Atomic Structure and the Fine structure constant...

of 30 /30
Lecture Notes Fundamental Constants 2015; W. Ubachs Atomic Structure and the Fine structure constant α Niels Bohr Erwin Schrödinger Wolfgang Pauli Paul Dirac

Embed Size (px)

Transcript of Atomic Structure and the Fine structure constant...

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Atomic Structure and the Fine structure constant α

    Niels Bohr Erwin Schrödinger Wolfgang Pauli Paul Dirac

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Old Bohr Model

    An electron is held in orbit by the Coulomb force: (equals centripetal force)

    20

    22

    4 nn rZe

    rmv

    πε=

    The size of the orbit is quantized, and we know the size of an atom !

    CoulomblCentripeta FF =

    nhnmvrL ===π2

    Bohrs postulate: Quantization of angular momentum

    2

    22

    0

    222

    4 mn

    mrZerv ==

    πε

    1

    2

    20

    22

    rZn

    mZehnrn == π

    ε mme

    hr 1020

    2

    1 10529.0−×==

    πε

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Old Bohr Model: Energy Quantisation

    ∞−=−= RnZ

    rZemvE

    nn 2

    2

    0

    22

    421

    πεQuantisation of energy

    2

    2

    0

    2

    24 emeR

    =∞ πε

    The Rydberg constant is the scale unit of energies in the atom

    2

    2

    2

    2

    2nZR

    nZEn −⇒−= ∞

    Energies in the atom in atomic units 1 Hartree = 2 Rydberg

    222

    2

    2

    2

    2mc

    nZR

    nZEn α−=−= ∞ c

    e0

    2

    4πεα =with

    dimensionless energy

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Old Bohr Model; velocity of the electron

    ce0

    2

    4πεα =

    cZvn α==1

    Limit on the number of elements ? Classical argument

    Velocity in Bohr orbit

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Schrodinger Equation; Radial part: special case l=0

    ( ) ERRmr

    rVdrdRr

    drd

    mr=

    +++− 1

    2)(

    2 22

    22

    2

    Find a solution for 0=

    ERRr

    ZeRr

    R =−

    +−

    0

    22

    4'2"

    2 πεµ

    Physical intuition; no density for ∞→r

    trial: ( ) arAerR /−=

    aRe

    aAR ar −=−= − /'

    2/

    2" aRe

    aAR ar == −

    Er

    Zearam

    =−

    −−

    0

    2

    2

    2

    421

    2 πε

    must hold for all values of r

    04 0

    22

    =−πεZe

    ma

    Prefactor for 1/r:

    mZea 2

    204 πε=Solution for the length scale paramater

    01 aZ

    a = with eme

    a 22

    00

    4 πε= Bohr radius

    Solutions for the energy

    2

    2

    0

    22

    2

    242 emeZma

    E

    −=−=

    πε

    ∞−= RZE2 Ground state in the

    Bohr model (n=1)

    Quantum mechanics: same result

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The effect of the proton-mass in the atom

    Relative coordinates:

    21 rrr −=

    Centre of Mass

    021 =+ rMrm

    Position vectors:

    rMm

    Mr +

    =1

    rMm

    mr +

    −=2

    Velocity vectors:

    vMm

    Mv +

    =1

    vMm

    Mv +

    −=2

    Relative velocity

    dtrdv

    =

    Kinetic energy

    2222

    211 2

    121

    21 vvmvmK µ=+=

    With reduced mass

    MmmM+

    Angular momentum

    vrrvmrvmL µ=+= 222111

    Centripetal force

    rv

    rvm

    rvmF

    2

    2

    222

    1

    211 µ===

    Quantisation of angular momentum:

    nhnvrL ===π

    µ2

    Problem is similar, but m µ r relative coordinate

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Reduced mass in the old Bohr model isotope shifts

    Quantisation of radius in orbit:

    0

    2

    2

    20

    2 4 amZn

    eZnr en µµ

    πε==

    Energy levels in the Bohr model:

    −= R

    mnZE

    en

    µ2

    2

    Results

    Rydberg constant:

    = R

    mR

    eH

    µ

    1. Isotope shift on an atomic transition 2. Effect of proton/electron mass ratio on the energy levels

    µµµ+

    =+

    =+

    =+

    =1/1

    //mM

    mMMm

    MmMm

    mMme

    red

    Conclusion: the atoms are not a good probe to detect a variation of µ

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    General conclusions on atoms and atomic structure

    Conclusion 2: the atoms are not a good probe to detect a variation of µ

    222

    2

    2

    2

    2mc

    nZR

    nZEn α−=−= ∞

    dimensionless energy

    Conclusion 1: All atoms have the Rydberg as a scale for energy; they cannot be used to detect a variation of α

    µµµ+

    =+

    =1/1

    /mM

    mMmred

    Note units (different units in this equation): 1710)83(5490973731568.1 −∞ ×=−= mhc

    ER I

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Relativistic effects in atoms

    No classical analogue for this phenomenon

    Pauli: There is an additional “two-valuedness” in the spectra of atoms, behaving like an angular momentum

    21

    =s

    Goudsmit and Uhlenbeck This may be interpreted/represented as an angular momentum

    Origin of the spin-concept -Stern-Gerlach experiment; space quantization -Theory: the periodic system requires an additional two-valuedness

    Electron spin

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Electron spin as an angular momentum operator

    21

    =s

    Spin is an angular momentum, so it should satisfy

    ( ) ss msssmsS ,1, 22 += sssz msmmsS ,, =

    21,

    21

    ±== sms

    Lg BL Lµµ −=

    In analogy with the orbital angular momentum of the electron

    A spin (intrinsic) angular momentum can be defined:

    Sg BS S µµ −=

    2=Sg

    1=Lg

    a) in relativistic Dirac theory

    b) in quantum electrodynamics

    ...00232.2=Sg

    Note: the spin of the electron cannot be explained from a classically “spinning” electronic charge

    Electron radius from EM-energy:

    ee r

    ecm0

    22

    4πε= Angular momentum

    from spin

    21

    52 2 ===

    eeee r

    vrmIL ω

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Spin-orbit interaction

    Frame of nucleus:

    +Ze

    -e

    v

    +Ze

    -e

    v−

    Frame of electron:

    The moving charged nucleus induces a magnetic field at the location of the electron, via Biot-Savart’s law

    ( )3

    04 r

    rvZeB ×−

    µ

    Use vrmL

    ×= 2001

    c=εµ;

    Then 320int 4 rcm

    LZeBe

    πε=

    Spin of electron is a magnet with dipole

    Sg BeS

    µµ −=

    The dipole orients in the B-field with energy

    LSrcm

    ZeBVe

    SLS

    ⋅=⋅−= 3220

    2

    4πεµ

    A fully relativistic derivation (Thomas Precession) yields with

    ( ) LSrVLS

    ⋅= ζ

    ( )nle rcm

    Zer 3220

    2 18πε

    ζ =

    Use:

    ( )( )

    ( )( )12/12

    12/121

    3

    3

    333

    ++

    =++

    =

    nnmcZ

    nar

    α

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Fine structure in spectra due to Spin-orbit interaction

    jnlj

    jSLjSO

    lsjmSLlsjm

    lsjmVlsjmE

    ⋅=

    =

    ζ

    In first order correction to energy for state

    Evaluate the dot-product

    SLSLSLJ

    ⋅++=+= 22222

    Then

    ( )( ) ( ) ( ){ } j

    jj

    sjmssjj

    sjmSLJsjmSL

    11121

    21

    2

    222

    +−+−+=

    −−=⋅

    Then the full interaction energy is:

    ( ) ( ) ( )( )( )

    ++

    +−+−+=

    12/12111

    342

    nssjjhcRZESO α

    S-states 0=SOEsj == ,0

    P-states

    3

    42

    2nhcRZESO

    α=

    2/1,1 ±== j

    jlsjm

    Show that the “centre-of-gravity” does not shift

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Kinetic Relativistic effects in atomic hydrogen

    Relativistic kinetic energy

    +−+

    =−+

    =−+=

    44

    4

    22

    22

    22222

    24222

    821

    /1

    cmp

    cmpmc

    mccmpmc

    mccmcpErelkin

    First relativistic correction term

    23

    4

    8 cmpKe

    rel −=

    To be used in perturbation analysis:

    ( )

    +−

    =Ψ−Ψ=

    nRhc

    nZ

    cmpK jmne

    jmnrel

    83

    121

    2

    8

    3

    24

    33

    4

    α

    ∇−=

    ip operator does not

    change wave function

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Relativistic effects in atomic hydrogen: SO + Kinetic

    Relativistic energy levels:

    ( )

    +−=

    njRhc

    nZEE nnj 4

    312

    22 3

    24α

    j=1/2 levels degenerate

    P.A.M. Dirac

    Also the outcome of the Dirac equation

    ( )t

    ihmcpc∂

    ∂=+⋅

    ψψβα 2

    Fine structure splitting ~ Z4α2

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Hyperfine structure in atomic hydrogen: 21 cm

    F=1

    F=0

    Nucleus has a spin as well, and therefore a magnetic moment

    Ig NII µµ = ;

    pN M

    e2

    Interaction with electron spin, that may have density at the site of the nucleus (Fermi contact term)

    ( )22221 IJFJISI −−=⋅=⋅

    Splitting : F=1 ↔ F=0 1.42 GHz or λ = 21 cm

    Magnetic dipole transition Scaling: µα /2pg

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Alkali Doublets

    3220

    2

    24 rcmLSZeVSL

    =πε with

    ( )22221 SLJLS −−=⋅

    Selection rules: 1±=∆ 1,0 ±=∆j0=∆s

    ns

    np 2P3/2

    2P1/2

    2S1/2

    3

    42

    2nhcRZESO

    α=

    Na doublet

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Alkali Doublet Method

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Many Multiplet Method

    1.

    2. 3.

    1. Strong transitions 2. Weak, narrow transitions 3. Hyperfine transitions

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    The Many Multiplet Method

    ∞−= RnZEn 2

    2

    2

    2

    0

    2

    24 emeR

    =∞ πε

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Relativistic corrections in the Many Multiplet Method

    ( )

    +−=∆

    njnZZme

    n 43

    122

    2 32

    2

    24 α

    Relativistic correction to energy level

    (note: atomic units different)

    ( )( )2/1

    2

    +≅∆

    jZEnn ν

    α

    with: En is the Rydberg energy scaling ν is effective quantum number

    Further include Many body effects

    ( ) ( )

    +≅∆ ljZC

    jZEnn ,,2/1

    12

    να

    These effects separate light atoms (low Z) from heavy atoms (high Z)

    ( ) 6.0,, ≅ljZCIn many cases:

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Many Multiplet Method

    Dependence of the energy levels on α: (two values for different times)

    in simplified form:

    with:

    Advantages of MM-Method: 1) Many atoms can be “used” simultaneously

    2) Transition frequencies can be used (not just splittings) 3) Combine heavy and light atoms

    “q” given in frequency/energy units

    2

    =

    lab

    xαα

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Results

    All allowed E1 transitions Negative signs for: d→p and p→s

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Quasar Lines

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    ( )

    +−= 2/30 1

    11z

    TT

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    “Quasar Absorptie Spectra”

    To Earth

    Quasar

    CIV SiIV CII SiII Lyαem

    Lyman limit Lyα

    NVem

    SiIVem

    Lyβem

    Lyβ SiII

    CIVem

    Quasar absorption spectra

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    On weak and strong lines

    E2

    E1

    νhEE =− 12 νCu

    E2

    E1

    νhEE =− 12 νCu A νBu

    BC =

    3

    38ch

    BA νπ

    = A1

    Einstein coefficients

    22

    0

    2

    3 ijeB µ

    επ

    =

    Dipole strength Lifetime Heisenberg uncertainty

    πτ21

    Strong lines broadened Weak lines narrow

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Similar calculations for “laboratory lines”

    Clock transitions

    Ion traps Optical lattice clock

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    “Accidental degeneracies”

    Dy atom

    Cingoz et al, Phys. Rev. Lett. 98, 040801 (2007)

    Level A: q/(hc)= 6x103 cm-1

    Level B: q/(hc)= -24x103 cm-1

    ∆ν(A-B) ~ 235 MHz

    ∆q~ 30x 103 cm-1 ~ 9x105 GHz

    Hz

    qq

    ×=

    ∆=

    ∆=

    αα

    αα

    ααδν

    15

    2

    108.1

    2

    Look for “rate of change”

    1510~ −

    αα per year

    Hz8.1=δν per year

    Precision ~ 10-8

    τΒ=200 µs τΑ=7.9 µs

    ΓA~ 2x104 Hz ; Line split~ 10-4

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Modern Clock Comparisons

    Further parametrization:

    ( )αFRyconstf ⋅⋅=

    dtdA

    dtRyd

    dtfd αlnlnln

    ⋅+=

    αlnln

    dFdA =

    Constraints from various experiments

    Cf: Peik, Nucl. Phys B Supp. 203 (2010) 18

  • Lecture Notes Fundamental Constants 2015; W. Ubachs

    Functional dependence on fundamental constants

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30