Asia%PacificMarine)Biotechnology)Conference)2017) ) ) !!...

download Asia%PacificMarine)Biotechnology)Conference)2017) ) ) !! Asia%PacificMarine)Biotechnology)Conference)2017))

of 40

  • date post

  • Category


  • view

  • download


Embed Size (px)

Transcript of Asia%PacificMarine)Biotechnology)Conference)2017) ) ) !!...

  • Asia-­‐Pacific  Marine  Biotechnology  Conference  2017          

    Page  1    

    (1)   The   ethyl   acetate   fraction   from   Ecklonia   cava   expression   of  chemokine   and   cytokines   via   down-­‐ regulating   NF-­‐κB   and   MAPK   pathway   in   TNF-­‐α/IFN-­‐γ-­‐ stimulated  HaCaT  human  keratinocytes.  Park,  SY1,  Kang,   N1,  Han,  EJ2,  Kim,  HJ3,  Lim,  YH3,  Jang,  JT4,  Jee,  Y5,  Jeon,  YJ6   Ahn,   G1,2,*.   1Department   of   Marine   Bio-­‐Food   Sciences,   Chonnam   National   University,   2Department   of   Food   Technology  and  Nutrition,  Chonnam  National  University,   3Seojin  Biotech  Co.,  Ltd,  4Aquagreen  technology  Co.,  Ltd.,   5Department   of   Veterinary   Medicine,   Applied   Radiological   Science   Research   Institute,   Jeju   National   University,   6Department   of   Marine   Life   Science,   Jeju   National  University.   Ecklonia  cava,  an  edible  brown  seaweed   is  demonstrated   to   have   various   biological   activities   such   as   anti-­‐ inflammatory,   anti-­‐oxidant   and   cytoprotective   effects.   In   this   study,   we   evaluated   the   anti-­‐inflammatory   potential   and  mechanisms  of  the  ethyl  acetate  fraction  from  E.  cava   (ECEF)  in  the  tumor  necrosis  factor-­‐α  (TNF-­‐α)/interferon-­‐γ   (IFN-­‐γ)-­‐stimulated   inflammatory   response   in   HaCaT   human  keratinocytes.   To  measure   the  effects  of   ECEF  on   chemokine   and   pro-­‐inflammatory   cytokine   expression   in   HaCaT  cells,  we  used  the   following  methods:  cell  viability   assay,   reverse   transcription-­‐polymerase   chain   reaction,   and  western   blotting.   The   result   that   ECEF   did   not   show   cytotoxicity   to   HaCaT   cells   at   the   tested   concentrations.   ECEF   suppressed   TNF-­‐α/IFN-­‐γ-­‐stimulated   mRNA   expression   of   chemokines   and   pro-­‐inflammatory   cytokines.  In  addition,  ECEF  inhibited  the  activation  of  NF-­‐ κB   and   extracellular   signal-­‐related   kinases   (ERK)/p38   MAPK   signaling   pathways.   ECEF   exerts   anti-­‐inflammatory   effects   by   suppressing   the   expression   of   TNF-­‐α/IFN-­‐γ-­‐ stimulated   chemokines   and   pro-­‐inflammatory   molecules   via   a   blocked  NF-­‐κB,   ERK   and   p38   activation.  Our   results   suggest  that  ECEF  might  be  a  useful  therapeutic  candidate   for  inflammatory  skin  diseases.     (2)  Venoms  to  Drugs.  Alewood  P*.  Institute  for  Molecular   Bioscience,  University  of  Queensland,  Brisbane  Australia.   Many  organisms   including   snakes,   spiders,   scorpions   and   cone   snails   have   evolved   venom   for   prey   capture   or   defence1.   These   venoms   typically   contain   a   complex   cocktail  of  bioactive  disulfide  bond  rich  polypeptide  toxins   that   target   a  wide   range  of   receptors   including  enzymes,   ion  channels,  GPCRs  and  transporters.  Of  interest  to  drug   designers   is   their   high   potency   and   selectivity   combined   with  their  resistance  to  many  proteases.     Of   particular   interest   are   venoms   from   the   marine   Conidae2,3,   with   smaller   polypeptide   chains   of   10-­‐40   amino   acids   that   are   highly   constrained   by   one   to   five   disulfide   bridges   and   are   structurally   well   defined.   Their   high  potency  and  exquisite  selectivity  for  ion  channels  and  

    receptors   has   led   to   two   drug   candidates   from   our   laboratories.   In   this   presentation   I   will   outline   our   program   of   discovery,   describe   the   amazing   diversity   of   molecular   structures   being   discovered   and   the   regioselective   chemistry   developed   to   facilitate   disulfide   bond   formation.   This   has   led   to  mimetics   that   have   similar   or   improved  potency  to  the  native  molecule  plus  exceptional   stability   when   exposed   to   reducing   environments   and   in   plasma.   Together,   these   results   underpin   the   development  of  more  stable  and  potent  peptide  mimetics   suitable   for   new   drug   therapies,   and   highlight   the   application   of   this   technology   more   broadly   to   disulfide   bonded  peptides  and  proteins.   References:   1.   Sébastien   Dutertre,   Ai-­‐Hua   Jin,   Irina   Vetter,   Brett   Hamilton,   Kartik   Sunagar,   Vincent   Lavergne,   Valentin   Dutertre,   Bryan   Fry,  Agostinho  Antunes,   Paul   F.   Alewood   and   Richard   J.   Lewis.   Nature   Communications   5:3521,   2014.   2.   Akondi   KB,  Muttenthaler  M,   Dutertre   S,   Kaas  Q,   Craik   DJ,   Lewis   RJ,   Alewood   PF   (2014).   Chemical   Reviews   114   (11)  5815.   3.  I  Sharpe,  J  Gehrmann,  M  Loughnan,  L  Thomas,  D  Adams   A   Atkins,   DJ   Craik,   D   Adams   PF   Alewood   and   RJ   Lewis   (2001).    Nature  Neuroscience,  4(9)  902.     (3)   Algal-­‐biorefinery:   challenges   and   opportunities.     Angelidaki,   I*  and  Alvarado-­‐Morales,  M.    Department  of   Environmental   Engineering,   Technical   University   of   Denmark.   The   recent   years   challenges   such   as   climate   change   and   environmental   problems   require   action   and   strategic   planning   in  the  future  to  ensure  access  to  food,  feed  and   energy.  Therefore,  there   is  a  need  for  alternative  sources   of  biological-­‐based  products.   Algal  biomass  is  a  not  completely  explored  "treasure"  and   has  been  considered  ad  possibility  to  address  these  future   challenges.   The   technological   potential   of   the   combined   use   of   micro-­‐and   macro-­‐algae   for   the   production   of   various   biological   products   is   great.   Macroalgae   can   be   used   directly   as   food,   snack,   as   sprinkle   in   salads   and   as   additive  for  flavor  enhancing.  Microalgae  such  as  Spirulina   and   Chlorella   are   already   used   with   great   success   as   nutritional  supplements.  Food  additives  (such  as  alginate)   may  be  extracted   from  macroalgae  and   the   remainder  of   the   biomass   can   then   be   used   for   bio-­‐and   fertilizer   without  any  waste  product.  Micro-­‐and  macro-­‐algae  have  a   high   content   of   biochemicals   such   as   vitamins   and   antioxidants,   which   can   be   used   to   fortify   foods   and   protect   the  more  unsaturated   fatty   acid   (omega-­‐3)   to  be   converted  into  saturated  fatty  acids  or  rancid.  

  • Asia-­‐Pacific  Marine  Biotechnology  Conference  2017          

    Page  2    

    In   a   biorefinery   concept   algae   can   be   used   for   the   production   of   biomass,   functional   food,   feed,   biochemicals   and   bioenergy.   In   addition,   algae   can   with   advantage  be  used  as  fertilizer  for  crops.  This  applies  both   to   the   use   of   algal   waste   products   from   biofuel   production,  but  also  from  blue-­‐green  algae  that  can  grow   in  the  wet  rice  fields  and  fix  nitrogen  from  the  air  and  thus   provide   plants   with   nitrogen,   without   the   need   for   application  of  fertilize