcing Bars Provided

    Failure Mode Vn V / Vn/

    Steel Strength Vsa

    Rebars Strength Vrg

    Conc. Breakout Vcbg

    Conc. Pryout Vcpg

    2.31

    2.31

    2.14

    2.14

    16.9

    N.A.

    11.9

    52.8

    0.00

    N.A.

    0.00

    0.00

    0.00V / Vn/ Shear Design Ratio ...... OK

    Tension-Shear Interaction

    Combined Stress Ratio ........... 0.25 OK

    SUMMARY OF RESULTS

    Design Moment @ Plate ...

    Plate Thickness tp ............

    Max. Bearing Stress fp .....

    Bearing Strength Fp/ ......

    fp / Fp/ Design Ratio ..............

    8.3

    1.24

    2.04

    2.04

    1.00

    k-in/in

    in

    ksi

    ksi

    OK

    DESIGN IS DUCTILE

    DESIGN CODES

    Steel design .............

    Base plate design ....

    Anchorage design ...

    AISC 360-10 (14th Ed.)

    AISC Design Series # 1

    ACI 318-11 Appendix D

    2

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    Tension Breakout Shear Breakout

    3

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    Column Section .................

    Width Length

    Column ..........

    Plate ..............

    Concrete

    Support

    Rod Offset .....

    Thickness of Grout ............

    Wp1

    Wp2

    Lp1

    Lp2

    in

    in

    in

    in

    in

    in

    OK

    OK

    OK

    OK

    Vertical Load P ................

    Bending Moment M .........

    Horizontal Load V ............

    Design Eccentricity e .......

    Design Eccentricity Is > L/2

    8.0

    kip

    k-ft

    kip

    in

    Plate Steel Strength Fy ....

    Pier Concrete Strength f'c

    ksi

    ksi

    Bearing stress 60.0 / (14.0 * 14.0) = 0.3 ksi

    Bearing strength = 0.85 * 3.0 * = 5.1 ksi ACI 10.14.1

    Under-strength factor = 2.50 ACI 9.3.2.4

    Bearing strength ratio = =0.3

    2.0 / 2.50= 0.15 < 1.0 OK

    Critical section m =

    Critical section n =

    0.5 * (14.0 - 0.95 *8.0) = 3.2 in

    0.5 * (14.0 - 0.80 *8.0) = 3.8 in

    AISC-DG#1 3.1.2

    [4 * 8.0 * 8.0

    (8.0 + 8.0)] * 0.15 = 0.15 AISC-DG#1 3.1.2

    =+ -

    = 0.40

    = = 2.0 in

    Controlling section Max (3.2, 3.8, 0.40 * 2.0) = 3.8 in

    Plate moment 0.3 * 3.8 / 2 = 2.2 k-in/in

    Plate thickness = 3.8 * = 0.64 in AISC-DG#1 3.1.2

    1

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    Eccentricity 40.0 * 12 / 60.0 = 8.0 in > L / 6 = 14.0 / 6 = 2.3in

    Bearing length

    Y = 1.5 * (14.0 / 2 + 5.5) - 0.5 * [ + ] - = 5.3 in AISC-DG#1 B.4.2

    Max bearing stress 2.0 ksi

    Tension 2.0 * 5.3 * 14.0 / 2 - 60.0 = 15.4 kip AISC-DG#1 B.4.2

    Bearing at critical section 2.0 * (1 - 3.2 / 5.3) = 0.8 ksi

    Moment due to bearing

    Mb = 0.8 * 3.2 / 2 + (2.0 - 0.8) * 3.2 / 3 = 8.3 k-in/in

    Moment due to tension

    Mt = 7.7 * [3.2 - (14.0 / 2 - 5.5)] / [2 * (3.2 - (14.0 / 2 - 5.5))] = 3.9 k-in/in

    Plate thickness = = 1.24 in

    AISC-DG#1 3.1.2

    2

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    Rod Material Specification ...... F1554-36 , Use (4) Rods , fya = 36.0 ksi, futa = 58.0 ksi

    Anchor Rod Size .... 1" diam. x 16.0 in emb. , Ase = 0.61 in , Abrg = 1.50 in

    ACI D.5

    Total tension force N = 15.4 kip , # of tension rods = 2 , Tension force per rod Ni = 7.7 kip

    - Steel strength of anchors in tension ACI D.5.1

    Steel strength 0.606 * 58.0 = 35.1 kip ACI Eq. (D-2)

    Under-strength factor = 2.00 ACI D.4.3

    Steel strength ratio = =7.7

    35.1 / 2.00= 0.44 ACI D.4.1.1< 1.0 OK

    - Concrete breakout strength of anchors in tension ACI D.5.2

    Anchor reinforcement: Use 2 bars #5 per rod

    Bar strength 0.31 * 2 * 2 * 60 = 74.4 kip

    Under-strength factor = 2.00 ACI D.5.2.9

    Bar strength ratio = =15.4

    74.4 / 2.00= 0.41 ACI D.4.1.1< 1.0 OK

    Effective embedment 19.50 / 1.5 = 13.00 in ACI D.5.2.3

    Anchor group area

    Anc = (19.5 + 8.5) * (8.5 + 11.0 + 8.5) = 784.0 in ACI D.5.2.1

    Single anchor area 9 * (13.0) = 1521.0 in Eq. (D-5)

    Single anchor strength = 24 = 61.6 kip Eq. (D-6)

    Eccentricity factor 1.00 (No eccentric load) ACI D.5.2.4

    Edge effects factor = 0.7 + 0.38.5

    1.5 * 13.0= 0.83 ACI D.5.2.5

    Cracking factor 1.00 (Cracked concrete at service load level) ACI D.5.2.6

    Breakout strength

    784.0

    1521.01.00 * 0.83 * 1.00 * 61.6 = 26.4 kip Eq. (D-4)

    Under-strength factor = 2.00 ACI D.4.3

    Breakout strength ratio = =15.4

    26.4 / 2.00= 1.17 ACI D.4.1.1> 1.0 NG

    Bar strength ratio controls (0.41 < 1.17) ACI D.5.2.9

    - Concrete pullout strength of anchors in tension ACI D.5.3

    Single anchor strength 8 * 1.50 * 3.0 = 36.0 kip ACI Eq. (D-14)

    Cracking factor 1.00 (Cracked concrete at service load level) ACI D.5.3.6

    Pullout strength 1.00 * 36.0 = 36.0 kip ACI Eq. (D-13)

    Under-strength factor = 2.00 ACI D.4.3

    Pullout strength ratio = =7.7

    36.0 / 2.00= 0.43 ACI D.4.1.1< 1.0 OK

    3

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    - Concrete side-face blowout strength of anchors in tension ACI D.5.4

    Side-face blowout Nsbg = N.A. (Embed < 2.5 Ca , 16.0 < 2.5 * 8.5 = 21.3) ACI D.5.4.1

    Tension Design Ratio = = 0.44 < 1.0 OK ACI D.4.1.1

    ACI D.5

    Shear resisted by Anchor Rods only

    Total shear force V = 0.0 kip , Shear per rod Vi = 0.0 kip ,

    (anchor rods are welded to the base plate)

    (all anchor rods are effective)

    - Steel strength of anchor rods in shear

    Steel strength 0.6 * 0.61 * 58.0 * 0.80 = 16.9 kip ACI D.6.1.2

    Under-strength factor = 2.31 ACI D.4.3

    Steel strength ratio = =0.0

    16.9 / 2.31= 0.00 < 1.0 OK ACI D.4.1.1

    - Concrete breakout strength of anchors in shear ACI D.5.2

    No Reinforcing bars provided

    Anchor group area

    Avc = (1.5 * 8.00) * (8.50 + 11.00 + 8.50) = 336.0 in ACI D.6.2.1

    Single anchor area 4.5 * (8.00) = 288.0 in Eq. (D-32)

    Single anchor strength

    Vb = Vb = 11.2 kip Eq. (D-33)

    Eccentricity factor 1.00 (No eccentric load) ACI D.6.2.5

    Edge effects factor = 0.7 + 0.38.50

    1.5 * 8.0= 0.91 ACI D.6.2.6

    Cracking factor 1.00 (Cracked concrete at service load level) ACI D.6.2.7

    Thickness factor ACI D.6.2.8

    Breakout strength

    336.0

    288.01.00 * 0.91 * 1.00 * 1.00 * 11.2 = 11.9 kip Eq. (D-31)

    Under-strength factor = 2.14 ACI D.4.3

    Breakout strength ratio = =0.0

    11.9 / 2.14= 0.00 < 1.0 OK ACI D.4.1.1

    Breakout strength ratio controls (0.00 < 0.00) ACI D.6.2.9

    4

  • Project:

    Engineer:

    Descrip:

    Verification Example

    Javier Encinas, PE

    Base Plate Verification

    Page # ___

    7/20/2014

    ASDIP Steel 3.2.5 STEEL BASE PLATE DESIGN www.asdipsoft.com

    - Concrete pryout strength of anchors in shear

    Pryout strength 2.0 * 11.9 = 52.8 kip ACI D.6.3.1

    Under-strength factor = 2.14 ACI D.4.3

    Pryout strength ratio = =0.0

    52.8 / 2.14= 0.00 < 1.0 OK ACI D.4.1.1

    Shear Design Ratio = = 0.00 < 1.0 OK ACI D.4.1.1

    Combined Stress Ratio =

    Combined Stress Ratio = + = 0.25 < 1.0 OK ACI RD.7

    Anchorage design is ductile

    Steel design ...................

    Base plate design ..........

    Anchorage design .........

    AISC 360-10 (14th Ed.)

    AISC Design Series # 1

    ACI 318-11 Appendix D

    5