Atomic Structure and the Fine structure constant...
Embed Size (px)
Transcript of Atomic Structure and the Fine structure constant...
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Atomic Structure and the Fine structure constant α
Niels Bohr Erwin Schrödinger Wolfgang Pauli Paul Dirac
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Old Bohr Model
An electron is held in orbit by the Coulomb force: (equals centripetal force)
20
22
4 nn rZe
rmv
πε=
The size of the orbit is quantized, and we know the size of an atom !
CoulomblCentripeta FF =
nhnmvrL ===π2
Bohrs postulate: Quantization of angular momentum
2
22
0
222
4 mn
mrZerv ==
πε
1
2
20
22
rZn
mZehnrn == π
ε mme
hr 1020
2
1 10529.0−×==
πε
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Old Bohr Model: Energy Quantisation
∞−=−= RnZ
rZemvE
nn 2
2
0
22
421
πεQuantisation of energy
2
2
0
2
24 emeR
=∞ πε
The Rydberg constant is the scale unit of energies in the atom
2
2
2
2
2nZR
nZEn −⇒−= ∞
Energies in the atom in atomic units 1 Hartree = 2 Rydberg
222
2
2
2
2mc
nZR
nZEn α−=−= ∞ c
e0
2
4πεα =with
dimensionless energy
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Old Bohr Model; velocity of the electron
ce0
2
4πεα =
cZvn α==1
Limit on the number of elements ? Classical argument
Velocity in Bohr orbit
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Schrodinger Equation; Radial part: special case l=0
( ) ERRmr
rVdrdRr
drd
mr=
+++− 1
2)(
2 22
22
2
Find a solution for 0=
ERRr
ZeRr
R =−
+−
0
22
4'2"
2 πεµ
Physical intuition; no density for ∞→r
trial: ( ) arAerR /−=
aRe
aAR ar −=−= − /'
2/
2" aRe
aAR ar == −
Er
Zearam
=−
−−
0
2
2
2
421
2 πε
must hold for all values of r
04 0
22
=−πεZe
ma
Prefactor for 1/r:
mZea 2
204 πε=Solution for the length scale paramater
01 aZ
a = with eme
a 22
00
4 πε= Bohr radius
Solutions for the energy
2
2
0
22
2
242 emeZma
E
−=−=
πε
∞−= RZE2 Ground state in the
Bohr model (n=1)
Quantum mechanics: same result
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The effect of the proton-mass in the atom
Relative coordinates:
21 rrr −=
Centre of Mass
021 =+ rMrm
Position vectors:
rMm
Mr +
=1
rMm
mr +
−=2
Velocity vectors:
vMm
Mv +
=1
vMm
Mv +
−=2
Relative velocity
dtrdv
=
Kinetic energy
2222
211 2
121
21 vvmvmK µ=+=
With reduced mass
MmmM+
=µ
Angular momentum
vrrvmrvmL µ=+= 222111
Centripetal force
rv
rvm
rvmF
2
2
222
1
211 µ===
Quantisation of angular momentum:
nhnvrL ===π
µ2
Problem is similar, but m µ r relative coordinate
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Reduced mass in the old Bohr model isotope shifts
Quantisation of radius in orbit:
0
2
2
20
2 4 amZn
eZnr en µµ
πε==
Energy levels in the Bohr model:
∞
−= R
mnZE
en
µ2
2
Results
Rydberg constant:
∞
= R
mR
eH
µ
1. Isotope shift on an atomic transition 2. Effect of proton/electron mass ratio on the energy levels
µµµ+
=+
=+
=+
=1/1
//mM
mMMm
MmMm
mMme
red
Conclusion: the atoms are not a good probe to detect a variation of µ
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
General conclusions on atoms and atomic structure
Conclusion 2: the atoms are not a good probe to detect a variation of µ
222
2
2
2
2mc
nZR
nZEn α−=−= ∞
dimensionless energy
Conclusion 1: All atoms have the Rydberg as a scale for energy; they cannot be used to detect a variation of α
µµµ+
=+
=1/1
/mM
mMmred
Note units (different units in this equation): 1710)83(5490973731568.1 −∞ ×=−= mhc
ER I
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Relativistic effects in atoms
No classical analogue for this phenomenon
Pauli: There is an additional “two-valuedness” in the spectra of atoms, behaving like an angular momentum
21
=s
Goudsmit and Uhlenbeck This may be interpreted/represented as an angular momentum
Origin of the spin-concept -Stern-Gerlach experiment; space quantization -Theory: the periodic system requires an additional two-valuedness
Electron spin
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Electron spin as an angular momentum operator
21
=s
Spin is an angular momentum, so it should satisfy
( ) ss msssmsS ,1, 22 += sssz msmmsS ,, =
21,
21
±== sms
Lg BL Lµµ −=
In analogy with the orbital angular momentum of the electron
A spin (intrinsic) angular momentum can be defined:
Sg BS S µµ −=
2=Sg
1=Lg
a) in relativistic Dirac theory
b) in quantum electrodynamics
...00232.2=Sg
Note: the spin of the electron cannot be explained from a classically “spinning” electronic charge
Electron radius from EM-energy:
ee r
ecm0
22
4πε= Angular momentum
from spin
21
52 2 ===
eeee r
vrmIL ω
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Spin-orbit interaction
Frame of nucleus:
+Ze
-e
v
+Ze
-e
v−
Frame of electron:
The moving charged nucleus induces a magnetic field at the location of the electron, via Biot-Savart’s law
( )3
04 r
rvZeB ×−
=π
µ
Use vrmL
×= 2001
c=εµ;
Then 320int 4 rcm
LZeBe
πε=
Spin of electron is a magnet with dipole
Sg BeS
µµ −=
The dipole orients in the B-field with energy
LSrcm
ZeBVe
SLS
⋅=⋅−= 3220
2
4πεµ
A fully relativistic derivation (Thomas Precession) yields with
( ) LSrVLS
⋅= ζ
( )nle rcm
Zer 3220
2 18πε
ζ =
Use:
( )( )
( )( )12/12
12/121
3
3
333
++
=++
=
nnmcZ
nar
α
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Fine structure in spectra due to Spin-orbit interaction
jnlj
jSLjSO
lsjmSLlsjm
lsjmVlsjmE
⋅=
=
ζ
In first order correction to energy for state
Evaluate the dot-product
SLSLSLJ
⋅++=+= 22222
Then
( )( ) ( ) ( ){ } j
jj
sjmssjj
sjmSLJsjmSL
11121
21
2
222
+−+−+=
−−=⋅
Then the full interaction energy is:
( ) ( ) ( )( )( )
++
+−+−+=
12/12111
342
nssjjhcRZESO α
S-states 0=SOEsj == ,0
P-states
3
42
2nhcRZESO
α=
2/1,1 ±== j
jlsjm
Show that the “centre-of-gravity” does not shift
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Kinetic Relativistic effects in atomic hydrogen
Relativistic kinetic energy
+−+
=−+
=−+=
44
4
22
22
22222
24222
821
/1
cmp
cmpmc
mccmpmc
mccmcpErelkin
First relativistic correction term
23
4
8 cmpKe
rel −=
To be used in perturbation analysis:
( )
−
+−
=Ψ−Ψ=
nRhc
nZ
cmpK jmne
jmnrel
83
121
2
8
3
24
33
4
α
∇−=
ip operator does not
change wave function
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Relativistic effects in atomic hydrogen: SO + Kinetic
Relativistic energy levels:
( )
−
+−=
njRhc
nZEE nnj 4
312
22 3
24α
j=1/2 levels degenerate
P.A.M. Dirac
Also the outcome of the Dirac equation
( )t
ihmcpc∂
∂=+⋅
ψψβα 2
Fine structure splitting ~ Z4α2
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Hyperfine structure in atomic hydrogen: 21 cm
F=1
F=0
Nucleus has a spin as well, and therefore a magnetic moment
Ig NII µµ = ;
pN M
e2
=µ
Interaction with electron spin, that may have density at the site of the nucleus (Fermi contact term)
( )22221 IJFJISI −−=⋅=⋅
Splitting : F=1 ↔ F=0 1.42 GHz or λ = 21 cm
Magnetic dipole transition Scaling: µα /2pg
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Alkali Doublets
3220
2
24 rcmLSZeVSL
⋅
=πε with
( )22221 SLJLS −−=⋅
Selection rules: 1±=∆ 1,0 ±=∆j0=∆s
ns
np 2P3/2
2P1/2
2S1/2
3
42
2nhcRZESO
α=
Na doublet
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Alkali Doublet Method
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Many Multiplet Method
1.
2. 3.
1. Strong transitions 2. Weak, narrow transitions 3. Hyperfine transitions
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
The Many Multiplet Method
∞−= RnZEn 2
2
2
2
0
2
24 emeR
=∞ πε
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Relativistic corrections in the Many Multiplet Method
( )
−
+−=∆
njnZZme
n 43
122
2 32
2
24 α
Relativistic correction to energy level
(note: atomic units different)
( )( )2/1
2
+≅∆
jZEnn ν
α
with: En is the Rydberg energy scaling ν is effective quantum number
Further include Many body effects
( ) ( )
−
+≅∆ ljZC
jZEnn ,,2/1
12
να
These effects separate light atoms (low Z) from heavy atoms (high Z)
( ) 6.0,, ≅ljZCIn many cases:
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Many Multiplet Method
Dependence of the energy levels on α: (two values for different times)
in simplified form:
with:
Advantages of MM-Method: 1) Many atoms can be “used” simultaneously
2) Transition frequencies can be used (not just splittings) 3) Combine heavy and light atoms
“q” given in frequency/energy units
2
=
lab
xαα
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Results
All allowed E1 transitions Negative signs for: d→p and p→s
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Quasar Lines
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
( )
+−= 2/30 1
11z
TT
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
“Quasar Absorptie Spectra”
To Earth
Quasar
CIV SiIV CII SiII Lyαem
Lyman limit Lyα
NVem
SiIVem
Lyβem
Lyβ SiII
CIVem
Quasar absorption spectra
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
On weak and strong lines
E2
E1
νhEE =− 12 νCu
E2
E1
νhEE =− 12 νCu A νBu
BC =
3
38ch
BA νπ
= A1
=τ
Einstein coefficients
22
0
2
3 ijeB µ
επ
=
Dipole strength Lifetime Heisenberg uncertainty
πτ21
=Γ
Strong lines broadened Weak lines narrow
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Similar calculations for “laboratory lines”
Clock transitions
Ion traps Optical lattice clock
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
“Accidental degeneracies”
Dy atom
Cingoz et al, Phys. Rev. Lett. 98, 040801 (2007)
Level A: q/(hc)= 6x103 cm-1
Level B: q/(hc)= -24x103 cm-1
∆ν(A-B) ~ 235 MHz
∆q~ 30x 103 cm-1 ~ 9x105 GHz
Hz
qq
×=
∆=
∆=
αα
αα
ααδν
15
2
108.1
2
Look for “rate of change”
1510~ −
αα per year
Hz8.1=δν per year
Precision ~ 10-8
τΒ=200 µs τΑ=7.9 µs
ΓA~ 2x104 Hz ; Line split~ 10-4
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Modern Clock Comparisons
Further parametrization:
( )αFRyconstf ⋅⋅=
dtdA
dtRyd
dtfd αlnlnln
⋅+=
αlnln
dFdA =
Constraints from various experiments
Cf: Peik, Nucl. Phys B Supp. 203 (2010) 18
-
Lecture Notes Fundamental Constants 2015; W. Ubachs
Functional dependence on fundamental constants
Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30