ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8...

30
Alloy composition processing techniques Phase Testing details σy σs Elongation Ref. Ti 10 Fe 30 Co 30 Ni 30 MA(10:1, 300rph, 40h)+SPS(1273K) FCC Compressi on, RT 10 - 3 1830 2024 18.7 [1] Al 20 Co 20 Cr 20 Fe 20 Ni 20 Arc melting BCC1+BCC2 Compressi on 273 773 873 973 1073 1117 1384 1263 1075 450 417 201 1912 1702 1317 622 480 302 16.7 19.9 29.3 >50 >50 >50 [2] Al 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21. 6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19. 8 Direct laser fabrication FCC FCC+BCC BCC Compressi on Tension 194 400 1400 194 654 NA 1378 1420 2250 270 930 1018 97 49 25 38 27 20 [3] AlCoCrFeNi 2.1 Casting FCC+BCC Tension 403 1351 15.4 [4] W 0.32 Ta 0.18 Ti 0.18 V 0.20 Cr 0.19 W 0.42 Ta 0.15 Ti 0.14 V 0.14 Cr 0.14 W 0.56 Ta 0.15 Ti 0.09 V 0.11 Cr 0.09 W 0.63 Ta 0.09 Ti 0.09 V 0.09 Cr 0.09 W 0.71 Ta 0.04 Ti 0.07 V 0.07 Cr 0.07 W 0.77 Ta 0.05 Ti 0.07 V 0.05 Cr 0.06 W 0.9 Ta 0.05 Ti 0.02 V 0.03 Cr 0.02 PM(1:1, 30rpm), SPS (1873K) BCC Compressi on RT 10 -3 2265 2314 2144 2187 1473 1208 1206 bulge commente d by the authors 3.0 4.6 4.8 10.0 24.7 33.5 39.6 [5]

Transcript of ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8...

Page 1: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Alloy composition processing techniques Phase Testing details σy σs Elongation Ref.Ti10Fe30Co30Ni30 MA(10:1, 300rph, 40h)

+SPS(1273K)FCC Compression,

RT 10-3

1830 2024 18.7 [1]

Al20Co20Cr20Fe20Ni20 Arc melting BCC1+BCC2 Compression273773873973

10731117

138412631075450417201

191217021317622480302

16.719.929.3>50>50>50

[2]

Al7.1Co23.4Cr22.9Fe23.3Ni23.1

Al13.3Co21.4Cr20.9Fe22.8Ni21.6

Al18.3Co20.2Cr20.7Fe21.1Ni19.8

Direct laser fabrication FCCFCC+BCC

BCC

Compression

Tension

194400

1400

194654NA

137814202250

270930

1018

974925

382720

[3]

AlCoCrFeNi2.1 Casting FCC+BCC Tension 403 1351 15.4 [4]W0.32Ta0.18Ti0.18V0.20Cr0.19

W0.42Ta0.15Ti0.14V0.14Cr0.14

W0.56Ta0.15Ti0.09V0.11Cr0.09

W0.63Ta0.09Ti0.09V0.09Cr0.09

W0.71Ta0.04Ti0.07V0.07Cr0.07

W0.77Ta0.05Ti0.07V0.05Cr0.06

W0.9Ta0.05Ti0.02V0.03Cr0.02

PM(1:1, 30rpm), SPS (1873K)

BCC CompressionRT 10-3

2265231421442187147312081206

bulgecommente

dbythe

authors

3.04.64.8

10.024.733.539.6

[5]

HfZrTiTa0.53 Arc melting BBC1+BCC2 CompressionRT 10-3

Hopkins Bar774 1300 13.5

[6]

Page 2: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

950127015002200

1360146913901388

1590160015801570

10.48.9

13.212.1

CoCrFeMnNi Vacuum introduction melting

FCC TensionRT 10-3

100484650

853968

3328

[7]

CoCrFeNiZr0.1

CoCrFeNiZr0.2

CoCrFeNiZr0.3

CoCrFeNiZr0.4

CoCrFeNiZr0.5

Vacuum melting FCC+Laves TensionRT

9231023

RT591642653667

HT(Cr0.4)455363

11.03.72.11.3

4.910.2

[8]

CoCrFeNi Arc melting FCC Tension5e-3223293923

12241107837

13.612.627.1

[9]

Ni47.9Al10.2Co16.9Cr7.4Fe8.9Ti5.8 Vacuum arc melting+

Directional solidification

FCC+L12 Tension10e-3

25400750950

843829853487

[10]

AlNbTiV Arc melting B2 Compression (22oC) (22oC) (22oC) [11]

Page 3: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

AlNbTiVZr0.1

AlNbTiVZr0.25

AlNbTiVZr0.5

AlNbTiVZrAlNbTiVZr1.5

B2+Zr5Al3

B2+Zr5Al3

+Laves(Same)

22600800

100012901360148515001535

(600oC)780975

1065113511551195

(800oC)560865855675550180

128013951480NA

16751550

(600oC)100510851260142513851195

(800oC)700920865740600395

6.03.79.3>503.00.4

(600oC)14.35.16.57.51.00

(800oC)>50

Fe50Mn30Co10Cr10

Fe50Mn30Co10Cr10/0.2Fe50Mn30Co10Cr10/0.4Fe50Mn30Co10Cr10/0.8

plus graphene

MA+SPS FCC Tension10-3

RT607749903865

717781922976

5.62.8NANA

[12]

CoCrMoNbCoCrMoNbTi0.2

Arc melting BCCCr2Nb

Compression10-3

RT 1419.61905.6

5.775.07

[13]

Page 4: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

CoCrMoNbTi0.4

CoCrMoNbTi0.5

(comparision)NbMoTaW

NbMoTaWVHfNbTiZrTa

NbCrMo0.5Ta0.5TiZrMoNbHfZrTi

Mo0.5NbHf0.5ZrTiC0.1

HfNbTiVSi0.5

Co2Ti 1771.31609.8

10581246929

1595171921391608

4.623.88

2.11.5>505.0NA

38.3910.9

Cr15Fe20Co35Ni20Mo10 Arc melting thermal mech800oC/1h/AC

850 oC /5min/WC900 oC /5min/WQ

1000 oC /5min/WQ1000 oC /1h/AC1500 oC /1h/AC

FCC+HCPFCC+HCPFCC+HCPFCC+HCPFCC+HCP

FCC

Tension10-3 1131

12121028879799350

14101360124911941127918

12.114.918.325.428.262.4

[14]

FeCrMoVFeCrMoVTi0.5

FeCrMoVTi1.0

FeCrMoVTi1.5

FeCrMoVTi2.0

(comparison)AlCrCuNiTi

FeAlCrNiMo0.1

Sn0.05Al2.5FeCoNiCuAlCoCrFeNi

AlCoCrFeNiTiAlTiCr2.0FeCoNiCu

Arc melting BCCBCCBCCBCCBCC

BCCBCCBCCBCCBCC

BCC+FCC

Compression 900152012951105880

122514211368125118601600

22311793145214761040

138620341778200422801840

28.25.95.34.74.2

8.16.27.5

32.110.08.48

[15]

Page 5: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

CrFeNiV0.5WAlCoCrFeNiTiY

Al20(TiVCrMnFeCoNiCu)80

Ti45Zr25Nb6Sn2Ni5Be17

CoCrFeNiFeMnNiCoCr

BCC+FCC+LBCC+LBCC+LBMGFCCFCCs

1800NA

14651569140215

2240119220161970488491

7.283.542.5

19.88371

Fe36Mn21Cr18Ni15Al10 Arc melting BCC+B2 Compression25

400500600800

Tension25

400500600

990940640360125

750640515310

880900715405

>50>50>50>50>50

2.5204255

[16]

V35Ti35Fe15Cr10Zr5 Arc melting BCC1+BCC2 Compression20

400500600700800900

1013.41391.71398.31429.5918.1374.1253.0

917.81147.21238.11125.7788.7346.6224.8

0.670.891.372.163.24

>12.6>12.2

[16]

Al0.3CoCrFeNi Arc melting1150oC/60min WC

FCC Tension10-3 159 410 65

[17]

Page 6: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

1150 oC /5min WC1150 oC /60min+700 oC

/50h1150 oC /60min+550/150h

1150 oC /2min1150 oC /2min+620 oC /50h

220215285263490

550520540589840

6043556045

CrCuMnNiAl0.1CrCuMnNiAl0.2CrCuMnNiAl0.3CrCuMnNiAl0.4CrCuMnNi

Arc melting FCC+BCC Tension10-3

403401458502536

713712758883950

27.537.034.023.77.5

[18]

Co0.2Cr0.2Fe0.2Ni0.2Mn0.2 Vacuum induction meltingCR40%

FCC Tension10-4

RT250300400500550600650700800

2261471421371121071011019674

584472457434414392348293236118

53.539.138.140.543.244.539.725.919.044.1

[19]

Ni1.5Co1.5CrFeTi0.5 MA+SPS FCC Tension10-4 RT 1308 1384 4.01

[20]

Ti20Zr20Nb20Ta20Mo20 Arc melting BCC1+BCC2 Compression10-3 RT 1390 1580 6.0

[21]

Page 7: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

CoCrFeNiCoCrFeMnNi Arc melting

FCCFCC

Tension10-4 RT

217.6229.6

522618

47.068.6

[22]

MoNbTaTiVMoNbTaVNbTaTiVNbTaVW

NbTaTiVW

Arc melting BCC Compression10-4RT

14081573105315421522

24492398NA

20112468

34.421.6>4013.617.7

[23]

Al0.3CoCrFeNi direct laser fabrication FCC CompressionTension RT

189189

>1369275

NA38

[24]

NiTiFeAlCu Arc metling FCC+BCC Compression10-3

RT850

100015141

113716663

<5%>70%>70%

[25]

FeNiCrMnCo5

FeNiCrMnCo10

FeNiCrMnCo20

Arc meltinganneal

FCCFCC+signma

FCCFCCFCCFCC

TensionRT 10-3

308466294294285286

489469537478513501

56.78.3

27.261.366.359.8

[26]

AlCoCuFeNiAlCoCuFeNiCrAlCoCuFeNiTi

AlCoCuFeCrTiNi

Arc melting FCC+A2/B2

A2/B2+FCC+laves+laves

CompressionRT 10-4

1060128516121532

1452185718161588

19.124.612.88.1

[26]

FeCoNiMn0.25Al0.25 Arc meltingcold rollanneal

FCCFCCFCC

TensionRT 10-3

138.1622.7331.4

483.91029.6651.0

58.17.9

47.9

[27]

Al0.2Si0.2CrFeCoNiCu0.8

Al0.4Si0.2CrFeCoNiCu0.6

Arc meltingConventional Ix

(I) FCCFCC+BCC

CompressionRT 10-3

(I)379479

[28]

Page 8: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Al0.5Si0.2CrFeCoNiCu0.5

Al0.6Si0.2CrFeCoNiCu0.4

Al0.8Si0.2CrFeCoNiCu0.2

Al0.9Si0.2CrFeCoNiCu0.1

N2(l) Rx FCC+BCCFCC+BCC

BCCBCC

(R) FCCFCC

FCC+BCCBCCBCCBCC

545925

15981610

(R) 477501610

169317171794

2781250428313373

3120247232314249

47.526.013.822.8

43.210.716.023.2

AlCoCrFeNi Laser fabrication600oC 168h800oC 168h

1000oC 168h1200oC 168h

FCC+BCCFCC+BCC+sigma

FCC+BCCFCC+BCC

Compression RT 10-4

1310117010701130

2600294028303020

16.821.624.924.2

[29]

CoCrFeMnNi-1C Arc melting cold rolling 80%

700 oC 30min800 oC 30min900 oC 30min

1100 oC 30min

FCC TensionRT 10-3

13601070720570380

14701270980880810

1514374866

[30]

Al0.1CoCrFeNi Arc melting FCC TensionRT 10-4

500600700

302154125115

427299220147

2733236

[31]

Al9CrFeNiAl10CrFeNi

Arc melting BCC Compression10-3

770843

30023450

37.134.6

[32]

Page 9: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Al11CrFeNiAl12CrFeNiAl13CrFeNi

1044906

1122

351336073705

27.131.424.7

AlCoCuFeMnNi Arc melting900oC 8h

FCC+BCC Compression10-3

13171095

18332123

1121

[33]

Al0.1CoCrFeNi Arc melting800oC 1h

FCC Tension10-3

215361

8221037

4738

[34]

Fe49.5Mn30Co10Cr10C0.5 Arc melting FCC+HCP Tension10-3

511241

959738

6057

[35]

Ni20Ti20Fe20Al20Cu20

Ni26Ti26Fe16Al16Cu16

Ni32Ti32Fe32Al12Cu12

Arc melting FCC+BCC CompressionRT

850oC

1000oC

9681138NA154NA

5576NA

1140129813631722484026490

207

2.53.12.9>702.92.2>702.22.9

[36]

HfNbTaTiZr Arc melting70% roll

1250oC 6h

BCC Tension10-3

958944970

974959953

201815

[37]

Co2Mo0.5Ni2VW0.5

Co2Mo0.6Ni2VW0.6

Co2Mo0.8Ni2VW0.8

Co2Mo1.0Ni2VW1.0

Co2Mo1.5Ni2VW1.5

Co2Mo1.75Ni2VW1.75

Arc melting FCC+μFCC+μFCC+μ+BCC+BCC+BCC

CompressionRT 10-3

92514111431137113201607

NA21082364220821332313

>5011.814.416.013.89.4

[38]

Page 10: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

CrNbTiVZrAl0.25CrNbTiVZrAl0.5CrNbTiVZrAl1CrNbTiVZr

FCC+BCCFCC+BCCFCC+BCCFCC+BCC

CompressionRT

600oC

800oC

1000oC

126010951630850795

13651105620440680970

125095

130265305

127010951630850795

13651105620490765

10901335165140290330

0.20000

0.200

>50>50>500.3>50>50>50>50

[39]

Fe40.4Ni11.3Mn34.8Al7.5Cr6

C0

C0.07

C0.16

C0.30

C0.55

C1.10

Arc melting FCC TensionRT 10-4 159

171181208274355

535674713762960

1174

40.851.652.248.252.349.5

[40]

AlCoCrFeNi Arc melting850oC975 oC

1100 oC1200 oC

BCC/B2BCC,s,B2FCCBCC B2 FCCBCC B2 FCCBCC B2 FCC

CompressionRT 10-4

13801430169012201450

20651465202020502500

101.62.7

13.120.1

[41]

Page 11: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

AlCoCrFeNi2.1 Arc melting90% CR+800oC

+1000oC+1200oC

FCC/B2FCC/B2FCC/B2FCC/B2FCC/B2

TensionRT 10-4

62016251108844648

10501800120011751075

176

122327

[42]

HfNbTaTiZrHfMo0.25NbTaTiZrHf Mo0.5NbTaTiZrHf Mo0.75NbTaTiZrHf Mo1NbTaTiZr

Arc melting BCC CompressionRT 10-3

10151112131713731512 1758

>50>50>50>5012

[43]

Al0.5CoCrFeNi Arc melting8h heattreat

BCC+FCC TensionRT 10-3

834 1224 25 [43]

HfNbTiVSi0.5 Levitation metling BCC+Silicide Compression10-3 RT800oC

1000oC

1399884246

1399 17[44]

FeAlCrNiMo0.1

FeAlCrNiMo0.25 FeAlCrNiMo0.5

FeAlCrNiMo0.75

FeAlCrNiMo1.0

FeAlCrNiMo1.25

Arc melting BCC+B1/C1BCC+B1/C1BCC+B1/C1BCC+B1/C1

+sigma+sigma

Compression10-3

1421.61836.92045.32251.7

2034.52057.62396.92612.12537.62582.5

6.24.24.66.7

[45]

CoCrFeNiNb0.25 Arc melting FCC+FCC preci.

Compression10-3

4622029

10062252

34.731.5

[46]

CoCrFeNi Arc melting300 K undercooling

FCCFCC+BCC

Compression10-3

137455

[47]

Al0.5CoCrNiTi0.5Fe0.5

Al0.5CoCrNiTi0.5Fe1

Arc melting BCC+FCC+sBCC+FCC+s

Compression10-3

16591178

22401801

1121

[48]

Page 12: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Al0.5CoCrNiTi0.5Fe1.5

Al0.5CoCrNiTi0.5Fe2

BCC+FCCBCC+FCC

895866

18341736

3845

AlCoCrFeCrSiTiAlCoCrFeCrSi

Arc melting BCC+FCC CompressionRT 10-4

1384.61781.6

1452.31895.2

5.88.4

[49]

Co25Ni25Fe25Al7.5Cu17.5 Arc meltingSPS

FCCFCC

CompressionRT 10-3

1795192

1936 10.6>44.2

[50]

AlCoCrFeNiAlCoCrFeNiZr0.008

AlCoCrFeNiZr0.1

AlCoCrFeNiZr0.3

AlCoCrFeNiZr0.5

Arc melting BCCBCCBCC

+Laves+Laves

CompressionRT 10-3

13201572136018042258

26583517248823052263

22.329.719.79.22.4

[51]

NbMoCrTiAl Arc melting BCC+Laves CompressionRT

400600800

10001200

NA10801060860594105

1010110011701000630116

NA2

2.52

1524

[52]

AlCoCrFeNiAlCoCrFeNiTi0.2

AlCoCrFeNiTi0.4

Arc melting A2+B2 CompressionRT 10-3

139017101970

439035503720

29.823.524.0

[53]

NbScTiZr Arc melting HCP+BCC CompressionRT 10-3

1020343

1250 8.2>30

[54]

AlCrCuNiAlCrCuNiZr

Arc melting FCC+BCC CompressionRT 10-3

11401428

11871428

10.96.6

[55]

AlCrCuFeNi2 Arc melting FCC+BCC+B2 CompressionRT 10-3

885 2123 30 [56]

Fe40Mn28Ni28Cr4

Fe40Mn28Ni20Cr12

Arc melting FCC TensionRT 10-3

210245

565545

5149

[57]

Page 13: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Fe40Mn28Ni14Cr18 310 605 37AlNbTiV

AlNbTiVCr0.5

AlNbTiVCr

AlNbTiVCr1.5

Arc melting BCC

BCC

BCC+Laves

BCC+Laves

CompressionRT

600800

1000

1000780560110

1300100564040

1550101586065

1700137097075

12801005700

1430104568580

1570106089595

170014801045105

5.212.5>50>50

0.82.5>50>50

0.41.5>50>50

00.8>50>50

[58]

AlCrCuTiAlCrCuTiNi

Arc melting BCC12+FCCBCC12+FCC

Compression RT 10-3

996.61225.8

996.61386.6

7.38.5

[59]

HfNbTaTiZr Arc melting CR+800oC 2h

+1000oC 2h

BCC Tension10-3

120213031145

129513341262

4.71.99.7

[60]

Al0.75NiFeCrCoAl0.75NiFeCr

Al0.75NiFeCrCoTi0.25

MA+SPS BCC+FCCBCC+FCCBCC+FCC

CompressionRT 10-3

193817411926

222121842376

7.67.46.8

[61]

Page 14: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Nb20Ni20Ti20Co20Zr20

Nb16.7Ni16.7Ti16.7Co16.7Zr16.7Hf16.7

BCC+FCCBCC+FCC+I

CompressionRT 10-3

23311469

NA2504

>0.3>0.3

[62]

CoCrFeNi

CoCrFeMnNi

Vacuum induction melting FCC

FCC

TensionRT 10-3

250500600700800

611527484415244103

53745143735521593

794643579519346174

719588539475321155

382626202964

392924221422

[63]

Al10Co25Cr8Fe15Ni36Ti6

1220oC/20h-900oC/5h

1220oC/20h-900oC/50h

BCC1+BCC2 TensionRT 10-3

600700800

1000

786674702672148

1039809624687

568501487535NA

596509486581

1226182792

1726112

[64]

Co20Ni20Fe20Al20Ti20 MA+SPS BCC+FCC Compression 2682 2988 5.8 [65]

Page 15: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

RT 10-3

Mo20Nb20Hf20Zr20Ti20 Arc melting BCC CompressionRT 10-3

10731173127313731473

16401095938654399194

1575825728635397187

9.08>60>60>60>60>60

[66]

AlNbTiV Arc melting BCC CompressionRT 10-3

600800

1000

1020810685158

13181050NANA

512NANA

[67]

Al0.1CoCrFeNi Vacuum induction melting FCC TensionRT

Coarse Fine

160544

389730

4427.5

[68]

Al0CrFeNiTi0.25

Al0.25CrFeNiTi0.25

Al0.5CrFeNiTi0.25

Al0.75CrFeNiTi0.25

Al1.0CrFeNiTi0.25

Arc melting FCC+BCCFCC+BCCFCC+BCCFCC+BCCFCC+BCC

Compression10-4 RT

13091390187917261444

26213412347428111829

20.433.440207.2

[69]

Al0.6CoFeNiAl0.6CoFeNi

Ti0.4Al0.6CoFeNi

Hot pressingSPS

Hot pressing

FCC+BCCFCC+BCC

FCC

Compression10-3 RT

NA2200NA

291323862737

2.76.23.2

[70]

FeNiCoCrMn Arc meltingCR 90-92%

FCC Tensile 10-3

(K) 77203293

301211177

810657547

48.644.341.2

[71]

Page 16: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

473673

134106

483454

36.837.2

CoCrFeNiCoCrFeNiV

CoCrFeNiMnV

Arc melting FCCFCC

σ+FCC

CompressionRT 10-3

19014351660

>100016651845

>752.50.5

[72]

Al0Al4Al7Al8Al9

Al10Al11

Arc melting FCCFCCFCC

FCC+BCCFCC+BCCFCC+BCCFCC+BCC

TensionRT 10-3

208222241282332531835

495501528644727992

1172

61.658.847.136.330.519.27.9

[73]

Al8Co17Cr17Cu8Fe17Ni33 Arc melting700oC/5h

1150oC/5h

TensionRT 10-3

500

357365215

315310215

459365489

334310248

9.00.1

39.0

0.7<0.02

6.0

[74]

Fe50Mn30Co10Cr10 Arc melting+HRannealing

FCC+HCPTRIP

RT 10-3

Tension4.5 Grain45 Grain

327.6225.5

851.1729

74.350.5

[75]

Fe55(CoNi)35Cr10

Fe57.5(CoNi)32.5Cr10

Vacuum induction meltingCR ~79%

Annealing

FCC+BCCTRIP

Tension77 K

298 K77 K

298 K

668279563279

1023547

1163566

126.368.2

117.885.7

[76]

Page 17: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

Fe60(CoNi)30Cr10 77 K298 K10-3

603279

1503576

87.291.4

TiZrHfNb(TiZrHfNb)98O2

(TiZrHfNb)98N2

Arc melting BCC TensionRT 10-4

74711091295

82413321316

14.227.79.3

[77]

NbTaTiV Arc melting(As-cast)

1000°C/1day1200°C/1day1200°C/3days

↓W.Q.

BCC CompressionRTRT

300500700800900

120812731034778723720688

188819721669152014861394931

33.333.537.238.537.741.640.0

[78]

CrCoNi Arc melting1200°C/24h

CR 70%

FCC TensionRT 10-4

346 1398 50.1 [79]

FeCoCrNi Hot extrusion of gas-atomized

FeCoCrNi powders (Powder metallurgy)

FCC Tension77 K

273 K480260

1725980

5545

[80]

Al0.3CoCrFeNi Casting1150°C/10h

CR ~90%+

1150°C/2min

1150°C/2min620°C/50h

FCC+L12

FCC+B2+sigma

TensionRT 10-3

230

480

550

820

60

45

[81]

Page 18: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

620°C/50h 820 1050 35FeMnNiCoCr Bridgeman technique

1473K/24hW.Q.

1373K/1hO.Q.

FCC<001><111><122><144>

TensionCompression

77 K533492438347

744612524347

11.010.910.811.0

[82]

Fe20Mn20Cr20Co20Ni20

Boron-free30 ppm-boron

100 ppm-boron300 ppm-boron

Fe20Mn20Cr20Co20Ni20

Boron-free30 ppm-boron

Fe40Mn40Cr10Co10

Boron-free30 ppm-boron

Casting in a vacuum induction furnace

1100°C/6hCR 75%

+Annealed 800°C/1h

W.Q.

Annealed 650°C/1hW.Q.

Annealed 800°C/1hW.Q.

FCC TensionRT 10-3

254641483476

649780

380433

635912783770

8521033

774859

65.354.652.547.1

50.651.4

67.072.6

[83]

Cr20Mn20Fe20Co20Ni20 SPS FCC CompressionRT 1600s-1

10-2 s-1

10-3 s-1

602406360

821770749

22.322.622.7

[84]

Page 19: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

10-4 s-1 327 721 22.5Co21.8Cr17.9Fe20.3Mn18.8Ni21.0

(O 135ppm)Induction melting

HR 1000°C1000°C/1h

CR 50%+

none600°C/1h650°C/1h700°C/1h900°C/1h

FCC TensionRT 10-3

10871012630406228

10891033787680589

9.010.327.040.450.2

[85]

Al2(NiCoFeCr)14

Al2(Ni4Co4Fe3Cr3)14

Al2(NiCoFe2Cr)14

Al2(NiCoFeCr2)14

Al3(NiCoFeCr)14

Arc melting+Suction casting

FCC matrix+BCC/B2(~35%)

FCC matrix+BCC/B2(~15%)

FCC matrix+BCC/B2(~25%)

BCC/B2

BCC/B2

TensionCompression

TensionCompression

TensionCompression

TensionCompression

TensionCompression

RT 10-4

598614346387991

1085–

1718–

1399

930

>728

1245

15.6

>33.0

8.2

[86]

Al0.1CoCrFeNi Vacuum induction castingHIP 1200°C,100MPa/4h

340°C/3h190°C/1h

FCC RT 10-4 148 – – [87]

(AlCoCrFeNi)100-xNix

x=0Arc melting BCC+FCC Compression

RT 10-3 min-1 1245 3092 25[88]

Page 20: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

x=4x=8

x=12x=16

(CoCrCuFeNi)100-xMox

x=0x=4x=8

x=12x=16

FCC+BCC

980849625355

260297387793928

3024291221752639

25093391257822012043

26.336.432.540

6059.956.633.916

CrMnFeCoNi Vacuum induction melting900°C/1h

FCC Tension77 K

173 K223 K

293 K (10-3)293 K (10-5)

423 K10-3,10-5

446335300267271227

164311281008729725695

46.239.438.7

––

26.6

[89]

TiZrNbHfTa Arc melting+Induction melting

1100°C/5h He+

As-receivedHPT

500°C/1h800°C/1h

BCC TensionRT 10-3

83019001520795

83019001520795

9.27.91.75.0

[90]

References:

Page 21: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

[1] Z. Fu, B.E. MacDonald, D. Zhang, B. Wu, W. Chen, J. Ivanisenko, H. Hahn, E.J. Lavernia, Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity, Scr. Mater. 143 (2018) 108–112. doi:10.1016/j.scriptamat.2017.09.023.

[2] K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, Dual-phase high-entropy alloys for high-temperature structural applications, J. Alloys Compd. 728 (2017) 1235–1238. doi:10.1016/j.jallcom.2017.09.089.

[3] J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC Al x CoCrFeNi high entropy alloys, J. Alloys Compd. 726 (2017) 885–895. doi:10.1016/j.jallcom.2017.08.067.

[4] X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1eutectic high-entropy alloy, Acta Mater. 141 (2017) 59–66. doi:10.1016/j.actamat.2017.07.041.

[5] O.A. Waseem, H.J. Ryu, Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications, Sci. Rep. 7 (2017) 1–14. doi:10.1038/s41598-017-02168-3.

[6] Z. Zhang, H. Zhang, Y. Tang, L. Zhu, Y. Ye, S. Li, S. Bai, Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53, Mater. Des. 133 (2017) 435–443. doi:10.1016/j.matdes.2017.08.022.

[7] M. Kang, J.W. Won, J.B. Kwon, Y.S. Na, Intermediate strain rate deformation behavior of a CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A. 707 (2017) 16–21. doi:10.1016/j.msea.2017.09.026.

[8] W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Microstructure and mechanical properties of CoCrFeNiZr x eutectic high-entropy alloys, Mater. Des. 134 (2017) 226–233. doi:10.1016/j.matdes.2017.08.030.

[9] D.H. Lee, J.A. Lee, Y. Zhao, Z. Lu, J.Y. Suh, J.Y. Kim, U. Ramamurty, M. Kawasaki, T.G. Langdon, J. il Jang, Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis, Acta Mater. 140 (2017) 443–451. doi:10.1016/j.actamat.2017.08.057.

[10] T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, K. Kakehi, H. Murakami, J.-W. Yeh, S.-R. Jian, The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy, Sci. Rep. 7 (2017) 12658. doi:10.1038/s41598-017-13026-7.

[11] N.Y. Yurchenko, N.D. Stepanov, S. V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys, Mater. Sci. Eng. A. 704 (2017) 82–90. doi:10.1016/j.msea.2017.08.019.

[12] X. Liu, L. Zhang, Y. Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A Mater. Sci. Process. 123 (2017). doi:10.1007/s00339-017-1151-7.

[13] M. Zhang, X. Zhou, J. Li, Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, J. Mater. Eng. Perform. 26 (2017) 3657–3665. doi:10.1007/s11665-017-2799-z.

[14] K. Ming, X. Bi, J. Wang, Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10alloys, Scr. Mater. 137 (2017) 88–93. doi:10.1016/j.scriptamat.2017.05.019.[15] J. Guo, X. Huang, W. Huang, Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi<inf>x</inf> High-Entropy Alloys, J. Mater. Eng. Perform. 26 (2017)

3071–3078. doi:10.1007/s11665-017-2742-3.[16] D.G. Shaysultanov, G.A. Salishchev, Y. V. Ivanisenko, S. V. Zherebtsov, M.A. Tikhonovsky, N.D. Stepanov, Novel Fe36Mn21Cr18Ni15Al10high entropy alloy with bcc/B2 dual-phase

Page 22: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

structure, J. Alloys Compd. 705 (2017) 756–763. doi:10.1016/j.jallcom.2017.02.211.[17] B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy,

Mater. Des. 121 (2017) 254–260. doi:10.1016/j.matdes.2017.02.072.[18] Z. Rao, X. Wang, Q. Wang, T. Liu, X. Chen, L. Wang, X. Hui, Microstructure, Mechanical Properties, and Oxidation Behavior of Al x Cr 0.4 CuFe 0.4 MnNi High Entropy Alloys , Adv.

Eng. Mater. 19 (2017) 1600726. doi:10.1002/adem.201600726.[19] J.X. Fu, C.M. Cao, W. Tong, Y.X. Hao, L.M. Peng, The tensile properties and serrated flow behavior of a thermomechanically treated CoCrFeNiMn high-entropy alloy, Mater. Sci.

Eng. A. 690 (2017) 418–426. doi:10.1016/j.msea.2017.03.031.[20] I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, I. Dlouhy, Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high

entropy alloy fabricated by mechanical alloying and spark plasma sintering, Mater. Des. 119 (2017) 141–150. doi:10.1016/j.matdes.2017.01.036.[21] S.P. Wang, J. Xu, TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties, Mater. Sci. Eng. C. 73 (2017) 80–89.

doi:10.1016/j.msec.2016.12.057.[22] S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy,

Mater. Sci. Eng. A. 689 (2017) 122–133. doi:10.1016/j.msea.2017.02.043.[23] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017)

1139–1150. doi:10.1016/j.jallcom.2016.11.188.[24] J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy, Scr. Mater. 129 (2017) 30–

34. doi:10.1016/j.scriptamat.2016.10.023.[25] S. Jiang, D. sun, Y. Zhang, S. Wang, C. Zhao, Plastic deformation mechanisms of equiatomic Ni20Ti20Fe20Al20Cu20 high-entropy alloy at high temperatures, J. Mater. Sci. 52

(2017) 3199–3207. doi:10.1007/s10853-016-0609-x.[26] Z.G. Zhu, K.H. Ma, X. Yang, C.H. Shek, Annealing effect on the phase stability and mechanical properties of (FeNiCrMn) (100−x) Co x high entropy alloys, J. Alloys Compd. 695

(2017) 2945–2950. doi:10.1016/j.jallcom.2016.11.376.[27] P. Li, A. Wang, C.T. Liu, A ductile high entropy alloy with attractive magnetic properties, J. Alloys Compd. 694 (2017) 55–60. doi:10.1016/j.jallcom.2016.09.186.[28] L. Ma, C. Li, Y. Jiang, J. Zhou, L. Wang, F. Wang, T. Cao, Y. Xue, Cooling rate-dependent microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1−x high entropy alloys, J.

Alloys Compd. 694 (2017) 61–67. doi:10.1016/j.jallcom.2016.09.213.[29] R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication, J.

Alloys Compd. 694 (2017) 971–981. doi:10.1016/j.jallcom.2016.10.138.[30] N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S. V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Effect of thermomechanical processing on

microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd. 693 (2017) 394–405. doi:10.1016/j.jallcom.2016.09.208.[31] T. Yang, Z. Tang, X. Xie, R. Carroll, G. Wang, Y. Wang, K.A. Dahmen, P.K. Liaw, Y. Zhang, Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures, Mater. Sci. Eng. A.

684 (2017) 552–558. doi:10.1016/j.msea.2016.12.110.

Page 23: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

[32] X. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys, Mater. Sci. Eng. A. 681 (2017) 25–31. doi:10.1016/j.msea.2016.11.019.

[33] G. Cakmak, Effect of Heat Treatment on the Microstructure, Phase Distribution, and Mechanical Properties of AlCoCuFeMnNi High Entropy Alloy, Adv. Mater. Sci. Eng. 2017 (2017) 1–6. doi:10.1155/2017/1950196.

[34] S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett. 5 (2017) 276–283. doi:10.1080/21663831.2016.1257514.

[35] Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep. 7 (2017) 40704. doi:10.1038/srep40704.

[36] Y. Zhang, S. Wang, S. Jiang, X. Zhu, D. Sun, Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates, J. Mater. Eng. Perform. 26 (2017) 41–50. doi:10.1007/s11665-016-2407-7.

[37] C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett. 184 (2016) 200–203. doi:10.1016/j.matlet.2016.08.060.

[38] H. Jiang, H. Zhang, T. Huang, Y. Lu, T. Wang, T. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des. 109 (2016) 539–546. doi:10.1016/j.matdes.2016.07.113.

[39] N.Y. Yurchenko, N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, G.A. Salishchev, Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x=0; 0.25; 0.5; 1) high-entropy alloys, Mater. Charact. 121 (2016) 125–134. doi:10.1016/j.matchar.2016.09.039.

[40] Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, W. Guo, The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater. 120 (2016) 228–239. doi:10.1016/j.actamat.2016.08.072.

[41] A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloys Compd. 683 (2016) 221–230. doi:10.1016/j.jallcom.2016.05.034.

[42] I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Mater. Sci. Eng. A. 675 (2016) 99–109. doi:10.1016/j.msea.2016.08.048.

[43] C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett. 175 (2016) 284–287. doi:10.1016/j.matlet.2016.03.133.

[44] Y. Zhang, Y. Liu, Y. Li, X. Chen, H. Zhang, Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite, Mater. Lett. 174 (2016) 82–85. doi:10.1016/j.matlet.2016.03.092.

[45] X.C. Li, D. Dou, Z.Y. Zheng, J.C. Li, Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys, J. Mater. Eng. Perform. 25 (2016) 2164–2169. doi:10.1007/s11665-016-2060-1.

[46] F. He, Z. Wang, S. Niu, Q. Wu, J. Li, J. Wang, C.T. Liu, Y. Dang, Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate, J. Alloys Compd. 667 (2016) 53–57. doi:10.1016/j.jallcom.2016.01.153.

Page 24: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

[47] J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, E. Beaugnon, Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method, Mater. Des. 95 (2016) 183–187. doi:10.1016/j.matdes.2016.01.112.

[48] C.F. Lee, T.T. Shun, Effect of Fe content on microstructure and mechanical properties of Al0·5CoCrFexNiTi0.5 high-entropy alloys, Mater. Charact. 114 (2016) 179–184. doi:10.1016/j.matchar.2016.02.018.

[49] X.R. Wang, Z.Q. Wang, T.S. Lin, P. He, D.P. Sekulic, Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys, J. Mater. Eng. Perform. 25 (2016) 2053–2064. doi:10.1007/s11665-016-2000-0.

[50] Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia, Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy, Acta Mater. 107 (2016) 59–71. doi:10.1016/j.actamat.2016.01.050.

[51] J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, J. Liu, Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, Mater. Des. 94 (2016) 39–44. doi:10.1016/j.matdes.2016.01.033.

[52] H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.J. Christ, M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al, J. Alloys Compd. 661 (2016) 206–215. doi:10.1016/j.jallcom.2015.11.050.

[53] Z.M. Jiao, S.G. Ma, M.Y. Chu, H.J. Yang, Z.H. Wang, Y. Zhang, J.W. Qiao, Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading, J. Mater. Eng. Perform. 25 (2016) 451–456. doi:10.1007/s11665-015-1869-3.

[54] L. Rogal, J. Morgiel, Z. Światek, F. Czerwiński, Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy, Mater. Sci. Eng. A. 651 (2016) 590–597. doi:10.1016/j.msea.2015.10.071.

[55] X.R. Wang, Z.Q. Wang, T.S. Lin, P. He, Microstructure, thermodynamics and compressive properties of AlCrCuNiZrx (x = 0,1) high-entropy alloys, Mater. Sci. Technol. (United Kingdom). 32 (2016) 1289–1295. doi:10.1080/02670836.2015.1117194.

[56] Y.-J. Chang, A.-C. Yeh, The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys, J. Alloys Compd. 653 (2015) 379–385. doi:10.1016/j.jallcom.2015.09.042.

[57] N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, G.A. Salishchev, Tensile properties of the Cr-Fe-Ni-Mn non-equiatomic multicomponent alloys with different Cr contents, Mater. Des. 87 (2015) 60–65. doi:10.1016/j.matdes.2015.08.007.

[58] N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys, J. Alloys Compd. 652 (2015) 266–280. doi:10.1016/j.jallcom.2015.08.224.

[59] X.-R. Wang, P. He, T.-S. Lin, Z.-Q. Wang, Microstructure, thermodynamics and compressive properties of AlCrCuNi x Ti ( x  = 0, 1) high entropy alloys, Mater. Sci. Technol. 31 (2015) 1842–1849. doi:10.1179/1743284715Y.0000000101.

[60] O.N. Senkov, S.L. Semiatin, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloys Compd. 649 (2015) 1110–1123. doi:10.1016/j.jallcom.2015.07.209.

[61] Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, Z. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A. 648 (2015) 217–224. doi:10.1016/j.msea.2015.08.056.

Page 25: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

[62] Z. Han, X. Liu, S. Zhao, Y. Shao, J. Li, K. Yao, Microstructure, phase stability and mechanical properties of Nb-Ni-Ti-Co-Zr and Nb-Ni-Ti-Co-Zr-Hf high entropy alloys, Prog. Nat. Sci. Mater. Int. 25 (2015) 365–369. doi:10.1016/j.pnsc.2015.09.001.

[63] J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform. 24 (2015) 3685–3698. doi:10.1007/s11665-015-1679-7.

[64] H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel, High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy), Jom. 67 (2015) 2271–2277. doi:10.1007/s11837-015-1484-7.

[65] Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, E.J. Lavernia, Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A. 644 (2015) 10–16. doi:10.1016/j.msea.2015.07.052.

[66] N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des. 81 (2015) 87–94. doi:10.1016/j.matdes.2015.05.019.

[67] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett. 142 (2015) 153–155. doi:10.1016/j.matlet.2014.11.162.

[68] M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, P.K. Liaw, Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy, Mater. Res. Lett. 3 (2014) 30–34. doi:10.1080/21663831.2014.958586.

[69] S. Liu, M.C. Gao, P.K. Liaw, Y. Zhang, Microstructures and mechanical properties of Al x CrFeNiTi 0.25 alloys, J. Alloys Compd. 619 (2015) 610–615. doi:10.1016/j.jallcom.2014.09.073.

[70] Z. Fu, W. Chen, Z. Chen, H. Wen, E.J. Lavernia, Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy, Mater. Sci. Eng. A. 619 (2014) 137–145. doi:10.1016/j.msea.2014.09.077.

[71] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. doi:10.1016/j.actamat.2014.08.026.

[72] G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A. V. Kuznetsov, I. V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and v on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd. 591 (2014) 11–24. doi:10.1016/j.jallcom.2013.12.210.

[73] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. doi:10.1016/j.actamat.2013.09.037.

[74] H.M. Daoud, A. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Microstructure and tensile behavior of Al8Co17Cr 17Cu8Fe17Ni33 (at.%) high-entropy alloy, Jom. 65 (2013) 1805–1814. doi:10.1007/s11837-013-0756-3.

[75] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature. 534 (2016) 227–230. doi:10.1038/nature17981.

[76] J.W. Bae, J.B. Seol, J.G. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.J. Lee, H.S. Kim, Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures, Acta Mater. 161 (2018) 388–399. doi:10.1016/j.actamat.2018.09.057.

Page 26: ars.els-cdn.com · Web viewAl 7.1 Co 23.4 Cr 22.9 Fe 23.3 Ni 23.1 Al 13.3 Co 21.4 Cr 20.9 Fe 22.8 Ni 21.6 Al 18.3 Co 20.2 Cr 20.7 Fe 21.1 Ni 19.8 Direct laser fabrication FCC FCC+BCC

[77] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature. 563 (2018) 546–550. doi:10.1038/s41586-018-0685-y.

[78] C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Lattice distortion in a strong and ductile refractory high-entropy alloy, Acta Mater. 160 (2018) 158–172. doi:10.1016/j.actamat.2018.08.053.

[79] C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S.R. Niezgoda, Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy, Acta Mater. 158 (2018) 38–52. doi:10.1016/j.actamat.2018.07.028.

[80] Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction, Acta Mater. 154 (2018) 79–89. doi:10.1016/j.actamat.2018.05.013.

[81] B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R.S. Mishra, R. Banerjee, Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing, Acta Mater. 153 (2018) 169–185. doi:10.1016/j.actamat.2018.05.009.

[82] M. Bönisch, Y. Wu, H. Sehitoglu, Hardening by slip-twin and twin-twin interactions in FeMnNiCoCr, Acta Mater. 153 (2018) 391–403. doi:10.1016/j.actamat.2018.04.054.[83] J.B. Seol, J.W. Bae, Z. Li, J. Chan Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366–376.

doi:10.1016/j.actamat.2018.04.004.[84] Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy, Acta Mater. 151 (2018) 424–431.

doi:10.1016/j.actamat.2018.03.040.[85] C. Haase, L.A. Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys, Acta

Mater. 150 (2018) 88–103. doi:10.1016/j.actamat.2018.02.048.[86] Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys

based on Al 2 (Ni,Co,Fe,Cr) 14 compositions, Acta Mater. 147 (2018) 213–225. doi:10.1016/j.actamat.2018.01.050.[87] X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M.W. Chen, Transmission electron microscopy characterization of dislocation structure in a face-centered

cubic high-entropy alloy Al 0.1 CoCrFeNi, Acta Mater. 144 (2018) 107–115. doi:10.1016/j.actamat.2017.10.050.[88] R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, H. Fu, Composition design of high entropy alloys using the valence electron concentration to balance strength

and ductility, Acta Mater. 144 (2018) 129–137. doi:10.1016/j.actamat.2017.10.058.[89] G. Laplanche, J. Bonneville, C. Varvenne, W.A. Curtin, E.P. George, Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy

alloy, Acta Mater. 143 (2018) 257–264. doi:10.1016/j.actamat.2017.10.014.[90] B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact

on the mechanical properties, Acta Mater. 142 (2018) 201–212. doi:10.1016/j.actamat.2017.09.035.