ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 ›...

20
EXPONENTIAL FUNCTIONS PAGE 1 of 20 ! ∙ = ) ! ∙ = 0 ! ∙ = − Φ / ! ∙ = ) + ) ) Φ 5 MATHEMATICAL METHODS UNIT 2 CHAPTER 13 – EXPONENTIAL FUNCTIONS Key knowledge the key features and properties of power and polynomial functions and their graphs the effect of transformations of the plane, dilation, reflection in axes, translation and simple combinations of these transformations, on the graphs of linear and power functions the relation between the graph of a onetoone function, its inverse function and reflection in the line y = x key mathematical content from one or more areas of study related to a given context specific and general formulations of concepts used to derive results for analysis within a given context the role of examples, counterexamples and general cases in working mathematically inferences from analysis and their use to draw valid conclusions related to a given context. Key skills draw graphs of polynomial functions of low degree, simple power functions and simple relations that are not functions specify the relevance of key mathematical content from one or more areas of study to the investigation of various questions in a given context develop mathematical formulations of specific and general cases used to derive results for analysis within a given context use a variety of techniques to verify results make inferences from analysis and use these to draw valid conclusions related to a given context communicate conclusions using both mathematical expression and everyday language, in particular, the interpretation of mathematics with respect to the context. CHAPTER 13 – SET QUESTIONS EXERCISE 13A: THE INDEX LAWS, 2ac, 3ac, 4ac, 5ac, 6a, 7ac, 8ac, 9aceg, 10ac, 11ace, 12ac, 13ac EXERCISE 13B: RATIONAL INDICES 1acegikm, 2ace, 3ace EXERCISE 13C: GRAPHS OF EXPONENTIAL FUNCTIONS 1ac, 2ac, 3, 4, 5ace, 6 EXERCISE 13D: SOLVING EXPONENTIAL EQUATIONS & INEQUALITIES 1acegi, 2acegikm, 3ac, 4ac, 5ac, 6aceg EXERCISE 13E: LOGARITHMS 1ac, 2aceg, 3acegik, 4aceg, 5acegi, 6ace, 7, 8, 9, 10aceg EXERCISE 13F: USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS AND INEQUALITIES 1ace, 2ac, 3ace, 4ace EXERCISE 13G: GRAPHS OF LOGARITHM FUNCTIONS 1ace, 2ac, 3aceg, 4ace, 5, 6, 8 EXERCISE 13H: EXPONENTIAL MODELS AND APPLICATIONS 1, 2, 3, 4, 6, 8, 9, 11, 16 MORE RESOURCES http://drweiser.weebly.com

Transcript of ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 ›...

Page 1: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  1  of  20  

!𝑬 ∙ 𝑑𝑨 =𝑞𝜀)  

!𝑩 ∙ 𝑑𝑨 = 0  

!𝑬 ∙ 𝑑𝑺 = −𝑑Φ/ 𝑑𝒕⁄  

!𝑩 ∙ 𝑑𝑺 = 𝜇)𝑖 + 𝜇)𝜀)𝑑Φ5 𝑑𝒕⁄  

MATHEMATICAL  METHODS  UNIT  2  CHAPTER  13  –  EXPONENTIAL  FUNCTIONS  Key knowledge •  the  key  features  and  properties  of  power  and  polynomial  functions  and  their  graphs    •  the  effect  of  transformations  of  the  plane,  dilation,  reflection  in  axes,  translation  and  simple  combinations  of  these  transformations,  on  the  graphs  of  linear  and  power  functions    

•  the  relation  between  the  graph  of  a  one-­‐to-­‐one  function,  its  inverse  function  and  reflection  in  the  line  y  =  x  •  key  mathematical  content  from  one  or  more  areas  of  study  related  to  a  given  context    •  specific  and  general  formulations  of  concepts  used  to  derive  results  for  analysis  within  a  given  context    •  the  role  of  examples,  counter-­‐examples  and  general  cases  in  working  mathematically    •  inferences  from  analysis  and  their  use  to  draw  valid  conclusions  related  to  a  given  context.    Key skills •  draw  graphs  of  polynomial  functions  of  low  degree,  simple  power  functions  and  simple  relations  that  are  not  functions    •  specify  the  relevance  of  key  mathematical  content  from  one  or  more  areas  of  study  to  the  investigation  of  various  questions  in  a  given  context    

•  develop  mathematical  formulations  of  specific  and  general  cases  used  to  derive  results  for  analysis  within  a  given  context    •  use  a  variety  of  techniques  to  verify  results    •  make  inferences  from  analysis  and  use  these  to  draw  valid  conclusions  related  to  a  given  context    •  communicate  conclusions  using  both  mathematical  expression  and  everyday  language,  in  particular,  the  interpretation  of  mathematics  with  respect  to  the  context.    

CHAPTER  13  –  SET  QUESTIONS  EXERCISE  13A:  THE  INDEX  LAWS,     2ac,  3ac,  4ac,  5ac,  6a,  7ac,  8ac,  9aceg,  10ac,  11ace,  12ac,  

13ac  EXERCISE  13B:  RATIONAL  INDICES   1acegikm,  2ace,  3ace  EXERCISE  13C:  GRAPHS  OF  EXPONENTIAL  FUNCTIONS   1ac,  2ac,  3,  4,  5ace,  6  EXERCISE   13D:   SOLVING   EXPONENTIAL   EQUATIONS   &  INEQUALITIES     1acegi,  2acegikm,  3ac,  4ac,  5ac,  6aceg  

EXERCISE  13E:  LOGARITHMS   1ac,  2aceg,  3acegik,  4aceg,  5acegi,  6ace,  7,  8,  9,  10aceg  EXERCISE  13F:  USING  LOGARITHMS  TO  SOLVE  EXPONENTIAL  EQUATIONS  AND  INEQUALITIES   1ace,  2ac,  3ace,  4ace  

EXERCISE  13G:  GRAPHS  OF  LOGARITHM  FUNCTIONS   1ace,  2ac,  3aceg,  4ace,  5,  6,  8  EXERCISE  13H:  EXPONENTIAL  MODELS  AND  APPLICATIONS   1,  2,  3,  4,  6,  8,  9,  11,  16  

 

MORE  RESOURCES    http://drweiser.weebly.com    

Page 2: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  2  of  20  

Table  of  Contents  

13A  THE  INDEX  LAWS   3  REVIEW  OF  INDEX  LAWS   3  

Example:  Multiplying  powers   3  Example:  Dividing  powers  Q2(b)   3  Example:  negative  integer  indices  Q4b  and  Raising  the  power  Q5b   4  Example:  Products  and  quotients  Q6b   4  

WORKING  WITH  A  NEGATIVE  BASE   4  Example  6  Negative  Bases   4  

USING  PRIME  DECOMPOSITION   4  Example  7  Prime  Decomposition   4  

13B  RATIONAL  INDICES   6  Example  8:  Rational  Indices   6  Example  9   6  

13C  GRAPHS  OF  EXPONENTIAL  FUNCTIONS   7  GRAPH  OF  Y=AX  WHEN  A  >1   7  GRAPH  OF  Y=AX  WHEN  0<A<1   7  GRAPHS  OF  Y  =  AX  IN  GENERAL   7  TRANSFORMATIONS  OF  EXPONENTIAL  GRAPHS   8  

13D  SOLVING  EXPONENTIAL  EQUATIONS  AND  INEQUALITIES   10  SOLUTION  OF  EQUATIONS   10  

Example  solve  for  𝑥   10  Example  17   11  

SOLUTION  OF  INEQUALITIES   11  Example  Inequalities   11  

13E  LOGARITHMS   12  Example  Q1(b)  and  (d)   12  

LAWS  OF  LOGARITHMS   12  Example  Logarithm  Laws  Q4(b)  and  (h)   13  Example  22  Solve  for  𝑥   13  

13F  USING  LOGARITHMS  TO  SOLVE  EXPONENTIAL  EQUATIONS  AND  INEQUALITIES   14  Example  Q1(b)  and  (f)   14  Example  24   14  Example  25   14  

EXPONENTIAL  GRAPHS  REVISITED   14  13G  GRAPHS  OF  LOGARITHM  FUNCTIONS   15  GRAPH  OF  Y=LOGAX  WHEN  A>1   15  

Y  =  LOG2  X   15  Y  =  LOG10  X   15  GRAPH  OF  Y=LOGAX  WHEN  0<A<1   16  INVERSES   16  TRANSFORMATIONS  OF  LOGARITHM  GRAPHS   16  

13H  EXPONENTIAL  MODELS  AND  APPLICATIONS   18  EXPONENTIAL  GROWTH  AND  DECAY   18  

CELL  GROWTH   18  RADIOACTIVE  DECAY   18  POPULATION  GROWTH   19  DETERMINING  EXPONENTIAL  RULES   19  

 

Page 3: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  3  of  20  

13A  The  Index  Laws  When the number 8 is expressed as a power of 2, it is written as 8   =  2:. In this form, the base is 2 and the power (also known as index or exponent) is 3. Review of index laws Recall the basic index laws:

 

 Example: Multiplying powers

a)   Simplify  𝑥;𝑦: × 𝑥>𝑦                

b)   Simplify  2? × 2;?@;  

 Example: Dividing powers Q2(b)

Simplify ABC×ADCEF

AGC

Page 4: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  4  of  20  

Example: negative integer indices Q4b and Raising the power Q5b

Evaluate H14K−3

Simplify MHN:KO;P:

Example: Products and quotients Q6b

Simplify HQRGAG

RADSDK:÷ (𝑎;𝑏ON𝑐):

Working with a negative base The power (−a)n can be written as (−1 × a)n = (−1)n(a)n. We note that:

•   If n is even then (−1)n =1. •   If n is odd then (−1)n =−1.

Hence, if a is a positive number, then the number (−a)n is positive when n is even and negative when n is odd. Example 6 Negative Bases1 Simplify each of the following

a)   (−3)O:    

 

 

 

 

 

b)   (−5𝑎):   c)   (−2𝑎): × 3𝑎;  

Using prime decomposition Bases that are composite numbers are often best factored into primes before further calculations are undertaken.

Example 7 Prime Decomposition2  Simplify the following, expressing the answers in positive-index form:

a)   12[ × 18O;[

b)  :\G×]^×N;\G

_\^×;\D c)  

:D`×]`

a`×:`

1 https://seniormaths.cambridge.edu.au/lessonSection/lesson.action#/resources/video/78015/ 2 https://seniormaths.cambridge.edu.au/lessonSection/lesson.action#/resources/video/78015/

Page 5: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  5  of  20  

 

 

Page 6: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  6  of  20  

13B  Rational  Indices  

     Example 8: Rational Indices Evaluate the following

a)   (−64)FG  

                   

b)   9OFD   c)   64O

DG  

Example 93  

a)  :F^×√]× √;^

N]G^

 

                           

b)   (𝑥O;𝑦)FD × H ?

e\GK>  

 

3 https://seniormaths.cambridge.edu.au/lessonSection/lesson.action#/resources/video/78023/

Page 7: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  7  of  20  

13C  Graphs  of  exponential  functions  Two types of graphs of exponential functions will be examined. Graph of y=ax when a >1 We can make the following observations about graphs of the form y = ax where a > 1: •   The x-axis is said to be an asymptote. As x → −∞, y → 0+.

This is read: As x approaches negative infinity, y approaches 0 from the positive side.

•   As the x-values increase, the y-values increase. •   The y-axis intercept is at (0,1). •   The range of the function is R+.

 Graph of y=ax when 0<a<1 We can make the following observations about graphs of the form y = ax where 0 < a < 1: •   The x-axis is an asymptote. As the x-values increase, the graph approaches the x-axis from above. This is

written: As x → ∞, y → 0+. •   The y-axis intercept is at (0,1). •   The range of the function is R+.

Graphs of y = ax in general In both cases a > 1 and 0 < a < 1, we can write 𝑦   =  𝑎𝑥 as 𝑦   =   𝑏O?, where 𝑏 = N

R.

The graph of 𝑦   =   𝑏O?is obtained from the graph of 𝑦   =   𝑏?  by a reflection in the y-axis. Thus, for example, the

graph of 𝑦   = HN;K?

is obtained from the graph of y = 2x by a reflection in the y-axis, and vice versa.

 

 

Page 8: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  8  of  20  

 Transformations of exponential graphs The techniques for transformations that were introduced in earlier chapters are now applied to the graphs of exponential functions.

Page 9: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  9  of  20  

Page 10: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  10  of  20  

 

 13D  Solving  exponential  equations  and  inequalities  Solution of equations One method without using a calculator is to express both sides of the equation as powers with the same base and then equate the indices (since ax = ay implies x = y, for any a ∈ R+ \ {1}). Example solve for 𝑥 Q1(b): 4? = 64

Q1(h): 4O? = N]>

Q2(b): 3;[O> = 1

Q2(k): 25[@N = 5 × 390625

Sometimes solving an exponential equation involves solving a polynomial equation first. In the following example, the solution of a quadratic equation is necessary.

Page 11: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  11  of  20  

Example 17 Solve:  

a)   9x =12×3x −27

b)   32x = 27 – 6 × 3x

Solution of inequalities The following two properties are useful when solving inequalities:

§   𝑎𝑥 > 𝑎𝑦 ⇔ 𝑥 > 𝑦, when 𝑎 ∈ (1,∞)   §   𝑎𝑥   >  𝑎𝑦

 ⇔  𝑥 < 𝑦, when 𝑎 ∈ (0,1)

Example Inequalities Solve for 𝑥 in each of the following:

a)   16? > 2

b)   2O:?@N < NN]

Page 12: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  12  of  20  

13E  Logarithms  Consider  the  statement  23  =  8,  This  may  be  written  in  an  alternative  form:  log2  8  =  3,  which  is  read  as  ‘the  logarithm  of  8  to  the  base  2  is  equal  to  3’.  

Note: Since ax is positive, the expression loga y is only defined when y is positive. The logarithm function with base a is the inverse of the exponential function with base a. We will discuss this in Section 13G. Further examples: §   32   =  9 is equivalent to 𝑙𝑜𝑔39   =  2 §   104   =  10  000 is equivalent to 𝑙𝑜𝑔10  10  000   =  4 §   𝑎0   = 1 is equivalent to 𝑙𝑜𝑔𝑎1 = 0 Example Q1(b) and (d)

Without using a calculator, evaluate the following: a)   log: 81

b)   logN) 0.1

Laws of logarithms The index laws are used to establish rules for computations with logarithms.

 

 

 

 

   

Page 13: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  13  of  20  

Example Logarithm Laws Q4(b) and (h)

Without using a calculator, simplify each of the following: a)   log; 16+log; 8

b)   :;logR 𝑎 − logR √𝑎

Example 22 Solve for 𝑥4

(a)   logQ 𝑥 = 3

(b)  logQ(2𝑥 + 1) = 2

(c)   log;(2𝑥 + 1) − log;(𝑥 + 1) = 4

(d)  log:(𝑥 − 1) + log:(𝑥 + 1) = 1

 

    4 https://seniormaths.cambridge.edu.au/lessonSection/lesson.action#/resources/video/78065/

Page 14: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  14  of  20  

13F  Using  logarithms  to  solve  exponential  equations  and  inequalities  If a ∈ R+ \ {1}, then the statements ax = b and loga b = x are equivalent. This defining property of logarithms may be used in the solution of exponential equations. Example Q1(b) and (f) Solve using a calculator (b) 2x=0.4

(f) 0.3x=2

Example 24 Solve 32x−1 = 28.

Example 25

Solve the inequality 0.7𝑥 ≥ 0.3

Exponential graphs revisited In Section 13C we graphed exponential functions, but often we could not find the x-axis intercept. Now that we have defined logarithms this can be done.

 

Page 15: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  15  of  20  

   

13G  Graphs  of  logarithm  functions  Graph of y=logax when a>1

y = log2 x  

 

y = log10 x

 

Notes:   §   The point (1,2) is on the graph of y=2x and

the point (2,1) is on the graph of y=log2 x.

§   The point(2,4) is on the graph of y=2x and the point (4,2) is on the graph of y=log2 x.

§   The graph of y=log2 x is the reflection of the

graph of y=2x in the line y=x.  

The graph of y = log10 x is the reflection in the line y = x of the graph of y = 10x.  

   Properties  of  y=ax,  a>1  

•   domain = R •   range = R+ •   a0=1 •   As x→−∞,y→0+ •   y = 0 is an asymptote  

 

Properties  of  y=loga  x,  a>1  •   domain = R+

•   range = R •   loga 1 = 0 •   as x → 0+, y → −∞ •   x = 0 is an asymptote    

   

Page 16: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  16  of  20  

Graph of y=logax when 0<a<1

Consider 𝑦 = logFD𝑥

logN;𝑥 = 𝑦 ⟺ M

12P

e

= 𝑥

⟺ 2Oe = 𝑥 ⟺ log; 𝑥 = −𝑦 ⟺ 𝑦 = −  log; 𝑥

So we have logFD𝑥 = − log; 𝑥.

Inverses

The inverse of a one-to-one function was introduced in Section 5G. •   The inverse of 𝑓:  𝑅 → 𝑅, 𝑓(𝑥) = 2𝑥 is the function 𝑓ON: 𝑅@ → 𝑅, 𝑓ON(𝑥) = 𝑙𝑜𝑔2𝑥 •   The inverse of 𝑓:  𝑅 → 𝑅, 𝑓(𝑥) = 10𝑥 is the function 𝑓ON: 𝑅@ → 𝑅, 𝑓ON(𝑥) = 𝑙𝑜𝑔10𝑥

 

 

 

 Transformations of logarithm graphs Transformations can be applied to the graphs of logarithm functions. This is shown in the following example.

Page 17: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  17  of  20  

 

 

Page 18: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  18  of  20  

13H  Exponential  models  and  applications  Exponential growth and decay In the following, we consider a variable A that is subject to exponential change. Let A be the quantity at time t. Then A = A0bt, where A0 is the initial quantity and b is a positive constant.

If b > 1, the model represents growth: •   Growth of cells •   Population growth

•   Continuously compounded interest

If b < 1, the model represents decay: •   Radioactive decay

•   Cooling of materials

Cell growth Suppose a particular type of bacteria cell divides into two new cells every TD minutes. Let N0 be the initial number of cells of this type. Then after t minutes the number of cells, N, is given by the formula

𝑁 = 𝑁) × 2{|}  

where TD is called the generation time. Here we are only dealing with the type of reproduction where the cell divides in two. For most known bacteria that can be cultured, generation times range from about 15 minutes to 1 hour.

   

Radioactive decay Radioactive materials decay so that the amount of radioactive material, A, present at time t (in years) is given by the formula

𝐴   = 𝐴0 × 2O�{ where A0 is the initial amount and k is a positive constant that depends on the type of material. A radioactive substance is often described in terms of its half-life, which is the time required for half the material to decay.

Page 19: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  19  of  20  

Population growth It is sometimes possible to model population growth through exponential models.

 

 Determining exponential rules We have looked at determining rules for functions in Chapters 2 to 6. We look at one very useful case for exponential functions.

Page 20: ATHEMATICAL!METHODS!UNIT 2 C 13 EXPONENTIAL!FUNCTIONS › uploads › 5 › 2 › 6 › 4 › 52647653 › ... · 2018-07-20 · EXPONENTIAL*FUNCTIONS* ***** *****PAGE*4*of*20* Example:

EXPONENTIAL  FUNCTIONS                                                                                                                                            PAGE  20  of  20  

 

 

 In many practical situations, the relationship between variables is exponential.