Applications of Mn(III) in Organic Chemistry Florina Voica

11
Applications of Mn(III) in Organic Chemistry Florina Voica Baran lab GM 2/6/2010 Contents: Oxidative radical cyclization of β-keto acids Discussion of the reaction mechanism Oxidative radical cyclization of β-keto esters Oxidative radical cyclization of 1,3-diketones Oxidative cyclization of ketones Oxidative fragmentation-cyclization Asymmetric radical cyclization Miscellaneous applications of Mn(III) salts Some common commercially available Mn(III) species: Mn(OAc) 3 2H 2 O (Aldrich, $6/g) Mn(acac) 3 (Aldrich, $3.1/g) MnF 3 (Aldrich, $3.2/g) Mn 2 O 3 (Aldrich, $10/g) Excluding the applications in olefin epoxidation (or alkane oxidation), Mn(III) is most commonly used for oxidative radical cyclizations. This chemistry, largely developed by Barry Snider (Chem. Rev. 1996, 96, 339) has found broad applications in the total synthesis of natural products. Mn(OAc) 3 Thornton, J. Chem. Soc. Chem. Comm., 1978, 62. - crystallizes as Mn 3 O(OAc) 7 - anhydrous form does not exist - sold as Mn(OAc) 2 2H 2 O - insoluble in most organic solvents; soluble in hot AcOH - can be prepared in situ from Mn(OAc) 2 and KMnO 4 in AcOH F i r s t r e p o r t s . . . Bush J. Am. Chem. Soc. 1968, 90, 5903 Heiba J. Am. Chem. Soc. 1968, 90, 5905 Ph + 2 Mn III AcOH reflux xs O Ph O 60% a) b) O OR O Ph Mn(OAc) 3 2H 2 O AcOH, 45 °C Ph O O OR Heiba J. Org. Chem. 1974, 39, 3456 This summary will not address the chemistry of Mn(III)salen complexes and Mn(III)porphyrins. For a review on the Jacobsen-Katsuki epoxidation see: Jacobsen, Catal. Asymmetric Synth. (ed. Ojima, I.), 159-202, (VCH, New York, 1993) and ref therein For a representative example in the field of Mn(III) porphyrins see Groves, J. Am. Chem. Soc., 1988, 110, 8628. Br R 3 SnR 3 SnH H Reductive processes Oxidative processes cyclization O Mn III Mn III Mn III O AcO - slow O Mn III Mn III Mn III O O fast O Mn III Mn III Mn II O O Ph O Mn III Mn III Mn II O O Ph O OMn III Ph O O Ph -Mn II

Transcript of Applications of Mn(III) in Organic Chemistry Florina Voica

Page 1: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Contents: Oxidative radical cyclization of β-keto acids Discussion of the reaction mechanism Oxidative radical cyclization of β-keto esters Oxidative radical cyclization of 1,3-diketones Oxidative cyclization of ketones Oxidative fragmentation-cyclization Asymmetric radical cyclization Miscellaneous applications of Mn(III) salts

Some common commercially available Mn(III) species:Mn(OAc)3•2H2O (Aldrich, $6/g)Mn(acac)3 (Aldrich, $3.1/g)MnF3 (Aldrich, $3.2/g)Mn2O3 (Aldrich, $10/g)

Excluding the applications in olefin epoxidation (or alkane oxidation), Mn(III) is most commonly used for oxidative radical cyclizations. This chemistry, largely developed by Barry Snider (Chem. Rev. 1996, 96, 339) has found broad applications in the total synthesis of natural products.

Mn(OAc)3

Thornton, J. Chem. Soc. Chem. Comm., 1978, 62.

- crystallizes as Mn3O(OAc)7- anhydrous form does not exist- sold as Mn(OAc)2• 2H2O- insoluble in most organic solvents; soluble in hot AcOH- can be prepared in situ from Mn(OAc)2 and KMnO4 in AcOH

First reports...

Bush J. Am. Chem. Soc. 1968, 90, 5903Heiba J. Am. Chem. Soc. 1968, 90, 5905

Ph + 2 MnIII AcOHrefluxxs

OPh

O

60%

a)

b) O

OR

OPh

Mn(OAc)3•2H2O AcOH, 45 °C

Ph

O O

OR

Heiba J. Org. Chem. 1974, 39, 3456

This summary will not address the chemistry of Mn(III)salen complexesand Mn(III)porphyrins.For a review on the Jacobsen-Katsuki epoxidation see:Jacobsen, Catal. Asymmetric Synth. (ed. Ojima, I.), 159-202,(VCH, New York, 1993) and ref thereinFor a representative example in the field of Mn(III) porphyrins seeGroves, J. Am. Chem. Soc., 1988, 110, 8628.

Br

R3Sn• R 3S

nH

H

Reductive processes

Oxidative processes

cyclization

O

MnIII

MnIII MnIII

O

AcO-

slowO

MnIII

MnIII

MnIII

O

O

fastO

MnIII

MnIII

MnII

O

O

Ph

OMnIII

MnIII

MnII

O

O

PhO

OMnIII

Ph

O

O

Ph

-MnII

Page 2: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

The experts: Barry Snider E. J. Corey M. P. Bertrand Janine Cossy Phillip Zoretic and others

O

OH

O

1.3 eq Mn3O(OAc)7 AcOH, 20 min, rt

O

O

H

H

HH

63%

OO

O

H

H

HO

H

O

Corey, J. Am. Chem. Soc. 1984, 106, 5384

Early paper by Corey hinted at the potential of this new methodology to efficiently assemble complex polycyclic structures.

OH

OX

O

X OMn(OAc)3AcOH, 70 °C

H

X = CN (50%), only cisX = CO2Me (64%) cis:trans 4:1

Fristad, Tetrahedron Lett. 1985, 26, 3761

CHO

OMOM

CO2MeMeO2C

the major isomerafter a Luche reduction

1. KOH, MeOH2. Mn3O(OAc)7 (2 eq) AcOH, 70 °C

(one pot) OO

H OMOM

OMe

O

68% yield

OO

CHO

(±) - 14-epiupial

Upial could not be obtainedby the same strategy sincethe other isomer did notreact in the radical cyclization!

Paquette, Tetrahedron Lett. 1987, 43, 5567

For syntheses of upial see:Taschner, J. Am. Chem. Soc. 1985, 107, 5570 (key step: intramolecular aldol); Honda, Angew. Chem. Int. Ed. 2008, 47, 131 (key step: carbonyl ene reaction)

O

OCO2Me

O

OO

O Mn(OAc)3AcOH, 80 °C

58%

O

OCO2Me

H

HOMeO2C O

H

Mn(OAc)3AcOH, 65 °C

31%

Mechanism?Wallace, J. Chem. Soc. Perkin Trans. 1, 2001, 206.

Oxidative cyclization of β-keto acids

Reaction mechanism

O

CO2Me

Et

R

R = HR = Me

Mn(OAc)3 AcOH

Mn(OAc)3

Cu(OAc)2 AcOH

OR

CO2Me

HO

RCO2Me

R = H 71%R = Me 56%

Key concepts: - single electron oxidant - oxidative radical cyclization - radical oxidation - tandem radical cyclization - hydrogen abstraction

Page 3: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Factors that determine the reaction mechanism/product distribution:

The oxidant

Mn(OAc)3 - most common oxidant/initiator for these reactions. Other oxidants/initiators used: Fe(ClO4)3; CAN; Co(OAc)2 - in the termination step, its oxidative ability is limited: ∼ γ-carboxy radicals (2° and 3°) will be oxidized to carbocations ∼ tertiary radicals will be oxidized to carbocations to give alkene or to form a tertiary acetate ∼ allylic radicals will be oxidized to allylic acetates ∼ isolated 1° and 2° radicals wont be oxidized. If no oxidant is present they will be quenched by H-abstraction from the solvent or

Cu(OAc)2 - oxidizes 2° radicals 350X faster than Mn(OAc)3 - reacts rapidly with radicals (∼ 106 M/sec) to form alkyl-CuIII species - 1° and 2° radicals are taken to alkenes via direct oxidative elimination from the alkyl-Cu intermediate (E-olefins and the less substituted alkene) - allylic, 3° radicals are oxidized to carbocations

Kochi, Acc. Chem. Res. 1974, 7, 351

The solvent

AcOH is the most common solvent with Mn(OAc)3.

DMSO, MeOH, dioxane, CH3CN can also be used but they requirehigher temp and the yields are sometimes lower.

EtOH is a better H-donor than AcOH so it is preferred when vinyl radicalsare involved in the termination step (vinyl radicals cannot be oxidized sothey need to be quenched).

CuX2 (X = Cl, Br, I, SCN) - oxidize radicals to carbocations or they undergo ligand transfer

O

Et

OMe

O O

fast

O O

OMe

Et

slow

Cu(OAc) 2

O O

OMe

solventO O

OMe

O

Et

OMe

O

Me

Mn(OAc)3

- MnII

Mn(OAc)3

slow

MnIIIO

Et

CO2Me fast

- MnII

O

Et

CO2Me

Et

OMe

CO2Me

O

Me

CO2Me

Cu(OAc)2

O

OMe

OMe

H

OMe

OMnIII

Et

56%

or

OMe

CO2Me

HEtO

Me

CO2Me

Et

O

OMe

OMe

14%O

OMe

OMe

H3%

CuII

Et

Snider, J. Org. Chem. 1988, 53, 2137

boat TS

OH O

OMe

no discrete keto-ester radical detected!

cis

trans

Page 4: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Radical cyclizations of β-keto esters

OMe

OMe CO2Me

Mn(OAc)3 AcOH

50%O

MeO2C Me

Me

OMe

H MeO2C Me

Me

OMe

H

Zn, HCl

60%

O-methylpodocarpateSnider, J. Org. Chem. 1985, 50, 3659

OMe CO2Me

MeO

OMeMn(OAc)3 AcOH

70%O

MeO2C Me

Me

H

MeO

OMe

(±)-Triptoquinone B and C

Takaishi, J. Chem. Soc., Chem. Commun. 1993, 793

Proposed reaction mechanism:

OMe CO2Me

R'Mn(OAc)3

O

CO2Me

Me

Me

RO

MeO2C

Me

Me

R

Mn(OAc)3

O

MeO2C

Me

Me

R

O

OMe

MeOR'

Me

H

HH

MeMeO2C

MeHO

R'

OCO2Me

O

O

Mn(OAc)2•2H2O AcOH

O

O

OMeO2C

Me

H 40%

O

O

HOMeO2C

Me

H 7%+O

OHO

OMe

HO

O

triptolide

Yang, J. Org. Chem. 1998, 63, 6446

Trick to improve selectivity... (we shall see more of this later)

OCO2Et

OMe

Cl

Mn(OAc)2•2H2O AcOH OMe

OEtO2C

Me

HCl

90%

triptolide

OO

MeOOMe

Mn(OAc)3 (3 eq)Cu(OAc)2 (2 eq) AcOH, 80 °C

O

MeOO

OMe

76% vannusal A

Nicolaou, Chem Commun. 2002, 2480

O Mn(OAc)3 (1eq)Cu(OAc)2 (1 eq) AcOH, rt

61%

O

CO2Me

H

HMeO2C

H

HO

dehydropallescensin DWhite, Tetrahedron Lett. 1990, 31, 59

a. Monocylization

b. Bicycle formation with termination onto an arene

Page 5: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Oxidative cyclization of ketones

Me

Me

Me

TMS

O

Mn(OAc)3 (15eq)9:1 EtOH/AcOH 90 °C, 22h

TMS

Me

Me

O

Me

25%

Me

Me

O

Me

TMS37%

+

Me

Me

O

MeNaBH4, MeOH88%

Me

Me

HO

Me

H

gymnomitrol

AcOH100 °C

80%

Snider, J. Org. Chem. 1997, 62, 1970

O

Cl

+

OMe

Mn(OAc)3 (4eq)benzene, 100 °C

25%

O

Me

OMe

Cl

1. KOtBu (92%)2. LiPPh2 (84%)O

Me

OH

conocarpan

Mechanism?

Snider, J. Org. Chem. 1997, 6978

Oxidative fragmentation-cyclization

H

Me

Me

HO

Mn(pic)3 DMF

58%

Me

H

MeO

Me

H

Mesilphiperfol-6-ene

Snider, J. Org. Chem. 1994, 59, 5419

O

OO

Ph2t-BuOO

OO

O

H

OO

O

H

tricycloillicinone

Mn(OAc)3Cu(OAc)2

AcOH, 50 °C75%

Danishefsky, J. Am. Chem. Soc. 1998, 120, 12684

N

O

Mn(OAc)3AcOH, reflux

60%

OO

N

O

O

O

N

N

Omersicarpine Kerr, Org. Lett. 2008, 10, 1437

HO

OTHP

Mn(pic)3Bu3SnH

DMF, 0 °C

H Me

HTHPO

O

H Me

HSCNMe

10-isothiocyanatoguaia-6-ene

Narasaka, Chem. Lett. 1994, 1697

Page 6: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

OCO2Me

Mn(OAc)3Cu(OAc)2, AcOH

44%CO2Me

O H OAcMechanism?

CO2MeO

Mn(OAc)3Cu(OAc)2, AcOH

37% CO2MeO

H

OAc

H

CO2MeO

Mn(OAc)3Cu(OAc)2, AcOH

8%MeO2CO

H

HH

CO2MeO

Mn(OAc)3Cu(OAc)2, AcOH

40%CO2MeO

H

Pattenden, Synlett. 1997, 398

OEtO2C

Mn(OAc)3Cu(OAc)2 MeOH

rt, 3h

Me

H

Me

HMeEtO2C

O

35% yieldOther observed products:

Me

O

MeEtO2C H 1.5%

Me

O

MeEtO2C H 3%

Mechanism?

Me

O

H

Me

HMeEtO2C

isosteviol

Me

H

Me

HMe

HO

OHBeyer-15-ene-3,19-diolSnider, J. Org. Chem. 1998, 63, 7945

CO2MeO

Mn(OAc)3Cu(OAc)2, AcOH

35%

Me

H

Me

HMe CO2MeO

OAc

OAc

Me

H

Me

HMe CO2MeO

OAc

+

A

B

A : B / 1 : 2

Me

H

Me

HMeO

HOO

HO isospongiadiolZoretic, J. Org. Chem. 1996, 61, 1806

Me

H

Me

HMeEtO2C

O

OCO2Et

CN

2 eq Mn(OAc)31 eq Cu(OAc)2 AcOH

38-45%

OEtO2C Me

Me

H

H

CN

Me

H

O

Me

Me

H

H

H

Me

H

O

Zoretic, Tetrahedron Lett. 1996, 7909

5 13

confirmed by X-rays

5

13

5

4

8

HH

OCO2Me

H

H

HH

HOCO2Me

Mn(OAc)3

transanular cyclization

d. Tandem polycyclizations

Page 7: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

OCl CO2Me

CN 2 eq Mn(OAc)31 eq Cu(OAc)2 AcOH

OMeO2C Cl

Me

H

H

CN

Me

H

OAc

5% yield

OMeO2C Cl

Me

H

H

CN

Me

H

61% (mixture of three isomers)

CF2CO2H

OMeO2C Cl

Me

H

H

CN

Me

H 70%

HO

Me

H

H

H

Me

H

HO

Me

H

H

H

Me

H

O

Zoretic, J. Org. Chem. 1998, 63, 7213

+

Oxidative Radical Cyclization of 1,3-diesters

H

HMe

THPO

O

O

Cl

CO2Me

Mn(OAc)2•2H2OCu(OAc)2•H2O

EtOH, reflux

H

HMe

THPO

O

O

Cl

CO2Me65%

H

H

MeHOO O

CO2MeZn, HCl 87%H

H

Me

O OO

(-)-Estafiatin

Lee, J. Am. Chem. Soc. 1997, 119, 8391

MeMe

HH

OO

O Mn(OAc)3 EtOH, rt

65% O

MeMe

HOO

H

O

MeMe

HOHO

H

SmI2

1. TBAF2. AcCl

70%O

MeMe

HOAc

O H

9-Acetoxyfukinanolide

92%

Greene, J. Am. Chem. Soc. 1996, 118, 9992

α-Chloro substitution prevents overoxidation of the product!

Oxidative Radical Cyclization of 1,3-diketones

OMe

OMe

O

OH

NMeO

MeO

N

O

O

MeO

MeO

OMe

OMe

Mn(OAc)3Cu(OAc)2

AcOH, rt72%

Fredericamycin A

Rao, J. Chem. Soc. Perkin Trans. 1, 1993, 3171

8

5-α pregnane

Page 8: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Oxidative cyclization of ketones

Me

Me

Me

TMS

O

Mn(OAc)3 (15eq)9:1 EtOH/AcOH 90 °C, 22h

TMS

Me

Me

O

Me

25%

Me

Me

O

Me

TMS37%

+

Me

Me

O

MeNaBH4, MeOH88%

Me

Me

HO

Me

H

gymnomitrol

AcOH100 °C

80%

Snider, J. Org. Chem. 1997, 62, 1970

O

Cl

+

OMe

Mn(OAc)3 (4eq)benzene, 100 °C

25%

O

Me

OMe

Cl

1. KOtBu (92%)2. LiPPh2 (84%)O

Me

OH

conocarpan

Mechanism?

Snider, J. Org. Chem. 1997, 6978

Oxidative fragmentation-cyclization

H

Me

Me

HO

Mn(pic)3 DMF

58%

Me

H

MeO

Me

H

Mesilphiperfol-6-ene

Snider, J. Org. Chem. 1994, 59, 5419

O

OO

Ph2t-BuOO

OO

O

H

OO

O

H

tricycloillicinone

Mn(OAc)3Cu(OAc)2

AcOH, 50 °C75%

Danishefsky, J. Am. Chem. Soc. 1998, 120, 12684

N

O

Mn(OAc)3AcOH, reflux

60%

OO

N

O

O

O

N

N

Omersicarpine Kerr, Org. Lett. 2008, 10, 1437

HO

OTHP

Mn(pic)3Bu3SnH

DMF, 0 °C

H Me

HTHPO

O

H Me

HSCNMe

10-isothiocyanatoguaia-6-ene

Narasaka, Chem. Lett. 1994, 1697

Page 9: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

PhO

O O Mn(OAc)3Cu(OAc)2

90%86% de

O

O

O

Me

Ph

N

O O Mn(OAc)3Cu(OAc)2 28%92% de O

O

Me

N

Snider, J. Org. Chem. 1993, 58, 7640

O

CO2Me

+N

O

O

O

PhPh

O

CO2MeO

N O

Ph

Ph

MeO

MeO

MeO

MeOO

MeO OMe

O

OMeO

MeO

O

O

OO

(-)-virgatusin

Mn(OAc)3AcOH70%

40% yield80% deBrun, Eur. J. Org. Chem. 2009, 2306

Miscellaneous applications of Mn(III) salts

NBn

O

HO

O

EtO

tetramic acid

+

2eq

Ph

Ph1 eq

air

Mn(OAc)3 (1eq) AcOH, rt

OO

NBn

OPh

Ph

OH

OEtO

93%Mechanism?

Nishino, Tetrahedron Lett. 1998, 39, 7931

O

Ph

OO Ph

Ph+

1.5 eq 1 eq

Mn(OAc)3 (3eq) AcOH, reflux

77%O O

O

PhPh

Ph

Nishino, Tetrahedron Lett. 2006, 47, 7259O

Ph

OO Ph

Ph+

1.5 eq 1 eq

Mn(OAc)3 (0.1eq) AcOH, rt

O O

O

PhPh

PhO

85%

Nishino, Eur. J. Org. Chem. 2008, 2404

B(OH)2

benzene reflux

Mn(OAc)3 (3eq)

95%

B(OH)2

thiophene reflux

Mn(OAc)3 (3eq)

73%

B(OH)2

furan reflux

Mn(OAc)3 (3eq)

S

O

62%

Demir, J. Org. Chem. 2003, 68, 578

Asymmetric radical cyclizationO

S

O

PhMn(OAc)3Cu(OAc)2 Me

O

SPh O 44%

100% de

Me

O

H1. oxone2. Na/Hg

Snider, J. Org. Chem. 1991, 56, 328

Page 10: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

Mn(OAc)3 (5eq)benzene, reflux

O

O Ph

O

O Ph

OAc64% O

OAc Ph

OAc

1. NaBH4/CeCl32. Ac2O/Et3N

89%

Danishefsky, Tetrahedron Lett. 1985, 26, 3411

N

NMe

N

O

OH

MeO

Me

OMe

CNOH

H H

H

H

Mn(OAc)3 (xs)0.3% H2SO4-ACN rt, 2h

55%

N

NMe

N

O

O

MeO

Me

O

CNOH

H H

H

H

(±)-Cyanocycline AFukuyama, J. Am. Chem. Soc. 1987, 109, 1587

O

OTBS

TBSOO

H

OMeH

H

H

O

O

OTBS

TBSOO

H

OMeH

H

H

Mn(OAc)3 (0.1eq) TBHP (5eq)

72%

Shing, Org. Lett. 2006, 8, 3149

O

N

O

OH

O

O

OMn(OAc)3 (1eq)benzene, reflux

88%

N OH

Mn(OAc)3 (1eq)benzene, reflux

91%O

Demir, Tetrahedron Lett. 1997, 38, 7267

NC

NH2

+

CHO

OMe

OMeAcOH

CO2Et

CO2EtNH

MeO

MeO

O1. MeOH, rt2. Mn(OAc)3 (4.5eq) AcOH

EtO2C CO2Et4 eq

59%

MeO

MeO

N

O

t-BuHN

O CO2Et

CO2Et

MeO

MeO

N

O

t-BuHN

O

CO2EtEtO2C

MeO

MeO

N

O

t-BuHN

O

CO2EtEtO2C

MeO

MeO

N

O

t-BuHN

O

CO2EtEtO2C

1,4 aryl transfer

O

O OEt

Br

OMe

H

OBzO

O OEt

Br

OMe

H

OBzAcO

Mn(OAc)3benzenereflux, 24h

67%

Watt, Synth. Commun. 1989, 19, 1127

For a review on methods of α'-oxidation of enones see: Demir, Synthesis 1991, 235

Proposed reaction mechanism:

Page 11: Applications of Mn(III) in Organic Chemistry Florina Voica

Applications of Mn(III) in Organic Chemistry Florina VoicaBaran lab GM 2/6/2010

MeO

MeO

N

O

t-BuHN

O

CO2EtEtO2C

Mn(III)AcOH

Nt-BuHN

O

CO2EtCO2Et

O

OAc

OMeMeO

H2O

OMeMeO CO2Et

CO2EtNH

O

Mn(III)

5-exo-trig

CO2Et

CO2EtNH

MeO

MeO

O

indane Vieu, Org. Lett. 2007, 9, 4171

N3

MeO

O O

+

1.5 eq

Mn(OAc)3•2H2O (0.1eq)AcOH (2 eq), MeOH, 40 °C

HN

Me

Ph

CO2Me90%

Mechanism?

Narasaka, Org. Lett. 2008, 10, 5019

Ph

N3

HO Ph(1.5 eq)

Mn(acac)3 (1.7eq)MeOH, rt, 5 min thenAcOH (2eq), rt, 1h

N PhPh

84%

OH

1.2 eq(slow addition)

Mn(acac)3 (0.1eq) MeOH, rt, 1h

N

OH

Ph

Mechanism?

Chiba, J. Am. Chem. Soc. 2009, 131, 12570

O

OH

TMS

CO2Me

CO2Me

+

MnF3 (1.2eq) DCM

61%O

CO2Me

CO2Me

via O

Mikami, Synlett. 2002, 1868

Underdevelopped aspects of this chemistry: - efficient asymmetric radical cyclization - catalytic oxidative radical cyclization - model studies to understand the tandem cyclizations better - more creative examples for the termination step

Conclusions: - oxidative tandem cyclization provides access to complex carbon skeletons - stereo- and regiospecific method for rapid assembly of polycyclicstructures from simple linear precursors - numerous applications in natural product synthesis - Mn(OAc)3 selective, mild oxidant - very little chemistry of Mn(III) salts other than Mn(OAc)3