ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21%...

21
Page 1 of 21 ∙ = ( ∙ = 0 ∙ = − Φ . ∙ = ( + ( ( Φ 3 MATHEMATICAL METHODS UNIT 1 CHAPTER 3–ALGEBRAIC FOUNDATIONS Key knowledge Factorization patterns, the quadratic formula and discriminant, the remainder, factor and rational root theorems and the null factor law key mathematical content from one or more areas of study related to a given context specific and general formulations of concepts used to derive results for analysis within a given context Key skills expand and factorise linear and simple quadratic expressions with integer coefficients by hand express 2 + + in completed square form where ,, ∈ and ≠0, by hand Chapter 3 – Set Questions Exercise 3.2: Quadratic equations with rational roots 1ab, 2,3, 5, 6, 7acd, 8ad, 9ad, 10a, 11abef, 12acf, 13cd, 14bc, 16a Exercise 3.3: Quadratics over R 1abc, 3abcd, 4ab, 5, 6, 7a, 9a, 10, 11, 12, 14ace, 15ac, 16a, 17ace, 18bcd, 19ace, 20ac, 21a, 22a Exercise 3.4: Applications of Quadratic equations 2, 3, 4, 5b, 7ab, 8, 9, 11, 14 Exercise 3.5: Graphs of quadratic Polynomials 1, 2, 3, 4, 5ab, 6ab, 7, 8, 9ab, 11ac, 12ad, 13ad, 14ad, 15ad, 17a, 18ad, 19, 20 Exercise 3.6: Determining the rule of a quadratic polynomial from a graph 1ab, 2, 3, 4, 5a, 6ab, 7abcd, 9a, 10ab, 11, 12abc, 13a Exercise 3.7: Quadratic inequations 1, 2, 3, 4, 5, 7, 9cd, 10b, 11ac, 12b, 13b, 14abc, 15c, 16, 17b, 19 Exercise 3.8: Quadratic Models and applications 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 More resources http://drweiser.weebly.com

Transcript of ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21%...

Page 1: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  1  of  21  

𝑬 ∙ 𝑑𝑨 =𝑞𝜀(  

𝑩 ∙ 𝑑𝑨 = 0  

𝑬 ∙ 𝑑𝑺 = −𝑑Φ. 𝑑𝒕  

𝑩 ∙ 𝑑𝑺 = 𝜇(𝑖 + 𝜇(𝜀(𝑑Φ3 𝑑𝒕  

MATHEMATICAL  METHODS  UNIT  1  CHAPTER  3  –  ALGEBRAIC  FOUNDATIONS  Key  knowledge  

•   Factorization  patterns,  the  quadratic  formula  and  discriminant,  the  remainder,  factor  and  rational  root  theorems  and  the  null  factor  law    

•   key  mathematical  content  from  one  or  more  areas  of  study  related  to  a  given  context    •   specific  and  general  formulations  of  concepts  used  to  derive  results  for  analysis  within  a  given  

context    

Key  skills  

•   expand  and  factorise  linear  and  simple  quadratic  expressions  with  integer  coefficients  by  hand    •   express  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐  in  completed  square  form  where  𝑎, 𝑏, 𝑐   ∈  𝑍  and  𝑎 ≠ 0,  by  hand  

Chapter  3  –  Set  Questions  

Exercise  3.2:  Quadratic  equations  with  rational  roots  1ab,  2,3,  5,  6,  7acd,  8ad,  9ad,  10a,  11abef,  12acf,  13cd,  14bc,  16a  Exercise  3.3:  Quadratics  over  R  1abc,  3abcd,  4ab,  5,  6,  7a,  9a,  10,  11,  12,  14ace,  15ac,  16a,  17ace,  18bcd,  19ace,  20ac,  21a,  22a  Exercise  3.4:  Applications  of  Quadratic  equations  2,  3,  4,  5b,  7ab,  8,  9,  11,  14  Exercise  3.5:  Graphs  of  quadratic  Polynomials  1,  2,  3,  4,  5ab,  6ab,  7,  8,  9ab,  11ac,  12ad,  13ad,  14ad,  15ad,  17a,  18ad,  19,  20  Exercise  3.6:  Determining  the  rule  of  a  quadratic  polynomial  from  a  graph    1ab,  2,  3,  4,  5a,  6ab,  7abcd,  9a,  10ab,  11,  12abc,  13a  Exercise  3.7:  Quadratic  inequations  1,  2,  3,  4,  5,  7,  9cd,  10b,  11ac,  12b,  13b,  14abc,  15c,  16,  17b,  19  Exercise  3.8:  Quadratic  Models  and  applications  1,  2,  3,  4,  5,  6,  8,  9,  11,  12    

More  resources  

http://drweiser.weebly.com    

Page 2: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  2  of  21  

3.2  QUADRATIC  EQUATIONS  WITH  RATIONAL  ROOTS    Quadratic  equations  and  the  null  Factor  law    

The  general  quadratic  equation  can  be  written  as  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐   =  0,  where  𝑎, 𝑏, 𝑐  are  real  constants  and  𝑎   ≠  0.  If  the  quadratic  expression  on  the  left-­‐hand  side  of  this  equation  can  be  factorised,  the  solutions  to  the  quadratic  equation  may  be  obtained  using  the  Null  Factor  Law.    

The  null  Factor  law  states  that,  for  any  𝑎  and  𝑏,  if  the  product  𝑎𝑏   =  0  then  𝑎   =  0  or  𝑏   =  0  or  both  𝑎  and  𝑏   =  0.    

Applying  the  null  Factor  law  to  a  quadratic  equation  expressed  in  the  factorised  form  as:  

(𝑥   −  𝛼)(𝑥   −  𝛽)  =  0,  

would  mean  that    

(𝑥   −  𝛼)  =  0  𝑜𝑟  (𝑥   −  𝛽)  =  0   ∴  𝑥   =  𝛼  𝑜𝑟  𝑥   =  𝛽    

To  apply  the  null  Factor  law,  one  side  of  the  equation  must  be  zero  and  the  other  side    

must  be  in  factorised  form.    

 

roots,  zeros  and  factors    

The  solutions  of  an  equation  are  also  called  the  roots  of  the  equation  or  the  zeros  of  the  quadratic  expression.  This  terminology  applies  to  all  algebraic  equations  and  not  just  quadratic  equations.    

The  quadratic  equation  (𝑥   −  1)(𝑥   −  2)  =  0  has  roots  𝑥   =  1, 𝑥   =  2.    

These  roots  are  the  zeros  of  the  quadratic  expression  since  substituting  either  of  𝑥   =  1, 𝑥   =  2  in  the  quadratic  expression  (𝑥   −  1)(𝑥   −  2)  makes  the  expression  equal  zero.    

As  a  converse  of  the  null  Factor  law  it  follows  that  if  the  roots  of  a  quadratic  equation,  or  the  zeros  of  a  quadratic,  are  𝑥   =  𝛼  and  𝑥   =  𝛽,  then  (𝑥   −  𝛼)  and  (𝑥   −  𝛽)  are  linear  factors  of  the  quadratic.  The  quadratic  would  be  of  the  form  (𝑥   −  𝛼)(𝑥   −  𝛽)  or  any  multiple  of  this  form,  𝑎(𝑥   −  𝛼)(𝑥   −  𝛽).    

 

Example  1  

a)   Solve  the  equation  12𝑥K

 

− 7𝑥 = 10    b)   Given  that  x  =  3  and  x  =  −2  are  zeros  of  a  quadratic,  form  its  linear  factors  and  expand  the  

product  of  these  factors.    

 

 

 

 

 

 

 

Page 3: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  3  of  21  

Using  the  perfect  square  form  of  a  quadratic    

As  an  alternative  to  solving  a  quadratic  equation  by  using  the  null  Factor  law,  if  the  quadratic  is  a  perfect  square,  solutions  to  the  equation  can  be  found  by  taking  square  roots  of  both  sides  of  the  equation.  A  simple  illustration  is    

using square root method

𝑥K

 

=  9  𝑥 = ±  9  = −3   OR

using null Factor law method

𝑥K

 

=  9  𝑥K − 9 = 0  

(𝑥   −  3)(𝑥   +  3)  =  0  𝑥 = ±3  

If  the  square  root  method  is  used,  both  the  positive  and  negative  square  roots  must  be  considered.    

Worked  Example  2  

Solve  the  equation  (2x  +  3)2  −  25  =  0.    

 

 

 

 

 

 

 

Equations  which  reduce  to  quadratic  form    

Substitution  techniques  can  be  applied  to  the  solution  of  equations  such  as  those  of  the  form  𝑎𝑥4

 

+  𝑏𝑥2

 

+  𝑐   =  0.  Once  reduced  to  quadratic  form,  progress  with  the  solution  can  be  made.    

The  equation  𝑎𝑥4

 

+ 𝑏𝑥2

 

+ 𝑐 = 0  can  be  expressed  in  the  form  𝑎(𝑥K)K

 

+ 𝑏𝑥K

 

+ 𝑐 = 0.  letting  𝑢   =  𝑥K,  this  becomes  𝑎𝑢K +  𝑏𝑢   +  𝑐   =  0,  a  quadratic  equation  in  variable  u.    

By  solving  the  quadratic  equation  for  𝑢,  then  substituting  back  𝑥K  for  u,  any  possible  solutions  for  𝑥  can  be  obtained.  Since  𝑥2  cannot  be  negative,  it  would  be  necessary  to  reject  negative  𝑢  values  since  𝑥K =𝑢  would  have  no  real  solutions.    

Example  3  

Solve  the  equation:  2𝑥R

 

= 31𝑥K

 

+ 16    

 

 

 

 

 

   

Page 4: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  4  of  21  

3.3  QUADRATICS  OVER  R  –  PART  1    When  𝑥   −  4  is  expressed  as  (𝑥   −  2)(𝑥 + 2)  it  has  been  factorised  over  𝑄,  as  both  of  the  zeros  are  rational  numbers.  However,  over  𝑄,  the  quadratic  expression  𝑥K

 

−  3  cannot  be  factorised  into  linear  factors.  Surds  need  to  be  permitted  for  such  an  expression  to  be  factorised.    

Factorisation  over  R    

The  quadratic  𝑥K

 

−  3  can  be  expressed  as  the  difference  of  two  squares𝑥K

 

−  3   = 𝑥K

 

−  ( 3)K

 

using  surds.  This  can  be  factorised  over  R  because  it  allows  the  factors  to  contain  surds.    

𝑥2 − 3 = 𝑥2 − (  3)2 =   (𝑥 − 3)(𝑥 + 3)   If  a  quadratic  can  be  expressed  as  the  difference  of  two  squares,  then  it  can  be  factorised  over  R.  To  express  a  quadratic  trinomial  as  a  difference  of  two  squares  a  technique  called  ‘completing  the  square’  is  used.  

Worked  Example  4c  

Factorise    4𝑥2

 

− 11  over  R:    

 

 

 

 

 

 

 

 

‘Completing  the  Square’  technique    

Expressions  of  the  form  𝑥2

 

±  𝑝𝑥   +   VK

K=   𝑥   ± V

K

K  are  perfect  squares.    

For  example,  𝑥K + 4𝑥 + 4 = (𝑥 + 2)K.  

To  illustrate  the  ‘completing  the  square’  technique,  consider  the  quadratic  trinomial  𝑥K

 

+  4𝑥   +  1.    

If  4  is  added  to  the  first  two  terms  𝑥2

 

+  4𝑥  then  this  will  form  a  perfect  square𝑥2

 

+  4𝑥   +  4.  

However,  4  must  also  be  subtracted  in  order  not  to  alter  the  value  of  the  expression.    

𝑥K

 

+ 4𝑥 + 1 = 𝑥K

 

+ 4𝑥 + 𝟒 − 𝟒 + 1    Grouping  the  first  three  terms  together  to  form  the  perfect  square  and  evaluating  the  last  two  terms,    

= (𝑥K

 

+ 4𝑥 + 4) − 4 + 1    =   (𝑥   +  2)K

 

−  3 By  writing  this  difference  of  two  squares  form  using  surds,  factors  over  R  can  be  found.    

= (𝑥 + 2)K − (  3)K  =   (𝑥   +  2   −   3)(𝑥   +  2   +   3)  

Thus,       𝑥2

 

+ 4𝑥 + 1 =   (𝑥   +  2   −   3)(𝑥   +  2   +   3)  

Page 5: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  5  of  21  

‘Completing  the  square’  is  the  method  used  to  factorise  monic  quadratics  over  R.  A  monic  quadratic  is  one  for  which  the  coefficient  of  𝑥K  equals  1.  

For  a  monic  quadratic,  to  complete  the  square,  add  and  then  subtract  the  square  of  half  the  coefficient  of  x.  This  squaring  will  always  produce  a  positive  number  regardless  of  the  sign  of  the  coefficient  of  𝑥.    

 

To  complete  the  square  on  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐,  the  quadratic  should  first  be  written  as𝑎   𝑥2 + XYZ+ [

Z  

and  the  technique  applied  to  the  monic  quadratic  in  the  bracket.  The  common  factor  a  is  carried  down  through  all  the  steps  in  the  working.    

Worked  Example  4a  &  4b  

Factorise  the  following  over  R:     a)  𝑥K

 

− 14𝑥 − 3     b)  2𝑥K

 

+ 7𝑥 + 4    

   

Page 6: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  6  of  21  

3.3  QUADRATICS  OVER  R  –  PART  2    The  discriminant    

Some  quadratics  factorise  over  Q  and  others  factorise  only  over  R.  There  are  also  some  quadratics  which  cannot  be  factorised  over  R  at  all.  This  happens  when  the  ‘completing  the  square’  technique  does  not  create  a  difference  of  two  squares  but  instead  leads  to  a  sum  of  two  squares.  In  this  case  no  further  factorisation  is  possible  over  R.    

i.e.,  completing  the  square  on  𝑥2

 

−  2𝑥   +  6  gives:  𝑥2

 

− 2𝑥 + 6 = (𝑥2

 

− 2𝑥 + 1) − 1 + 6   = (𝑥 −1)2

 

+ 5    

As   this   is   the   sum   of   two   squares,   it   cannot   be   factorised   over   R.   Evaluating   what   is   called   the  discriminant  will  allow  these  three  possibilities  to  be  discriminated  between.  To  define  the  discriminant,  we  need  to  complete  the  square  on  the  general  quadratic  trinomial  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐.    

The  term,  𝑏2

 

−  4𝑎𝑐,  is  called  the  discriminant  of  the  quadratic.  It  is  denoted  by  the  Greek  letter  delta,  Δ.    

 •   If  𝛥   <  0  the  quadratic  has  no  real  factors.    •   If  𝛥   ≥  0  the  quadratic  has  two  real  factors.  The  two  factors  are  distinct  (different)  if  𝛥   >  0  

and  the  two  factors  are  identical  if  𝛥   =  0.  

For  a  quadratic  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐  with  real  factors  and  𝑎, 𝑏, 𝑐   ∈  𝑄:    

•   If  𝛥  is  a  perfect  square,  the  factors  are  rational;  the  quadratic  factorises  over  𝑄.    •   If  𝛥   >  0  but  not  a  perfect  square,  the  factors  contain  surds;  the  quadratic  factorises  over  𝑅.  

Completing  the  square  will  be  required  if  𝑏   ≠  0.    •   If  𝛥   =  0,  the  quadratic  is  a  perfect  square.    

Worked  Example  5  

For  each  of  the  following  quadratics,  calculate  the  discriminant  and  hence  state  the  number  and  type  of  factors  and  whether  the  ‘completing  the  square’  method  would  be  needed  to  obtain  the  factors.    

a)   2𝑥2  + 15𝑥 + 13     b)   5𝑥2

 − 6𝑥 + 9  

c)   −3𝑥2  + 3𝑥 + 8   d)   cd

R𝑥K − 12𝑥 + de

f  

 

 

 

 

 

 

 

 

   

Page 7: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  7  of  21  

Quadratic  equations  with  real  roots    

The  choices  of  method  to  consider  for  solving  the  quadratic  equation  𝑎𝑥2

 

+ 𝑏𝑥 + 𝑐 = 0  are:    

•   factorise  over  Q  and  use  the  null  Factor  law •   factorise  over  R  by  completing  the  square  and  use  the  null  Factor  law    

•   use  the  formula  𝑥 =  gX± XhgRZ[KZ

       

Often  the  coefficients  in  the  quadratic  equation  make  the  use  of  the  formula  less  tedious  than  completing  the  square.  Although  the  formula  can  also  be  used  to  solve  a  quadratic  equation  which  factorises  over  Q,  factorisation  is  usually  simpler,  making  it  the  preferred  method.    

Worked  Example  6  

Use  the  quadratic  formula  to  solve  the  equation  𝑥(9   −  5𝑥) = 3.    

 

 

 

 

 

 

 

 

Worked  Example  7  

a)   Use  the  discriminant  to  determine  the  number  and  type  of  roots  to  the  equation  15𝑥2

 

+  8𝑥   −  5   =  0.    

b)   Find  the  values  of  k  so  the  equation  𝑥2

 

+ 𝑘𝑥 − 𝑘 + 8 = 0  will  have  one  real  solution  and  check  the  answer.    

 

 

 

 

 

 

 

 

 

   

Page 8: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  8  of  21  

Quadratic  equations  with  rational  and  irrational  coefficients    

The  formula  gives  the  roots  of  the  general  equation  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐   =  0,  𝑎, 𝑏, 𝑐   ∈  𝑄  as    

𝑥d =−𝑏 − Δ2𝑎  𝑎𝑛𝑑  𝑥K =

−𝑏 + Δ2𝑎    

If  Δ>0  but  not  a  perfect  square,  these  roots  are  irrational  and  𝑥d  𝑎𝑛𝑑  𝑥Kare  a  pair  of  conjugate  surds.    

•  If  a  quadratic  equation  with  rational  coefficients  has  irrational  roots,  the  roots  must  occur  in  conjugate  surd  pairs.    

•  The  conjugate  surd  pairs  are  of  the  form:    𝑚 − 𝑛  𝑝  and  𝑚   + 𝑛   𝑝  with  𝑚, 𝑛, 𝑝 ∈ 𝑄.    

Worked  Example  8(a)  

Use  ‘completing  the  square’  to  solve  the  quadratic  equation𝑥2

 

+  8   2𝑥   −  17   =  0.  Are  the  solutions  a  pair  of  conjugate  surds?    

 

 

 

 

 

 

 

 

Equations  of  the  form   𝒙  =  𝒂𝒙   +  𝒃    

Equations  of  the  form   𝑥 = 𝑎𝑥 + 𝑏  could  be  written  as  𝑥 = 𝑎  𝑥 2 + 𝑏  and  reduced  to  a  quadratic  equation  𝑢   =  𝑎𝑢2

 

+  𝑏  by  the  substitution  𝑢   =  𝑥.  Any  negative  solution  for  u  would  need  to  be  rejected  as   𝑥  ≥  0.  

Alternatively,  squaring  both  sides  of  the  equation   𝑥 = 𝑎𝑥 + 𝑏  the  quadratic  equation  𝑥 = (𝑎𝑥 + 𝑏)2  is  formed,  with  no  substitution  required.  However,  since  the  same  quadratic  equation  would  be  obtained  by  squaring𝑥   =  −(𝑎𝑥   +  𝑏),  the  squaring  process  may  produce  extraneous  ‘solutions’  —  ones  that  do  not  satisfy  the  original  equation.  It  is  always  necessary  to  verify  the  solutions  by  testing  whether  they  satisfy  the  original  equation.    

Worked  Example  9  

Solve  the  equation  3 + 2   𝑥 = 𝑥  for  𝑥.  

 

   

Page 9: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  9  of  21  

3.4  APPLICATIONS  OF  QUADRATIC  EQUATIONS    Quadratic  equations  may  occur  in  problem  solving  and  as  mathematical  models.  In  formulating  a  problem,  variables  should  be  defined  and  it  is  important  to  check  whether  mathematical  solutions  are  feasible  in  the  context  of  the  problem.    

Quadratically  related  variables    

The  formula  for  the  area,  A,  of  a  circle  in  terms  of  its  radius,  𝑟,  is  𝐴 = 𝜋𝑟2.  This  is  of  the  form  𝐴 = 𝑘𝑟2  as  𝜋  is  a  constant.  The  area  varies  directly  as  the  square  of  its  radius  with  the  constant  of  proportionality  𝑘   =  𝜋.  This  is  a  quadratic  relationship  between  A  and  r.  For  any  variables  𝑥  and  𝑦,  if  𝑦  is  directly  proportional  to  𝑥2,  then  𝑦   =  𝑘𝑥2  where  𝑘  is  the  constant  of  proportionality.    

Also,  y  could  be  the  sum  of  two  parts,  one  part  of  which  was  constant  and  the  other  part  of  which  was  in  direct  proportion  to  𝑥2  so  that  𝑦   =  𝑐   +  𝑘𝑥2.    

Also,  y  could  be  the  sum  of  two  parts,  one  part  of  which  varied  as  𝑥  and  another  as  𝑥2,  then  𝑦 = 𝑘1𝑥 +𝑘2𝑥

2  with  different  constants  of  proportionality  required  for  each  part.    

The  quadratic  relation  𝑦   =  𝑐   +  𝑘1𝑥   +  𝑘2𝑥2  shows  y  as  the  sum  of  three  parts,  one  part  constant,  

one  part  varying  as  𝑥  and  one  part  varying  as  𝑥2.    

Example  Question  1  

The  owner  of  a  fish  shop  bought  x  kilograms  of  salmon  for  $400  from  the  wholesale  market.  At  the  end  of  the  day  all  except  for  2  kg  of  the  fish  were  sold  at  a  price  per  kg  which  was  $10  more  than  what  the  owner  paid  at  the  market.  From  the  sale  of  the  fish,  a  total  of  $540  was  made.  How  many  kilograms  of  salmon  did  the  fish  shop  owner  buy  at  the  market?    

 

Page 10: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  10  of  21  

3.5  GRAPHS  OF  QUADRATIC  POLYNOMIALS    A  quadratic  polynomial  is  an  algebraic  expression  of  the  form  𝑎𝑥K  +  𝑏𝑥   +  𝑐  where  each  power  of  the  variable  𝑥  is  a  positive  whole  number,  with  the  highest  power  of  𝑥  being  2.  It  is  called  a  second-­‐degree  polynomial.    

A  linear  polynomial  of  the  form  𝑎𝑥   +  𝑏  is  a  first  degree  polynomial  since  the  highest  power  of  𝑥  is  1.    

The  graph  of  a  quadratic  polynomial  is  called  a  parabola.    

 

The  graph  of  𝒚 =  𝒙𝟐  and  transformations  

The  simplest  parabola  has  the  equation  𝑦 = 𝑥K. Key  features  of  the  graph  of  𝑦 = 𝑥K:    

•  it  is  symmetrical  about  the  y-­‐axis

•  the  axis  of  symmetry  has  the  equation  x  =  0    

•  the  graph  is  concave  up  (opens  upwards)

•  it  has  a  minimum  turning  point,  or  vertex,  at  the  point  (0,  0).    

 

Making  the  graph  wider  or  narrower    

The  graphs  of  𝑦 = 𝑥K  for  𝑎 = du, 1  and  3  are  drawn  on  the  same  

set  of  axes.  Comparison  of  the  graphs  with  𝑦 = 𝑥K  shows  the  graph  will  be  narrower  if  𝑎 > 1, and  wider  if  0 < 𝑎 < 1.  

The  coefficient  of  𝑥2,  a,  is  called  the  dilation  factor.  It  measures  the  amount  of  stretching  or  compression  from  the  x-­‐axis.    

 

 

Translating  the  graph  up  or  down    

The  graphs  of  𝑦 = 𝑥2

 

+ 𝑘  for  𝑘 = −2, 0  and  2  are  drawn  on  the  same  set  of  axes.    

Comparison  shows  the  graphs  have  a  turning  point  at  (0, 𝑘)  move  the  graph  of  𝑦 = 𝑥2  vertically  upwards  by  𝑘  units  if  𝑘   >  0.  move  the  graph  of  𝑦 = 𝑥2  vertically  downwards  by  𝑘  units  if  𝑘 < 0.  

The  value  of  𝑘  gives  the  vertical  translation.  For  the  graph  of  𝑦 = 𝑥2

 

+ 𝑘,  the  graph  of  𝑦 = 𝑥2  has  been  translated  by  𝑘  units  from  the  x-­‐axis.    

 

Page 11: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  11  of  21  

 

Translating  the  graph  left  or  right    

The graphs of 𝑦   =   (𝑥   −  ℎ)2 for ℎ   =  −2, 1  and  4 are drawn on the same set of axes. Comparison shows that the graph 𝑦   =  (𝑥   −  ℎ)K  will  have  a  turning  point  at  (ℎ, 0)  and  move  the  graph  of  𝑦   =   𝑥2  horizontally  to  the  right  by  ℎ  units  if  ℎ   >  0  and  move  the  graph  horizontally  to  the  left  by  ℎ  units  if  ℎ   <  0  

Reflecting  the  graph  in  the  x-­‐axis    

The  graph  of  y  =  −x2  is  obtained  by  reflecting  the  graph  of  y  =  x2  in  the  x-­‐axis.    

Key  features  of  the  graph  of  y  =  −x2:    

•   it  is  symmetrical  about  the  y-­‐axis    •   the  axis  of  symmetry  has  the  equation  x  =  0    •   the  graph  is  concave  down  (opens  downwards)    •   it  has  a  maximum  turning  point,  or  vertex,  at  the  point  (0,  

0).    

A  negative  coefficient  of  x2  indicates  the  graph  of  a  parabola  is  concave  down.  

Regions  above  and  below  the  graph  of  a  parabola    

The  regions  that  lie  above  and  below  the  parabola  y  =  x2  are  illustrated  in  the  diagram.    

If  the  region  is  closed,  the  points  on  theboundary  parabola  are  included  in  the  region.If  the  region  is  open,  the  points  on  theboundary  parabola  are  not  included  in  the  region.  

A  point  can  be  tested  to  confirm  which  side  of  the  parabola  to  shade.    

 

Sketching  parabolas  from  their  equations    

The  key  points  required  when  sketching  a  parabola  are:    

•  the  turning  point    •  the  y-­‐intercept •  any  x-­‐intercepts.    

The  axis  of  symmetry  is  also  a  key  feature  of  the  graph.    

The  equation  of  a  parabola  allows  this  information  to  be  obtained  but  in  differing  ways,  depending  on  the  form  of  the  equation.    

We  shall  consider  three  forms  for  the  equation  of  a  parabola:    

•  general  form •  turning  point  form    •  x-­‐intercept  form.    

 

Page 12: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  12  of  21  

1.  The  general,  or  polynomial  form,  𝑦   =  𝑎𝑥K

 

+  𝑏𝑥   +  𝑐    

If  𝑎 > 0  then  the  parabola  is  concave  up  and  has  a  minimum  turning  point.    

If  𝑎 < 0  then  the  parabola  is  concave  down  and  has  a  maximum  turning  point.  

The  methods  to  determine  the  key  features  of  the  graph  are  as  follows.    

•   Substitute  x  =  0  to  obtain  the  y-­‐intercept  (the  y-­‐intercept  is  obvious  from  the  equation).    •   Substitute  y  =  0  and  solve  the  quadratic  equation  ax2  +  bx  +  c  =  0  to  obtain  the  x-­‐intercepts.  

There  may  be  0,  1  or  2  x-­‐intercepts,  as  determined  by  the  discriminant.    •   The  equation  of  the  axis  of  symmetry  is  𝑥 = − X

KZ  

•   the  turning  point  lies  on  the  axis  of  symmetry  so  its  x-­‐coordinate  is  𝑥 = − XKZ  .Substitute  this  

value  into  the  equation  to  find  the  y-­‐coordinate  of  the  turning  point.  

Worked  Example  13  

Sketch  the  graph  of  𝑦 = dK𝑥K − 𝑥 − 4  and  label  the  key  points  with  their  coordinates.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turning  point  form,  𝒚   =  𝒂(𝒙 − 𝒉)𝟐

 

+ 𝒌  

Since  h  represents  the  horizontal  translation  and  k  the  vertical  translation,  this  form  of  the  equation  readily  provides  the  coordinates  of  the  turning  point.    

•   The  turning  point  has  coordinates  (h,  k).  o   If  a  >  0,  the  turning  point  is  a  minimum    o   If  a  <  0  it  will  be  a  maximum.    

•   Find  the  y-­‐intercept  by  substituting  x  =  0.    •   Find  the  x-­‐intercepts  by  substituting  y  =  0  and  solving  the  equation    𝑦 = 𝑎(𝑥 − ℎ)K + 𝑘.  

Page 13: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  13  of  21  

Worked  Example  14  

Express  𝑦 = 3𝑥K

 

− 12𝑥 + 18  in  the  form  𝑦 = 𝑎(𝑥 − ℎ)K

 

+ 𝑘  and  hence  state  the  coordinates  of  its  vertex.    

 

 

 

 

 

 

 

 

 

Factorised,  or  x-­‐intercept,  form  𝒚 = 𝒂(𝒙   −  𝒙𝟏)(𝒙   −  𝒙𝟐)    

This  form  of  the  equation  readily  provides  the  x-­‐intercepts.    

•   The  x-­‐intercepts  occur  at  𝑥 = 𝑥1  and  𝑥 = 𝑥2. •   The  axis  of  symmetry  lies  halfway  between  the  x-­‐intercepts  and  its  equation,  𝑥 = Y~�Yh

K,  gives  the  

𝑥 −coordinate  of  the  turning  point.  •   The  turning  point  is  obtained  by  substituting  𝑥 = Y~�Yh

K  into  the  equation  and  calculating  the  y-­‐

coordinate.    •   The  𝑦 −intercept  is  obtained  by  substituting  𝑥   =  0.If  the  linear  factors  are  distinct,  the  graph  

cuts  through  the  𝑥 −axis  at  each  𝑥 −intercept.    

If  the  linear  factors  are  identical  making  the  quadratic  a  perfect  square,  the  graph  touches  the  𝑥 −axis  at  its  turning  point.    

 

Worked  Example  15  

Sketch  the  graph  of  𝑦 = − dK(𝑥 + 5)(𝑥 − 1).    

 

   

 

 

 

 

 

 

 

   

Page 14: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  14  of  21  

The  discriminant  and  the  x-­‐intercepts    

The  zeros  of  the  quadratic  expression  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐,  the  roots  of  the  quadratic  equation  𝑎𝑥K

 

+  𝑏𝑥   +  𝑐  =  0  and  the  x-­‐intercepts  of  the  graph  of  a  parabola  with  rule  𝑦 = 𝑎𝑥K

 

+  𝑏𝑥   +  𝑐  all  have  the  same  𝑥 −values;  and  the  discriminant  determines  the  type  and  number  of  these  values.  

•   If  𝛥   >  0,  there  are  two  x-­‐intercepts.  The  graph  cuts  through  the  𝑥 −axis  at  two  different  places.    

•   If  𝛥   =  0,  there  is  one  x-­‐intercept.  The  graph  touches  the  𝑥 −axis  at  its  turning  point.    •   If  𝛥   <  0,  there  are  no  x-­‐intercepts.  The  graph  does  not  intersect  the  𝑥 −axis  and  lies  entirely  

above  or  entirely  below  the  𝑥 −axis,  depending  on  its  concavity.  

If  𝑎   >  0,  𝛥   <  0,  the  graph  lies  entirely  above  the  𝑥 −axis  and  every  point  on  it  has  a  positive  𝑦 −coordinate.  𝑎𝑥K + 𝑏𝑥 + 𝑐  is  called  positive  definite  in  this  case.  If  𝑎   <  0,  𝛥   <  0,  the  graph  lies  entirely  below  the  𝑥 −axis  and  every  point  on  it  has  a  negative  y-­‐coordinate.  𝑎𝑥K + 𝑏𝑥 + 𝑐  is  called  negative  definite  in  this  case.    

 When  𝛥   ≥  0  and  for  𝑎, 𝑏, 𝑐   ∈  𝑄,  the  𝑥  intercepts  are  rational  if  𝛥  is  a  perfect  square  and  irrational  if  𝛥  is  not  a  perfect  square.    

Worked  Example  16  

Use  the  discriminant  to:  determine  the  number  and  type  of  x-­‐intercepts  of  the  graph  defined  by    

𝑦 = 64𝑥K + 48𝑥 + 9    

   

Page 15: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  15  of  21  

3.6  DETERMINING  THE  RULE  OF  A  QUADRATIC  

POLYNOMIAL  FROM  A  GRAPH    Whether  the  equation  of  the  graph  of  a  quadratic  polynomial  is  expressed  in𝑦 = 𝑎𝑥K + 𝑏𝑥 + 𝑐  form,  𝑦 = 𝑎(𝑥 − ℎ)K

 

+ 𝑘  form  or  𝑦 = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2)  form,  each  equation  contains  3  unknowns.  Hence,  3  pieces  of  information  are  needed  to  fully  determine  the  equation.  This  means  that  exactly  one  parabola  can  be  drawn  through  3  non-­‐collinear  points.    

If   the   information   given   includes   the   turning  point   or   the   intercepts  with   the   axes,   one   form  of   the  equation  may  be  preferable  over  another.    

 Worked  Example  17  

Determine  the  rules  for  the  following  parabolas.    

     

Page 16: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  16  of  21  

Using  simultaneous  equations    

In  Worked  example  17b  three  points  were  available,  but  because  two  of  them  were  key  points,  the  x-­‐intercepts,  we  chose  to  form  the  rule  using  the  y  = a(x  − x1)(x  − x2)  form.  If  the  points  were  not  key  points,  then  simultaneous  equations  need  to  be  created  using  the  coordinates  given.    

Worked  Example  18  

Determine  the  equation  of  the  parabola  that  passes  through  the  points  (1,  −4),  (−1,  10)  and  (3,  −2).    

 

 

 

 

 

 

 

 

 

 

   

Page 17: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  17  of  21  

3.7  QUADRATIC  INEQUATIONS    Sign  Diagrams  of  Quadratics  

If  ab  > 0,  this  could  mean  a  > 0  and  b  > 0  or  it  could  mean  a  < 0  and  b  < 0.  To  assist  in  the  solution  of  a  quadratic  inequation,  either  the  graph  or  its  sign  diagram  is  a  useful  reference.    

A  sign  diagram  indicates  the  values  of  x  where  the  graph  of  a  quadratic  polynomial  is  above,  on  or  below  the  x-­‐axis.  It  shows  the  x-­‐values  for  which  𝑎𝑥K + 𝑏𝑥 + 𝑐 > 0,  the  x-­‐values  for  which  𝑎𝑥K + 𝑏𝑥 +𝑐 = 0  and  the  x-­‐values  for  which  𝑎𝑥K + 𝑏𝑥 + 𝑐 < 0.    

 

Worked  Example  19  

Draw  the  sign  diagram  of  (4   −  𝑥)(2𝑥   −  3).    

 

 

 

   

Page 18: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  18  of  21  

Solving  quadratic  inequations    

To  solve  a  quadratic  inequation:    

•   rearrange  the  terms  in  the  inequation,  if  necessary,  so  that  one  side  of  the  inequation  is  0  (similar  to  solving  a  quadratic  equation)    

•   calculate  the  zeros  of  the  quadratic  expression  and  draw  the  sign  diagram  of  this  quadratic    •   read  from  the  sign  diagram  the  set  of  values  of  x  which  satisfy  the  inequation.    

Worked  Example  20b  

Find  {𝑥: 𝑥K ≥ 3𝑥 + 10}    

 

 

 

 

 

 

 

Intersections  of  lines  and  parabolas    

The  possible  number  of  points  of  intersection  between  a  straight  line  and  a  parabola  will  be  either  0,  1  or  2  points.    

Simultaneous  equations  can  be  used  to  find  any  points  of  intersection  and  the  discriminant  can  be  used  to  predict  the  number  of  solutions.  To  solve  a  pair  of  linear-­‐quadratic  simultaneous  equations,  usually  the  method  of  substitution  from  the  linear  into  the  quadratic  equation  is  used.    

Worked  Example  21  

a)   Calculate  the  coordinates  of  the  points  of  intersection  of  the  parabola  𝑦 = 𝑥2

 

− 3𝑥 − 4  and  the  line  𝑦 − 𝑥 = 1.    

b)   How  many  points  of  intersection  will  there  be  between  𝑦 = 2𝑥 − 5  and  𝑦 = 2𝑥2 + 5𝑥 + 6?    

 

 

 

   

Page 19: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  19  of  21  

Quadratic  inequations  in  discriminant  analysis    

The  need  to  solve  a  quadratic  inequation  as  part  of  the  analysis  of  a  problem  can  occur  in  a  number  of  situations,  an  example  of  which  arises  when  a  discriminant  is  itself  a  quadratic  polynomial  in  some  variable.    

Worked  Example  22  

For  what  values  of  𝑚  will  there  be  at  least  one  intersection  between  the  line  𝑦 = 𝑚𝑥 + 5  and  the  parabola  𝑦 = 𝑥2

 

− 8𝑥 + 14?    

 

   

Page 20: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  20  of  21  

3.8  QUADRATIC  MODELS  AND  APPLICATIONS    Maximum  and  minimum  values    

The  greatest  or  least  value  of  the  quadratic  model  is  often  of  interest.  A  quadratic  reaches  its  maximum  or  minimum  value  at  its  turning  point.  The  y-­‐coordinate  of  the  turning  point  represents  the  maximum  or  minimum  value,  depending  on  the  nature  of  the  turning  point.    

•   If  a<0,  a(x−h)2  +k  ≤ k  so  the  maximum  value  of  the  quadratic  is  k.    

•   If  a>0,  a(x−h)2  + k  ≥ k  so  the  minimum  value  of  the  quadratic  is  k.    

Worked  Example  22  

A  stone  is  thrown  vertically  into  the  air  so  that  its  height  h  metres  above  the  ground  after  t  seconds  is  given  by  ℎ   =  1.5   +  5𝑡   −  0.5𝑡2.    

a)   What  is  the  greatest  height  the  stone  reaches?    b)   After  how  many  seconds  does  the  stone  reach  its  greatest  height?    c)   When  is  the  stone  6  metres  above  the  ground?  Why  are  there  two  times?    d)   Sketch  the  graph  and  give  the  time  to  return  to  the  ground  to  1  decimal  place.    

   

 

 

   

Page 21: ATHEMATICAL)METHODS)UNIT)1) 3 LGEBRAIC)FOUNDATIONS · Page3%of%21% Usingtheperfectsquareformofaquadratic( (As%an%alternative%to%solving%aquadratic%equation%by%using%the%null%Factor%law,%if%the%quadratic%is%a

Page  21  of  21  

TABLE  OF  CONTENT    

Key  knowledge  ..................................................  1  

Key  skills  ............................................................  1  

CHAPTER  3  –  SET  QUESTIONS  ......................................  1  

3.2  QUADRATIC  EQUATIONS  WITH  RATIONAL  ROOTS  ...................................................................  2  

QUADRATIC  EQUATIONS  AND  THE  NULL  FACTOR  LAW  ......  2  

ROOTS,  ZEROS  AND  FACTORS  .......................................  2  Example  1  .........................................................  2  

USING  THE  PERFECT  SQUARE  FORM  OF  A  QUADRATIC  .......  3  

Worked  Example  2  ............................................  3  

EQUATIONS  WHICH  REDUCE  TO  QUADRATIC  FORM  ..........  3  

Example  3  .........................................................  3  

3.3  QUADRATICS  OVER  R  –  PART  1  ........................  4  

FACTORISATION  OVER  R  ..............................................  4  

Worked  Example  4c  ..........................................  4  

‘COMPLETING  THE  SQUARE’  TECHNIQUE  ........................  4  

Worked  Example  4a  &  4b  .................................  5  

3.3  QUADRATICS  OVER  R  –  PART  2  ........................  6  

THE  DISCRIMINANT  ....................................................  6  

Worked  Example  5  ............................................  6  

QUADRATIC  EQUATIONS  WITH  REAL  ROOTS  ....................  7  

Worked  Example  6  ............................................  7  

Worked  Example  7  ............................................  7  

QUADRATIC  EQUATIONS  WITH  RATIONAL  AND  IRRATIONAL  COEFFICIENTS  ............................................................  8  

Worked  Example  8(a)  .......................................  8  

EQUATIONS  OF  THE  FORM  𝒙   =  𝒂𝒙   +  𝒃  ....................  8  Worked  Example  9  ............................................  8  

3.4  APPLICATIONS  OF  QUADRATIC  EQUATIONS  .....  9  

QUADRATICALLY  RELATED  VARIABLES  ............................  9  

Example  Question  1  ..........................................  9  

3.5  GRAPHS  OF  QUADRATIC  POLYNOMIALS  .........  10  

THE  GRAPH  OF  𝒚 =  𝒙𝟐  AND  TRANSFORMATIONS  ........  10  

MAKING  THE  GRAPH  WIDER  OR  NARROWER  .................  10  

TRANSLATING  THE  GRAPH  UP  OR  DOWN  ......................  10  

TRANSLATING  THE  GRAPH  LEFT  OR  RIGHT  .....................  11  

REFLECTING  THE  GRAPH  IN  THE  X-­‐AXIS  .........................  11  

REGIONS  ABOVE  AND  BELOW  THE  GRAPH  OF  A  PARABOLA  ............................................................................  11  

SKETCHING  PARABOLAS  FROM  THEIR  EQUATIONS  ..........  11  

1.  The  general,  or  polynomial  form,  𝑦   =  𝑎𝑥2

 

+  𝑏𝑥   +  𝑐  .............................................  12  

Worked  Example  13  ........................................  12  

TURNING  POINT  FORM,  𝒚   =  𝒂(𝒙 − 𝒉)𝟐

 

+ 𝒌  .........  12  

Worked  Example  14  ........................................  13  

FACTORISED,  OR  X-­‐INTERCEPT,  FORM  𝒚 = 𝒂(𝒙   −  𝒙𝟏)(𝒙   −  𝒙𝟐)  .....................................................  13  

Worked  Example  15  ........................................  13  

THE  DISCRIMINANT  AND  THE  X-­‐INTERCEPTS  ..................  14  

Worked  Example  16  ........................................  14  

3.6  DETERMINING  THE  RULE  OF  A  QUADRATIC  POLYNOMIAL  FROM  A  GRAPH  ..............................  15  

Worked  Example  17  ........................................  15  

USING  SIMULTANEOUS  EQUATIONS  .............................  16  

Worked  Example  18  ........................................  16  

3.7  QUADRATIC  INEQUATIONS  .............................  17  

SIGN  DIAGRAMS  OF  QUADRATICS  ...............................  17  

Worked  Example  19  ........................................  17  

SOLVING  QUADRATIC  INEQUATIONS  ............................  18  

Worked  Example  20b  ......................................  18  INTERSECTIONS  OF  LINES  AND  PARABOLAS  ....................  18  

Worked  Example  21  ........................................  18  

QUADRATIC  INEQUATIONS  IN  DISCRIMINANT  ANALYSIS  ...  19  

Worked  Example  22  ........................................  19  

3.8  QUADRATIC  MODELS  AND  APPLICATIONS  ......  20  

MAXIMUM  AND  MINIMUM  VALUES  ............................  20  

Worked  Example  22  ........................................  20  

TABLE  OF  CONTENT  ..............................................  21