Average Fe K α emission from distant AGN

27
Average Fe K Average Fe K α α emission emission from distant AGN from distant AGN Amalia Corral Amalia Corral IFCA(Santander)/OAB(Milano) IFCA(Santander)/OAB(Milano) M.J. Page M.J. Page : MSSL (UCL), UK : MSSL (UCL), UK F.J. Carrera, X. Barcons, J. Ebrero F.J. Carrera, X. Barcons, J. Ebrero : IFCA (CSIC-UC), Spain : IFCA (CSIC-UC), Spain S. Mateos, J.A. Tedds, M.G. Watson S. Mateos, J.A. Tedds, M.G. Watson : University of Leicester, : University of Leicester, UK UK A. Schwope, M. Krumpe A. Schwope, M. Krumpe : Astrophysikalisches Institut Postdam, : Astrophysikalisches Institut Postdam, Germany Germany X-ray Universe 2008, Granada, 27 th May 2008

description

Average Fe K α emission from distant AGN. Amalia Corral IFCA(Santander)/OAB(Milano) M.J. Page : MSSL (UCL), UK F.J. Carrera, X. Barcons, J. Ebrero : IFCA (CSIC-UC), Spain S. Mateos, J.A. Tedds, M.G. Watson : University of Leicester, UK - PowerPoint PPT Presentation

Transcript of Average Fe K α emission from distant AGN

Page 1: Average Fe K α  emission from distant AGN

Average Fe KAverage Fe Kαα emission emission from distant AGNfrom distant AGN

Amalia CorralAmalia CorralIFCA(Santander)/OAB(Milano)IFCA(Santander)/OAB(Milano)

M.J. PageM.J. Page: MSSL (UCL), UK: MSSL (UCL), UKF.J. Carrera, X. Barcons, J. EbreroF.J. Carrera, X. Barcons, J. Ebrero: IFCA (CSIC-UC), Spain: IFCA (CSIC-UC), SpainS. Mateos, J.A. Tedds, M.G. WatsonS. Mateos, J.A. Tedds, M.G. Watson: University of Leicester, UK: University of Leicester, UKA. Schwope, M. KrumpeA. Schwope, M. Krumpe: Astrophysikalisches Institut Postdam, : Astrophysikalisches Institut Postdam, GermanyGermany

X-ray Universe 2008, Granada, 27th May 2008

Page 2: Average Fe K α  emission from distant AGN

IntroductionIntroduction

XRB (X-Ray Background) is known to be XRB (X-Ray Background) is known to be composed of discrete sources, most of them are composed of discrete sources, most of them are AGN.AGN.

XRB synthesis models, ingredients:XRB synthesis models, ingredients: - AGN intrinsic column density and acretion rate - AGN intrinsic column density and acretion rate

distribution and their evolution as a function of distribution and their evolution as a function of Luminosity and redshift.Luminosity and redshift.

- - Average radiative efficiency of accretion Average radiative efficiency of accretion onto Supermassive Black Holes -> Measure onto Supermassive Black Holes -> Measure from from Fe line relativistic profile. Fe line relativistic profile.

Inclination angle

Maximum-rotating BH

Non-rotating BH

Page 3: Average Fe K α  emission from distant AGN

Previous ResultsPrevious Results

Local samples:Local samples:

EW(relativistic) ~ 100-200 eV (Guainazzi+06, EW(relativistic) ~ 100-200 eV (Guainazzi+06, Nandra+07) Nandra+07)

Distant AGNDistant AGN -> -> average or stack many average or stack many spectra together:spectra together:

EW(relativistic) ~ 400 (type1) - 600(type2) eVEW(relativistic) ~ 400 (type1) - 600(type2) eV

(Streblyanska+05,Brusa+05)(Streblyanska+05,Brusa+05)

Page 4: Average Fe K α  emission from distant AGN

Our sampleOur sample

AGN from theAGN from the AXISAXIS (An International XMM- (An International XMM-Newton Survey) and Newton Survey) and XWASXWAS (XMM-Newton (XMM-Newton Wide Angle Survey) medium surveys Wide Angle Survey) medium surveys (average flux ~ 5x10(average flux ~ 5x10-14-14 erg cm erg cm-2-2 s s-1-1) .) .

Optical spectroscopic identifications (>80 Optical spectroscopic identifications (>80 counts 0.2-12 keV):counts 0.2-12 keV):

Type 1 AGN:Type 1 AGN: 606 sources606 sourcesType 2 AGN:Type 2 AGN: 117 sources117 sources

Page 5: Average Fe K α  emission from distant AGN

Our sampleOur sample

Sample selection:Sample selection: Individual spectra > 80 counts in 0.2-12 keVIndividual spectra > 80 counts in 0.2-12 keV

Page 6: Average Fe K α  emission from distant AGN

Averaging methodAveraging method

Fit an absorbed power law above 1 keV rest-Fit an absorbed power law above 1 keV rest-frame and unfold the un-grouped spectra: frame and unfold the un-grouped spectra: best-fit modelbest-fit model..

Correct for Galactic Absorption.Correct for Galactic Absorption. Shift to rest-frame.Shift to rest-frame. Normalize using the 2-5 keV rest-frame Normalize using the 2-5 keV rest-frame

band.band. Rebin to 1000 final counts/bin.Rebin to 1000 final counts/bin. Average.Average.

Page 7: Average Fe K α  emission from distant AGN

ResultsResults

Fit simple power law in 2-10 keV :

Type 1: Γ=1.92±0.02 Type 2: Γ=1.44±0.02

Type 1 AGN > 200000 counts

Type 2 AGN ~ 30000 counts

Page 8: Average Fe K α  emission from distant AGN

ResultsResults

Broad relativistic profile not clearly present

Type 1 AGN > 200000 counts

Type 2 AGN ~ 30000 counts

Page 9: Average Fe K α  emission from distant AGN

SimulationsSimulations

100 simulations (100 simulations (best-fit modelbest-fit model) per real ) per real spectrum including Poisson counting noise spectrum including Poisson counting noise and keeping the same 2-8 keV observed and keeping the same 2-8 keV observed flux, exposure time and calibration flux, exposure time and calibration matrices as for the real data.matrices as for the real data.

Significance contours by removing the Significance contours by removing the 32% (132% (1σσ level) and 5% (2 level) and 5% (2σσ level) extreme level) extreme values.values.

Page 10: Average Fe K α  emission from distant AGN

ResultsResults

·· 1σ confidence limit

-- 2σ confidence limit

▪ Average spectrum

● Simulated continuum

Page 11: Average Fe K α  emission from distant AGN

ResultsResults

·· 1σ confidence limit

-- 2σ confidence limit

▪ Average spectrum

● Simulated continuum

Page 12: Average Fe K α  emission from distant AGN

Spectral fitSpectral fit

Baseline model:Baseline model:

o 100-simulations continuum: mixture 100-simulations continuum: mixture

of absorbed power laws.of absorbed power laws.o Narrow emission line.Narrow emission line.

Page 13: Average Fe K α  emission from distant AGN

Spectral fit – Type 1 AGNSpectral fit – Type 1 AGN

Best-fit model:Best-fit model: Baseline model plus Baseline model plus neutral reflection:neutral reflection:

EEgaus = 6.36±0.05 keV= 6.36±0.05 keV

σσgausgaus = 80±80 eV= 80±80 eV

EWEWgaus gaus = 90±30 eV= 90±30 eVi = 60±20ºi = 60±20ºR=0.5±0.20R=0.5±0.20

Page 14: Average Fe K α  emission from distant AGN

Spectral fit – Type 1 AGNSpectral fit – Type 1 AGN

Best-fit model:Best-fit model: Baseline model plus Baseline model plus neutral reflection:neutral reflection:

EEgaus = 6.36±0.05 keV= 6.36±0.05 keV

σσgausgaus = 80±80 eV= 80±80 eV

EWEWgaus gaus = 90±30 eV= 90±30 eVi = 60±20ºi = 60±20ºR=0.5±0.20R=0.5±0.20

Page 15: Average Fe K α  emission from distant AGN

Spectral fit – Type 1 AGNSpectral fit – Type 1 AGN

Best-fit model:Best-fit model: Baseline model plus Baseline model plus neutral reflection:neutral reflection:

EEgaus = 6.36±0.05 keV= 6.36±0.05 keV

σσgausgaus = 80±80 eV= 80±80 eV

EWEWgaus gaus = 90±30 eV= 90±30 eVi = 60±20ºi = 60±20ºR=0.5±0.20R=0.5±0.20

EW(broad relativistic line) < 400 eV at 3σ confidence level

Page 16: Average Fe K α  emission from distant AGN

Spectral fit – Type 2 AGNSpectral fit – Type 2 AGN

Model:Model: Baseline model Baseline model plus neutral reflection:plus neutral reflection:

EEgaus = 6.36±0.07 keV= 6.36±0.07 keV

σσgausgaus = 80±60 eV= 80±60 eV

EWEWgaus gaus = 70±30 eV= 70±30 eV

i < 80 i < 80

R > 0.7R > 0.7

Page 17: Average Fe K α  emission from distant AGN

Spectral fit – Type 2 AGNSpectral fit – Type 2 AGN

Model:Model: Baseline model Baseline model plus neutral reflection:plus neutral reflection:

EEgaus = 6.36±0.07 keV= 6.36±0.07 keV

σσgausgaus = 80±60 eV= 80±60 eV

EWEWgaus gaus = 70±30 eV= 70±30 eV

i < 80 i < 80

R > 0.7R > 0.7

Page 18: Average Fe K α  emission from distant AGN

Spectral fit – Type 2 AGNSpectral fit – Type 2 AGN

Model:Model: Baseline model plus Baseline model plus Laor line:Laor line:

EEgaus = 6.36±0.07 keV= 6.36±0.07 keV

EElaor ~ 6.7 keV~ 6.7 keV

σσgausgaus = 80±60 eV= 80±60 eV

EWEWgaus gaus = 70±40 eV= 70±40 eV

EWEWlaor laor ~ ~ 300 eV300 eV

i ~ 60ºi ~ 60º

Page 19: Average Fe K α  emission from distant AGN

Spectral fit – Type 2 AGNSpectral fit – Type 2 AGN

Model:Model: Baseline model plus Baseline model plus Laor line:Laor line:

EEgaus = 6.36±0.07 keV= 6.36±0.07 keV

EElaor ~ 6.7 keV~ 6.7 keV

σσgausgaus = 80±60 eV= 80±60 eV

EWEWgaus gaus = 70±40 eV= 70±40 eV

EWEWlaor laor ~ ~ 300 eV300 eV

i ~ 60ºi ~ 60º

Page 20: Average Fe K α  emission from distant AGN

Spectral fit – Type 2 AGNSpectral fit – Type 2 AGN

Model:Model: Baseline model plus Baseline model plus Laor line:Laor line:

EEgaus = 6.36±0.07 keV= 6.36±0.07 keV

EElaor ~ 6.7 keV~ 6.7 keV

σσgausgaus = 80±60 eV= 80±60 eV

EWEWgaus gaus = 70±40 eV= 70±40 eV

EWEWlaor laor ~ ~ 300 eV300 eV

i ~ 60ºi ~ 60º

Neutral reflection and Relativistic line give the same

fit

Page 21: Average Fe K α  emission from distant AGN

Type 1 AGN: sub-samplesType 1 AGN: sub-samples

Number of counts 2-10 keV > 2x10Number of counts 2-10 keV > 2x105 5 allow allow us to test evolution with different us to test evolution with different parameters by dividing the sample in 3 parameters by dividing the sample in 3 subsamples of equal quality (i.e. number of subsamples of equal quality (i.e. number of total counts): redshift, flux and luminosity.total counts): redshift, flux and luminosity.

We found no dependence for the emission We found no dependence for the emission features on redshift or flux.features on redshift or flux.

Dependence on Luminosity -> Dependence on Luminosity -> Iwasawa- Taniguchi effect?Iwasawa- Taniguchi effect?

Page 22: Average Fe K α  emission from distant AGN

Type 1 AGN: sub-samplesType 1 AGN: sub-samples

L(0.5-2 keV) (erg s-1) EW narrow line (eV)

1x1042 – 2x1044 190±50

2x1044 – 6x1044 150±80

6x1044 – 6x1046 50±40

Page 23: Average Fe K α  emission from distant AGN

ConclusionsConclusions Narrow emission line significatively detected in Narrow emission line significatively detected in

Type 1 and Type 2 AGN average spectra. E ~ 6.4 Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV.keV, EW ~ 100 eV.

Type 1 AGN: Type 1 AGN: No compelling evidence of a Broad No compelling evidence of a Broad component in the average spectrum. Continuum component in the average spectrum. Continuum features best represented by a reflection features best represented by a reflection component. Relativistic line upper limit component. Relativistic line upper limit EW<400 EW<400 eVeV (3 (3σσ confidence). confidence).

Iwasawa-Taniguchi effect for narrow line Iwasawa-Taniguchi effect for narrow line component marginally detected.component marginally detected.

Type 2 AGN:Type 2 AGN: Statistics insufficient to distinguish Statistics insufficient to distinguish between a relativistic line and a reflection between a relativistic line and a reflection component. component.

Page 24: Average Fe K α  emission from distant AGN

ConclusionsConclusions Narrow emission line significatively detected in Narrow emission line significatively detected in

Type 1 and Type 2 AGN average spectra. E ~ 6.4 Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV.keV, EW ~ 100 eV.

Type 1 AGN: Type 1 AGN: No compelling evidence of a Broad No compelling evidence of a Broad component in the average spectrum. Continuum component in the average spectrum. Continuum features best represented by a reflection features best represented by a reflection component. Relativistic line upper limit component. Relativistic line upper limit EW<400 EW<400 eVeV (3 (3σσ confidence). confidence).

Iwasawa-Taniguchi effect for narrow line Iwasawa-Taniguchi effect for narrow line component marginally detected.component marginally detected.

Type 2 AGN:Type 2 AGN: Statistics insufficient to distinguish Statistics insufficient to distinguish between a relativistic line and a reflection between a relativistic line and a reflection component. component.

Page 25: Average Fe K α  emission from distant AGN

ConclusionsConclusions Narrow emission line significatively detected in Narrow emission line significatively detected in

Type 1 and Type 2 AGN average spectra. E ~ 6.4 Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 100 eV.keV, EW ~ 100 eV.

Type 1 AGN: Type 1 AGN: No compelling evidence of a broad No compelling evidence of a broad component in the average spectrum. Continuum component in the average spectrum. Continuum features best represented by a reflection features best represented by a reflection component. Relativistic line upper limit component. Relativistic line upper limit EW<400 EW<400 eVeV (3 (3σσ confidence). confidence).

Iwasawa-Taniguchi effect for narrow line Iwasawa-Taniguchi effect for narrow line component marginally detected.component marginally detected.

Type 2 AGN:Type 2 AGN: Statistics insufficient to distinguish Statistics insufficient to distinguish between a relativistic line and a reflection between a relativistic line and a reflection component. component.

Page 26: Average Fe K α  emission from distant AGN

ConclusionsConclusions Narrow emission line significatively detected in Narrow emission line significatively detected in

Type 1 and Type 2 AGN average spectra. E ~ 6.4 Type 1 and Type 2 AGN average spectra. E ~ 6.4 keV, EW ~ 90 eV.keV, EW ~ 90 eV.

Type 1 AGN: Type 1 AGN: No compelling evidence of a broad No compelling evidence of a broad component in the average spectrum. Continuum component in the average spectrum. Continuum features best represented by a reflection features best represented by a reflection component. Relativistic line upper limit component. Relativistic line upper limit EW<400 EW<400 eVeV (3 (3σσ confidence). confidence).

Iwasawa-Taniguchi effect for narrow line Iwasawa-Taniguchi effect for narrow line component marginally detected.component marginally detected.

Type 2 AGN:Type 2 AGN: Statistics insufficient to distinguish Statistics insufficient to distinguish between a relativistic line and a reflection between a relativistic line and a reflection component. component.

Page 27: Average Fe K α  emission from distant AGN

THANK YOUTHANK YOU