Apostila de Integrais 2

227
x y z a b y=f(x) r=f(x) dx Cálculo do elemento de volume dV= r dx dV= f(x) dx π² π ² [ ] x y a b y=f(x) Área plana

Transcript of Apostila de Integrais 2

Page 1: Apostila de Integrais 2

APOSTILA DE CÁLCULO

DIFERENCIAL E INTEGRAL II

x

y

z

a b

y=f(x)

r=f(x)

dx

Cálculo do elemento de volume

dV= r dx

dV= f(x) dx

π ²

π ²[ ]

x

y

a b

y=f(x)

Área plana

Colaboradores para elaboração da apostila:Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler

Versão atual editada por Elisandra Bär de FigueiredoPara comentários e sugestões escreva para [email protected]

Home-page: http://www.joinville.udesc.br/portal/professores/elisandra/

Joinville, julho de 2011

Page 2: Apostila de Integrais 2
Page 3: Apostila de Integrais 2

Horário de Monitoria

Início Final Segunda Terça Quarta Quinta Sexta07:30 08:2008:20 09:1009:20 10:1010:10 11:0011:00 11:5013:30 14:2014:20 15:1015:20 16:1016:10 17:0017:00 17:5018:10 19:0019:00 19:5019:50 20:40

Horário de Atendimento dos Professores

Início Final Segunda Terça Quarta Quinta Sexta

07:30 08:20

08:20 09:10

09:20 10:10

10:10 11:00

11:00 11:50

13:30 14:20

14:20 15:10

15:20 16:10

16:10 17:00

17:00 17:50

18:10 19:00

19:00 19:50

19:50 20:40

i

Page 4: Apostila de Integrais 2

Conteúdo

1 INTEGRAL DEFINIDA 11.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Partição . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Soma Superior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Soma Inferior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.5 Função Integrável . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.10 Teorema do Valor Médio para Integrais . . . . . . . . . . . . . . . . . 161.6 Teorema Fundamental do Cálculo . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.6 Fórmulas Clássicas para Resolver Integrais (Revisão) . . . . . . . . . 201.7 Integrais Impróprias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.8 Integral de uma Função Descontínua num Ponto c ∈ [a, b] . . . . . . . . . . . 231.9 Aplicações da Integral Denida . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9.1 Área em coordenadas retangulares . . . . . . . . . . . . . . . . . . . . 251.9.10 Área delimitada por curvas escritas em equações paramétricas . . . . 321.9.13 Área de um setor curvilíneo em coordenadas polares . . . . . . . . . . 34

1.10 Comprimento de Arco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381.10.1 Comprimento de Arco em Coordenadas Cartesianas . . . . . . . . . . 381.10.3 Comprimento de um arco em coordenadas paramétricas . . . . . . . . 411.10.7 Comprimento de arco em coordenadas polares . . . . . . . . . . . . . 43

1.11 Volume de um Sólido de Revolução . . . . . . . . . . . . . . . . . . . . . . . 441.11.5 Rotação em torno de uma Reta Paralela a um Eixo Coordenado . . . 48

1.12 Exercícios Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521.13 Respostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601.14 Revisão de Coordenadas Polares no R2 . . . . . . . . . . . . . . . . . . . . . 64

2 FUNÇÕES DE VÁRIAS VARIÁVEIS E DIFERENCIAÇÃO PARCIAL 682.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692.2 Função de Várias Variáveis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.5 Gráco de uma Função de Várias Variáveis . . . . . . . . . . . . . . . 712.2.12 Curvas e Superfícies de Nível . . . . . . . . . . . . . . . . . . . . . . 752.2.14 Distâncias e Bolas no Espaço . . . . . . . . . . . . . . . . . . . . . . 76

2.3 Limite de uma Função de duas Variáveis . . . . . . . . . . . . . . . . . . . . 772.3.9 Propriedades dos Limites . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4 Continuidade de uma Função de duas Variáveis . . . . . . . . . . . . . . . . 832.5 Derivadas Parciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.5.7 Interpretação Geométrica das derivadas parciais . . . . . . . . . . . . 872.6 Derivadas Parciais de Ordem Superior . . . . . . . . . . . . . . . . . . . . . 902.7 Extremos de uma Função de duas Variáveis . . . . . . . . . . . . . . . . . . 91

2.7.1 Ponto Crítico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii

Page 5: Apostila de Integrais 2

2.7.3 Ponto de Máximo e Ponto de Mínimo . . . . . . . . . . . . . . . . . . 912.8 Derivada de uma Função Composta . . . . . . . . . . . . . . . . . . . . . . . 962.9 Derivada Parcial como Taxa de Variação . . . . . . . . . . . . . . . . . . . . 992.10 Diferencias Parciais e Totais . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002.11 Derivadas de Funções Implícitas . . . . . . . . . . . . . . . . . . . . . . . . . 1052.12 Exercícios Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.13 Respostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3 INTEGRAIS DUPLAS 1233.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.2 Interpretação Geométrica da Integral Dupla . . . . . . . . . . . . . . . . . . 1263.3 Cálculo da Integral Dupla . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273.4 Integrais Duplas em Coordenada Polares . . . . . . . . . . . . . . . . . . . . 1323.5 Exercícios Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1373.6 Respostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 INTEGRAIS TRIPLAS 1424.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434.2 Interpretação Geométrica da Integral Tripla . . . . . . . . . . . . . . . . . . 1434.3 Cálculo da Integral Tripla em Coordenadas Retangulares . . . . . . . . . . . 1444.4 Integrais Triplas em Coordenadas Cilíndricas . . . . . . . . . . . . . . . . . . 1514.5 Integrais Triplas em Coordenadas Esféricas . . . . . . . . . . . . . . . . . . . 1564.6 Exercícios Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1634.7 Respostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5 SEQUÊNCIAS E SÉRIES 1705.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715.2 Sequências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2.3 Limite de uma Sequência . . . . . . . . . . . . . . . . . . . . . . . . . 1725.2.7 Sequências Convergentes . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3 Subsequências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745.4 Sequência Limitada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1745.5 Sequências Numéricas Monótonas . . . . . . . . . . . . . . . . . . . . . . . . 1755.6 Séries Numéricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.6.4 Soma de uma Série . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1785.6.7 Séries Convergentes . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.7 Condição necessária para Convergência . . . . . . . . . . . . . . . . . . . . . 1825.8 Séries Especiais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.8.1 Série harmônica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1835.8.3 Série geométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.9 Critérios de Convergência de Séries . . . . . . . . . . . . . . . . . . . . . . . 1855.9.1 Critério da integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1855.9.4 Série p ou Série Hiper-harmônica . . . . . . . . . . . . . . . . . . . . 1855.9.8 Critério da comparação . . . . . . . . . . . . . . . . . . . . . . . . . . 1875.9.11 Critério de D'Alambert ou Critério da Razão . . . . . . . . . . . . . 1885.9.15 Critério de Cauchy ou Critério da Raíz . . . . . . . . . . . . . . . . . 189

5.10 Séries de Termos Positivos e Negativos . . . . . . . . . . . . . . . . . . . . . 1905.10.3 Convergência de uma série alternada . . . . . . . . . . . . . . . . . . 191

5.11 Série de Termos de Sinais Quaisquer . . . . . . . . . . . . . . . . . . . . . . 192

iii

Page 6: Apostila de Integrais 2

5.12 Séries absolutamente convergente e condicionalmente convergentes . . . . . . 1945.13 Séries de Funções . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.13.2 Convergência de séries de funções . . . . . . . . . . . . . . . . . . . . 1965.14 Séries de Potências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.14.4 Processo para determinar o intervalo e o raio de convergência de umasérie de potências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.14.8 Série de potências centrada em x = a . . . . . . . . . . . . . . . . . 1995.14.11Continuidade da soma de uma Série de Funções. . . . . . . . . . . . . 2005.14.13Derivação de uma série de funções contínuas . . . . . . . . . . . . . . 201

5.15 Diferenciação e Integração de Séries de Potências . . . . . . . . . . . . . . . 2025.16 Séries de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045.17 Série de Maclaurin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2055.18 Fórmula geral do binômio de Newton . . . . . . . . . . . . . . . . . . . . . . 2095.19 Exercícios Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2125.20 Respostas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

iv

Page 7: Apostila de Integrais 2

Capítulo 1

INTEGRAL DEFINIDA

Objetivos (ao nal do capítulo espera-se que o aluno seja capaz de):

1. Denir integral inferior e integral superior;

2. Calcular o valor da integral denida por denição;

3. Aplicar o teorema fundamental do cálculo e suas propriedades;

4. Calcular integral denida por substituição de variáveis;

5. Resolver exercícios que envolvam integrais impróprias;

6. Resolver exercícios que envolvam integrais impróprias de funções descontínuas;

7. Calcular áreas delimitadas por funções em coordenadas retangulares;

8. Calcular áreas delimitadas por funções em coordenadas polares;

9. Calcular áreas delimitadas por funções em coordenadas paramétricas;

10. Calcular volume de um sólido de revolução;

11. Calcular o comprimento de um arco em coordenadas retangulares, paramétricas e po-lares;

12. Calcular a superfície de um sólido de revolução;

13. Resolver problemas através da integral nas áreas de física, produção, economia entreoutras aplicações;

14. Resolver exercícios usando uma ferramenta tecnológica.

A prova será composta por questões que possibilitam vericar se os objetivos foramatingidos. Portanto, esse é o roteiro para orientações de seus estudos. O modelo de formu-lação das questões é o modelo adotado na formulação dos exercícios e no desenvolvimentoteórico desse capítulo nessa apostila.

1

Page 8: Apostila de Integrais 2

1.1 Introdução

Neste capítulo estudaremos a integral denida. Uma das principais aplicações da integraldenida encontra-se em problemas que envolvem cálculo de área e volumes. Por exemplo,seja f : [a, b] → R uma função contínua tal que f(x) ≥ 0 para todo x ∈ [a, b]. Nossopropósito é determinar a área da região delimitada pela curva y = f(x), pelo eixo x e pelasretas x = a e x = b, conforme Figura 1.1 abaixo:

a y b

x

f

Figura 1.1: Área da região R

Estimando o valor da área R: Sabemos como calcular a área de um retângulo (base× altura). A área de um polígono podemos obter subdividindo-o em triângulos e retângulos.No entanto, não é tão fácil encontrar a área de uma região com lados curvos. Assim, parte doproblema da área é utilizar uma ideia intuitiva do que é a área de uma região. Recordemosque, para denir uma tangente, primeiro aproximamos a inclinação da reta tangente porinclinações de retas secantes e então tomamos o limite dessas aproximações. Utilizaremosuma ideia semelhante para obter áreas.

Por exemplo para calcular a área da região R vamos dividir o intervalo [a, b] em 2 subin-tervalos de comprimento ∆x = b−a

2. Denotamos os extremos destes subintervalos por xi,

onde i ∈ 0, 1, 2. Veja que, neste caso, temos x0 = a, x1 = c e x2 = b. Na Figura 1.2,considere os retângulos de largura ∆x e altura Mi =Maxf(x) : x ∈ [xi−1, xi].

a y c b

x

f

Figura 1.2: Estimativa por soma de áreas de retângulos

Deste modo obtemos um polígono circunscrito a região R cuja área é dada pela somada área dos dois retângulos. Como a base é a mesma, podemos dizer que a área é dada

por2∑

i=1

Mi∆x, onde Mi = Maxf(x) : x ∈ [xi−1, xi]. Você acha que podemos comparar a

2

Page 9: Apostila de Integrais 2

área da região R representada pela Figura 1.1 e a região formada pelos retângulos da Figura1.2? A diferença é muito grande? O que aconteceria com esta diferença se dividíssemos ointervalo [a, b] em n subintervalos com n = 3, 4, 5, 6, · · ·?

A denição formal de integral denida envolve a soma de muitos termos pequenos (dife-renciais), com a nalidade de obter-se uma quantidade total após esta operação. Assim háuma conexão entre o cálculo integral e diferencial, onde o Teorema Fundamental do Cálculorelaciona a integral com a derivada. As integrais estão envolvidas em inúmeras situações:usando a taxa (derivada) podemos obter a quantidade (integral) de óleo que vaza de umtanque durante um certo tempo; utilizando a leitura do velocímetro de um ônibus espacial épossível calcular a altura atingida por ele em um dado intervalo de tempo. Assim, pode-seusar a integral para resolver problemas concernentes a volumes, comprimentos de curvas,predições populacionais, saída de sangue do coração, força sobre uma represa, potência con-sumida e a energia usada em um intervalo de tempo na cidade de Joinville, etc.

O Cálculo da Área

Primeiramente aproximaremos a área da regiã R delimitada por grácos de funçõespor soma de áreas de retângulos inscritos ou circunscritos para então tomarmos o limite dasáreas desses retângulos, à medida que se aumenta o número destes, conforme a Figura 1.3.

y

xa bba x

y

Figura 1.3: Aproximando áreas com n retângulos

E desta forma, a área total desejada será obtida pela soma das áreas retangulares quandosuas bases se tornam cada vez menores, isto é, quando∆x→ 0 (ou equivalentemente, quandoo número de retângulos se torna cada vez maior, isto é, n→ ∞). Você consegue formalizar,matematicamente, este resultado?

Para dar início a essa formalização, veremos algumas denições auxiliares.

1.2 Partição

DEFINIÇÃO 1.2.1 Seja [a, b] um intervalo. Denominamos partição de [a, b] ao conjuntoordenado de pontos

P = x0, x1, x2, ..., xi, ..., xntais que

a = x0 < x1 < x2 < ... < xn = b

e que dividem [a, b] em n-subintervalos, a saber,

[x0, x1] , [x1, x2] , [x2, x3] , ..., [xi−1, xi] , ..., [xn−1, xn] ,

3

Page 10: Apostila de Integrais 2

denominados intervalos da partição. Além disso, podemos escrever|[x0, x1]| = x1 − x0 = ∆x1|[x1, x2]| = x2 − x1 = ∆x2|[x2, x3]| = x3 − x2 = ∆x3

· · ·|[xi−1, xi]| = xi − xi−1 = ∆xi

· · ·|[xn−1, xn]| = xn − xn−1 = ∆xn.

EXEMPLO 1.2.2 Considerando o intervalo [1, 12], o conjunto de pontos P = 1, 2, 4, 8, 12 éuma partição de [1, 12]. Os intervalos dessa partição são [1, 2], [2, 4], [4, 8] e [8, 12].

Naturalmente, temos 1 = x0 < 2 = x1 < 4 = x2 < 8 = x3 < 12 = x4.

DEFINIÇÃO 1.2.3 Seja [a, b] um intervalo e considere

P = x0, x1, x2, · · · , xi, · · · , xn e Q = x0, x1, x2, · · · , y0, · · · , xi, · · · , xn

duas partições de [a, b]. Dizemos que a partição Q é um renamento da partição P se P ⊂ Q.

EXEMPLO 1.2.4 Consideremos o intervalo [1, 12]. Os conjuntos de pontos

P = 1, 2, 4, 8, 12 e Q = 1, 2, 3, 4, 5, 8, 10, 12

são duas partições de [1, 12] com P ⊂ Q. Então Q é um renamento de P.

1.3 Soma Superior

Consideraremos sempre uma função contínua f : [a, b] → R denida num intervalo fechado[a, b] e limitada nesse intervalo, isto é, existem m,M ∈ R tais que m ≤ f (x) ≤M para todox ∈ [a, b] .

DEFINIÇÃO 1.3.1 Seja f : [a, b] → R uma função limitada e seja P = x0, x1, x2, ..., xi, ..., xnuma partição de [a, b], com a = x0 < x1 < x2 < ... < xn = b. Seja Mi o valor supremo de fno intervalo [xi−1, xi] , onde i = 1, 2, 3, · · · , n. Denominamos soma superior de f em relaçãoà partição P e denotamos por S(f, P ) à expressão:

S(f, P ) =M1(x1 − x0) +M2(x2 − x1) + ..+Mn(xn − xn−1) =n∑

i=1

Mi(xi − xi−1). (1.3.1)

EXEMPLO 1.3.2 Considere a função f : [0, 2] → R denida por f (x) = xsenx. Na Figura1.4 podemos ver o gráco de uma soma superior referente a uma partição composta por 15pontos. Já uma soma superior referente a uma partição com maior número de pontos (80pontos), é ilustrada pela Figura 1.5.

Note que, conforme aumentamos o número de pontos da partição, aqui uniformementedistribuídos, a soma superior S(f, P ) vai se aproximando da área sob o gráco de f (x) =x sin x, no intervalo [0, 2] .

4

Page 11: Apostila de Integrais 2

y

x

f(x)=xsen x

Figura 1.4: Soma Superior, S(f, P ), P com 15 pontos: A = 1, 863 u.a.

y

x

f(x)=xsen x

Figura 1.5: Soma Superior, S(f, P ), P com 80 pontos: A = 1, 746 u.a.

1.4 Soma Inferior

DEFINIÇÃO 1.4.1 Seja f : [a, b] → R uma função limitada e seja P = x0, x1, x2, ..., xi, ..., xnuma partição de [a, b], onde a = x0 < x1 < x2 < ... < xn = b. Seja mi o valor ínmo de fno intervalo [xi−1, xi] para i = 1, 2, 3, ..., n. Denominamos soma inferior de f em relação àpartição P e denotamos por S(f, P ) à expressão:

S(f, P ) = m1(x1 − x0) +m2(x2 − x1) + ...+mn(xn − xn−1) =n∑

i=1

mi(xi − xi−1). (1.4.1)

EXEMPLO 1.4.2 Considere a função f : [0, 2] → R denida por f (x) = xsenx. Na Figura1.6 podemos ver o gráco de uma soma inferior referente a uma partição composta por umnúmero reduzido de pontos (15 pontos) e na Figura 1.7 de uma soma inferior referente auma partição com maior número de pontos (80 pontos).

Note que, aumentando o número de pontos de [a, b] a soma inferior S (f, P ) vai se apro-ximando da área sob o gráco de f (x) = x sin x no intervalo [0, 2].

5

Page 12: Apostila de Integrais 2

y

x

f(x)=xsen x

Figura 1.6: Soma Inferior, S(f, P ), P com 15 pontos: A = 1, 642 u.a.

y

x

f(x)=xsen x

Figura 1.7: Soma Inferior, S(f, P ), P com 80 pontos: A = 1, 718 u.a.

1.5 Função Integrável

DEFINIÇÃO 1.5.1 Seja f : [a, b] → R uma função limitada. Dizemos que f é integrável se

limn→+∞

S(f, P ) = limn→+∞

S(f, P )

ou seja, se

limn→+∞

n∑i=1

mi(xi − xi−1) = limn→+∞

n∑i=1

Mi(xi − xi−1),

sendo P = x0, x1, x2, · · · , xn qualquer partição de [a, b].

No caso de uma função integrável, denotaremos a integral denida de f de a até bpor ∫ b

a

f (x) dx = limn→+∞

n∑i=1

f (wi) (xi − xi−1), onde wi ∈ [xi−1, xi] .

OBSERVAÇÃO 1.5.2 As somas superiores e inferiores acima denidas são casos particulares

de Somas de Riemann, que são quaisquer expressões da forma S =n∑

i=1

f (wi)∆xi, onde

wi ∈ [xi−1, xi] não é necessariamente um máximo ou um mínimo de f em cada subintervalo

6

Page 13: Apostila de Integrais 2

da partição considerada, nem ∆xi é necessariamente constante. No entanto, em nossospropósitos, não iremos considerar esses casos mais gerais.

Ainda, como f(x) pode ser negativa, certos termos de uma soma superior ou inferiortambém podem ser negativos. Consequentemente, nem sempre S(f, P ) e S(f, P ) irão repre-sentar uma soma de áreas de retângulos. De forma geral, estas somas representam a somadas áreas dos retângulos situados acima do eixo-x (onde f ≥ 0) com o negativo das áreasdos retângulos que estão situados abaixo deste eixo (onde f ≤ 0).

OBSERVAÇÃO 1.5.3 Para calcular integrais denidas usando a denição de somas superioresou inferiores, serão usadas as seguintes expressões:

(i) 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸ = k

k vezes

(ii) 1 + 2 + 3 + ...+ k =(1 + k)k

2

(iii) 12 + 22 + 32 + ...+ k2 =k (k + 1) (2k + 1)

6

(iv) 13 + 23 + 33 + ...+ k3 =k2 (k + 1)2

4

(v) 14 + 24 + 34 + ...+ k4 =k (k + 1) (6k3 + 9k2 + k − 1)

30

EXEMPLO 1.5.4 Usando a denição de soma superior, encontre a área delimitada pelas curvasy = x2 + 1, x = 0, x = 4 e y = 0 (sabendo que a função é integrável).

Solução: Tomamos P = x0,x1, x2, ..., xn uma partição do intervalo [0, 4], conforme ilustraa Figura 1.8

y

x

Figura 1.8: Soma Superior de f(x) = x2 + 1 com 10 retângulos

Como os subintervalos da partição podem ser quaisquer, podemos admitir que todospossuem o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = ... = ∆xn. Portanto, temos que

∆x =4− 0

n=

4

ne podemos atribuir valores para cada xi ∈ P como sendo

x0 = 0, x1 = ∆x, x2 = 2∆x, x3 = 3∆x, ..., xn = n∆x.

7

Page 14: Apostila de Integrais 2

Seja Mi o supremo de f(x) = x2 + 1 no intervalo [xi−1, xi]. Como neste exemplo temosuma função crescente, o máximo de f em cada subintervalo ocorre no seu extremo direito,ou seja, Mi = f(xi). Assim, a soma superior de f é dada por

S(f, P ) = M1∆x+M2∆x+M3∆x+ ....+Mn∆x

= f(x1)∆x+ f(x2)∆x+ f(x3)∆x+ ...+ f(xn)∆x

= f(∆x)∆x+ f(2∆x)∆x+ f(3∆x)∆x+ ...+ f(n∆x)∆x

= ∆x[(∆x)2 + 1 + (2∆x)2 + 1 + (3∆x)2 + 1 + ...+ (n∆x)2 + 1]

= ∆x[1 + 1 + ...+ 1 + (∆x)2 + 4(∆x)2 + 9(∆x)2 + ...+ n2(∆x)2]

= ∆x[n+∆x2(1 + 22 + 32 + ...+ n2)]

= ∆x

(n+∆x2

n(n+ 1)(2n+ 1)

6

)=

4

n

(n+

42

n2

n(n+ 1)(2n+ 1)

6

)= 4 +

64

6

(n+ 1)(2n+ 1)

n2

= 4 +32

3

(2 +

3

n+

1

n2

)= 4 +

64

3+

32

n+

32

3n2.

Portanto, a área desejada é dada por∫ 4

0

(x2 + 1)dx = limn→+∞

(4 +

64

3+

32

n+

32

3n2

)=

76

3.

Agora, se desejarmos encontrar a soma inferior de f, quais modicações deveremos efetuarnos cálculos acima? Sugere-se que o estudante refaça este exercício, prestando bastanteatenção no que ocorre com as alturas dos retângulos inscritos e nas consequências deste fato.

EXEMPLO 1.5.5 Usando a denição de soma inferior, encontre a área delimitada pelas curvasy = 16− x2, x = 1, x = 4 e y = 0 (sabendo que a função é integrável).

Solução: Tomamos P = x0,x1, x2, ..., xn uma partição do intervalo [1, 4], conforme ilustraa Figura 1.9

y

x

Figura 1.9: Soma Inferior de f(x) = 16− x2 com 10 retângulos

8

Page 15: Apostila de Integrais 2

Como os subintervalos da partição podem ser quaisquer, podemos admitir que todospossuem o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = ... = ∆xn. Portanto, temos que

∆x =4− 1

n=

3

ne podemos atribuir valores para cada xi ∈ P como sendo

x0 = 1, x1 = 1 +∆x, x2 = 1 + 2∆x, x3 = 1 + 3∆x, · · · , xn = 1 + n∆x.

Seja mi o ínmo de f(x) = 16 − x2 no intervalo [xi−1, xi]. Como no intervalo [1, 4] afunção é decrescente, o mínimo de f em cada subintervalo ocorre no seu extremo direito, ouseja, mi = f(xi). Assim, a soma inferior de f é dada por

S(f, P ) = m1∆x+m2∆x+m3∆x+ ....+mn∆x

= f(x1)∆x+ f(x2)∆x+ f(x3)∆x+ ...+ f(xn)∆x

= f(1 + ∆x)∆x+ f(1 + 2∆x)∆x+ f(1 + 3∆x)∆x+ ...+ f(1 + n∆x)∆x

= [16− (1 + ∆x)2 + 16− (1 + 2∆x)2 + 16− (1 + 3∆x)2 + · · ·+ 16− (1 + n∆x)2]∆x

= 16n∆x+ [1 + 2∆x+ (∆x)2 + 1 + 2 · 2∆x+ (2∆x)2 + 1 + 2 · 3∆x+ (3∆x)2 +

+ · · ·+ 1 + 2 · n∆x+ (n∆x)2]∆x

= 16n∆x− n∆x− 2(1 + 2 + 3 + · · ·+ n)(∆x)2 − (12 + 22 + 32 + · · ·+ n2)(∆x)3

= 15n∆x− 2 · n(n+ 1)

2· (∆x)2 − n(n+ 1)(2n+ 1)

6· (∆x)3

= 15n · 3n− 9 · n

2 + n

n2− 9 · 2n

3 + 3n2 + n

2n3

= 45− 9− 9

n− 9− 27

2n− 9

2n2= 27− 45

2n− 9

2n2

Portanto, a área desejada é dada por∫ 4

1

(16− x2)dx = limn→+∞

(27− 45

2n− 9

2n2

)= 27.

OBSERVAÇÃO 1.5.6 Até o momento não exigimos que a função seja contínua. Isso porque acondição de continuidade não é necessária para que uma função seja integrável. Daqui parafrente só trabalharemos com funções contínuas. A integrabilidade de funções não contínuasnão será objeto de nosso estudo.

Propriedades das Integrais

Se f, g : [a, b] → R são funções integráveis, então são válidas as seguintes propriedades:

i. Se f(x) é uma função constante, i.e., f(x) = c então∫ b

a

cdx = c(b− a).

ii. Se k é uma constante então∫ b

a

kf (x) dx = k

∫ b

a

f (x) dx.

iii.∫ b

a

[f (x) + g (x)]dx =

∫ b

a

f (x) dx+

∫ b

a

g (x) dx.

iv. Se f (x) ≤ g (x) para todo x ∈ [a, b] então∫ b

a

f (x) dx ≤∫ b

a

g (x) dx.

9

Page 16: Apostila de Integrais 2

v. Se m ≤ f(x) ≤M para todo x ∈ [a, b], então m (b− a) ≤∫ b

a

f (x) dx ≤M (b− a) .

vi. Se c ∈ [a, b] então∫ b

a

f (x) dx =

∫ c

a

f (x) dx+

∫ b

c

f (x) dx.

vii. A troca dos limitantes de integração acarreta a mudança no sinal da integral denida,ou seja, ∫ b

a

f (x) dx = −∫ a

b

f (x) dx.

viii.∫ a

a

f(x)dx = 0.

EXEMPLO 1.5.7 Determine a soma superior e a soma inferior para f(x) = x2 − 2x + 2 nointervalo [−1, 2]. A seguir, utilize-as para calcular a área da região situada abaixo do grácode f e entre as retas y = 0, x = −1 e x = 2.

Solução: A Figura 1.10 ilustra o gráco da soma superior de f referente a uma partiçãocomposta de 15 pontos. Observe que as alturas dos retângulos circunscritos não possuemo mesmo comportamento em todo o intervalo. Isso ocorre porque a função é decrescenteno intervalo [−1, 1] e crescente em [1, 2]. Para obter a expressão para a soma superior de fusaremos a Propriedade vi. Tomaremos uma partição para o intervalo [−1, 1] e outra parao intervalo [1, 2].

y

x

Figura 1.10: Soma Superior de f(x) = x2 − 2x+ 2 com 15 retângulos

Soma Superior para o intervalo [−1, 1]

Seja P = x0,x1, x2, ..., xn uma partição do intervalo [−1, 1], de tal forma que todos ossubintervalos de P possuam o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = · · · = ∆xn.

Portanto, temos que a base de cada um dos retângulos é dada por ∆x =1− (−1)

n=

2

ne

assim podemos atribuir valores para cada xi ∈ P como sendo

x0 = −1, x1 = −1 + ∆x, x2 = −1 + 2∆x, x3 = −1 + 3∆x, · · · , xn = −1 + n∆x.

Agora vamos determinar as alturas dos retângulos circunscritos. Seja Mi o supremo def(x) = x2 − 2x+ 2 no subintervalo [xi−1, xi]. Como neste intervalo a função é decrescente o

10

Page 17: Apostila de Integrais 2

máximo de f em cada subintervalo ocorre no seu extremo esquerdo, ou seja, Mi = f(xi−1).Assim, a soma superior de f é dada por

S(f, P ) = M1∆x+M2∆x+M3∆x+ · · ·+Mn∆x

= f(x0)∆x+ f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn−1)∆x

= f(−1)∆x+ f(−1 + ∆x)∆x+ f(−1 + 2∆x)∆x+ · · ·+ f(−1 + (n− 1)∆x)∆x

= ∆x5 +[(−1 + ∆x)2 − 2(−1 + ∆x) + 2

]+[(−1 + 2∆x)2 − 2(−1 + 2∆x) + 2

]+

+ · · ·+[(−1 + (n− 1)∆x)2 − 2(−1 + (n− 1)∆x) + 2

]

= ∆x5 +[(1− 2∆x+ (∆x)2) + 2− 2∆x+ 2

]+[1− 4∆x+ 22(∆x)2 + 2− 4∆x+ 2

]+

+ · · ·+[1− 2(n− 1)∆x+ (n− 1)2(∆x)2 + 2− 2(n− 1)∆x+ 2

]

= ∆x5 +[5− 4∆x+ (∆x)2

]+[5− 8∆x+ 22(∆x)2

]+

+ · · ·+[5− 4(n− 1)∆x+ (n− 1)2(∆x)2

]

= ∆x[5n− 4∆x (1 + 2 + · · ·+ (n− 1)) + (∆x)2

(1 + 22 + · · ·+ (n− 1)2

)]=

2

[5n− 4 · 2

n· n(n− 1)

2+

(2

n

)2

· (n− 1)n (2n− 1)

6

]

=2

n·[5n− 4(n− 1) +

2

3·(2n2 − 3n+ 1

n

)]= 2 +

8

n+

4

3·(2− 3

n+

1

n2

)=

14

3+

4

n+

4

3n2.

Soma Superior para o intervalo [1, 2]

Seja Q = x0,x1, x2, ..., xn uma partição do intervalo [1, 2], de tal forma que todos ossubintervalos de Q possuam o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = · · · = ∆xn.

Portanto, temos que a base de cada um dos retângulos é dada por ∆x =2− 1

n=

1

ne assim

podemos atribuir valores para cada xi ∈ Q como sendo

x0 = 1, x1 = 1 +∆x, x2 = 1 + 2∆x, x3 = 1 + 3∆x, · · · , xn = 1 + n∆x.

Como neste intervalo a função é decrescente as alturas dos retângulos circunscritos, Mi,ocorre no extremo direito de cada subintervalo, i.e., Mi = f(xi). Assim a soma superior def em [1, 2] relativa a partição Q é dada por

S(f,Q) = M1∆x+M2∆x+M3∆x+ · · ·+Mn∆x

= f(x1)∆x+ f(x2)∆x+ f(x3)∆x+ · · ·+ f(xn)∆x

= [f(1 + ∆x) + f(1 + 2∆x) + f(1 + 3∆x) + · · ·+ f(1 + n∆x)]∆x

= [(1 + ∆x)2 − 2(1 + ∆x) + 2] + [(1 + 2∆x)2 − 2(1 + 2∆x) + 2] +

+[(1 + 3∆x)2 − 2(1 + 3∆x) + 2] + · · ·+ [(1 + n∆x)2 − 2(1 + n∆x) + 2]∆x= [1 + (∆x)2] + [1 + (2∆x)2] + [1 + (3∆x)2] + · · ·+ [1 + (n∆x)2]∆x= n∆x+ (12 + 22 + 32 + · · ·+ n2)(∆x)3

= n · 1n+n(n+ 1)(2n+ 1)

6·(1

n

)3

=4

3+

1

2n+

1

6n2

Portanto, a soma superior de f em [−1, 2] é

S(f, P ∪Q) = 14

3+

4

n+

4

3n2+

4

3+

1

2n+

1

6n2= 6 +

9

2n+

3

2n2.

11

Page 18: Apostila de Integrais 2

Para determinar a soma inferior de f, basta encontrar as alturas dos retângulos inscritos.A Figura 1.11 ilustra o gráco da soma inferior de f referente a uma partição composta de15 pontos. Observe que as alturas dos retângulos inscritos não possuem o mesmo comporta-mento em todo o intervalo. Isso ocorre porque a função é decrescente no intervalo [−1, 1] ecrescente em [1, 2]. Para obter a expressão para a soma inferior de f usaremos novamente aPropriedade vi, tomando uma partição para o intervalo [−1, 1] e outra para o intervalo [1, 2].

y

x

Figura 1.11: Soma Inferior de f(x) = x2 − 2x+ 2 com 15 retângulos

Soma Inferior para o intervalo [−1, 1]

Considere a partição P tomada acima. A altura dos retângulos inscritos, mi, ocorre noextremo direito de cada subintervalo [xi−1, xi], i.e., mi = f(xi).

Assim, a soma inferior de f em [−1, 1], relativa a partição P, é dada por

S(f, P ) = m1∆x+m2∆x+m3∆x+ · · ·+mn∆x

= f(x1)∆x+ f(x2)∆x+ f(x3)∆x+ · · ·+ f(xn)∆x

= f(−1 + ∆x)∆x+ f(−1 + 2∆x)∆x+ f(−1 + 3∆x)∆x+ · · ·+ f(−1 + n∆x)∆x

= ∆x [

(−1 + ∆x)2 − 2(−1 + ∆x) + 2]+[(−1 + 2∆x)2 − 2(−1 + 2∆x) + 2

]+

+ · · ·+[(−1 + n∆x)2 − 2(−1 + n∆x) + 2

] = ∆x

[1− 2∆x+ (∆x)2 + 2− 2∆x+ 2

]+[1− 4∆x+ 22(∆x)2 + 2− 4∆x+ 2

]+

+ · · ·+[1− 2n∆x+ n2(∆x)2 + 2− 2n∆x+ 2

] = ∆x

[5− 4∆x+ (∆x)2

]+[5− 8∆x+ 22(∆x)2

]+ · · ·+

[5− 4n∆x+ n2(∆x)2

]= ∆x

[5n− 4∆x (1 + 2 + · · ·+ n) + (∆x)2

(1 + 22 + · · ·+ n2

)]=

2

[5n− 4 · 2

n· (n+ 1)n

2+

(2

n

)2

· n(n+ 1) (2n+ 1)

6

]

=2

n·[5n− 4(n+ 1) +

2

3·(2n2 + 3n+ 1

n

)]= 2− 8

n+

4

3·(2 +

3

n+

1

n2

)=

14

3− 4

n+

4

3n2.

12

Page 19: Apostila de Integrais 2

Soma Inferior para o intervalo [1, 2]

Considere a partição Q tomada acima. A altura dos retângulos inscritos, mi, ocorre noextremo esquerdo de cada subintervalo [xi−1, xi], i.e., mi = f(xi−1).

Assim, a soma inferior de f em [1, 2], relativa a partição Q, é dada por

S(f,Q) = m1∆x+m2∆x+m3∆x+ · · ·+mn∆x

= f(x0)∆x+ f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn−1)∆x

= f(1)∆x+ f(1 + ∆x)∆x+ f(1 + 2∆x)∆x+ · · ·+ f(1 + (n− 1)∆x)∆x

= ∆x1 +[(1 + ∆x)2 − 2(1 + ∆x) + 2

]+[(1 + 2∆x)2 − 2(1 + 2∆x) + 2

]+

+ · · ·+[(1 + (n− 1)∆x)2 − 2(1 + (n− 1)∆x) + 2

]

= ∆x1 + [1 + (∆x)2] + [1 + (2∆x)2] + · · ·+ [1 + ((n− 1)∆x)2]= n∆x+ [12 + 22 + · · ·+ (n− 1)2](∆x)3

= n · 1n+

(n− 1)n(2n− 1)

6·(1

n

)3

=4

3− 1

2n+

1

6n2.

Portanto, a soma inferior de f em [−1, 2] é

S(f, P ∪Q) = 14

3− 4

n+

4

3n2+

4

3− 1

2n+

1

6n2= 6− 9

2n+

3

2n2.

Finalmente, utilizando a soma superior de f, obtemos que a área da região desejada édada por

A =

∫ 1

−1

(x2 − 2x+ 2)dx+

∫ 2

1

(x2 − 2x+ 2)dx

= limn→+∞

(14

3+

4

n+

4

3n2

)+ lim

n→+∞

(4

3+

1

2n+

1

6n2

)=

14

3+

4

3= 6.

Note que obteríamos o mesmo resultado utilizando a soma inferior de f.

EXEMPLO 1.5.8 Utilize a denição de integral denida para determinar a área da regiãoR delimitada por f(x) = 9 e g(x) = x2, com x ≤ 0, sabendo que f e g são funçõesintegráveis.

Solução: A região R está sombreada na Figura 1.12.

Figura 1.12: Região R

13

Page 20: Apostila de Integrais 2

A área da região R pode ser interpretada como sendo a área da região R1 menos a área daregião R2, onde R1 é a região retangular limitada pelas curvas y = g(x), y = 0, x = −3 ex− 0 e R2 é a região limitada pelas curvas y = f(x), y = 0, x = −3 e x− 0.

Área de R1 : AR1 =

∫ 0

−3

9dx = 9[0 − (−3)] = 27u.a. (usando as propriedades de integral

denida).Área de R2 : Os retângulos inscritos na região R2 estão representados na Figura 1.13. A área

Figura 1.13: Soma inferior da região R2 com 7 retângulos

de R2 é dada por AR2 =

∫ 0

−3

x2dx usando somas de áreas de retângulos inscritos tomamos

uma partição P = x0, x1, x2, · · · , xn do intervalo [−3, 0], de tal forma que todos os subin-tervalos de P possuam o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = ... = ∆xn. Portanto,

temos que a base de cada um dos retângulos é dada por ∆x =0− (−3)

n=

3

ne assim

podemos atribuir valores para cada xi ∈ P como sendo

x0 = −3, x1 = −3 + ∆x, x2 = −3 + 2∆x, · · · , xn = −3 + n∆x.

Agora vamos determinar as alturas dos retângulos inscritos. Como neste exemplo temos umafunção decrescente, cada retângulo inscrito atinge sua altura no ponto xi, i = 1, 2, · · · , n,ou seja, a altura de cada retângulo é g(xi) = x2i . Assim, a soma de Riemann de g relativa apartição P e com as alturas denidas é dada por

S(g, P ) =n∑

i=1

g(xi)∆x =n∑

i=1

x2i∆x = (x21 + x22 + · · ·+ x2n)∆x

= [(−3 + ∆x)2 + (−3 + ∆x)2 + · · ·+ (−3 + ∆x)2]∆x

=[(9− 6∆x+ (∆x)2

)+(9− 6 · 2∆x+ (2∆x)2

)+ · · ·+

(9− 6 · n∆x+ (n∆x)2

)]∆x

= 9n∆x− 6(∆x)2(1 + 2 + · · ·+ n) + (∆x)3(12 + 22 + · · ·+ n2)

= 27− 54

n2

n(n+ 1)

2+

27

n3

n(n+ 1)(2n+ 1)

6

= 27− 27

(1 +

1

n

)+

9

2

(2 +

3

n+

1

n2

)= 9 +

27

2n+

9

2n2

14

Page 21: Apostila de Integrais 2

Portanto, usando retângulos inscritos obtemos que

AR2 = limn→+∞

(9 +

27

2n+

9

2n2

)= 9u.a..

Logo, a área da região R é

AR = AR1 − AR2 = 27− 9 = 18u.a..

EXEMPLO 1.5.9 Utilize soma de áreas de retângulos inscritos para calcular∫ 4

0

(−x2 − 1)dx.

Solução: O gráco de f(x) = −x2 − 1 e os retângulos inscritos na região de integração Rda integral desejada estão representados na Figura 1.14.

Figura 1.14: Retângulos inscritos na região R

Para calcular∫ 4

0

(−x2 − 1)dx usando somas de áreas de retângulos inscritos tomamos uma

partição P = x0, x1, x2, · · · , xn do intervalo [0, 4], de tal forma que todos os subintervalosde P possuam o mesmo diâmetro, isto é, ∆x = ∆x1 = ∆x2 = ... = ∆xn. Portanto, temosque a base de cada um dos retângulos é dada por ∆x = 4−(0)

n= 4

ne assim podemos atribuir

valores para cada xi ∈ P como sendo

x0 = 0, x1 = ∆x, x2 = 2∆x, · · · , xn = n∆x.

Agora vamos determinar as alturas dos retângulos inscritos. Como neste exemplo temosuma função decrescente e negativa, cada retângulo inscrito atinge sua altura no ponto xi−1,i = 1, 2, · · · , n, ou seja, a altura de cada retângulo é f(xi−1). Assim, a soma de Riemann de

15

Page 22: Apostila de Integrais 2

f relativa a partição P e com as alturas denidas é dada por

S(f, P ) =n∑

i=1

f(xi−1)∆x

= [f(x0) + f(x1) + f(x2) + · · · f(xn−i)]∆x

=−1 + [−(∆x)2 − 1] + [−(2∆x)2 − 1] + · · ·+ [−((n− 1)∆x)2 − 1]

∆x

= −n∆x− [12 + 22 + · · ·+ (n− 1)2](∆x)3

= −n · 4n− (n− 1)n(2n− 1)

6·(4

n

)3

= −4− 32(2n2 − 3n+ 1)

3n2= −4− 64

3+

32

n− 32

3n2

Portanto, usando áreas de retângulos inscritos obtemos que∫ 4

0

(−x2 − 1)dx = limn→+∞

(−76

3+

32

n− 32

3n2

)= −76

3.

1.5.10 Teorema do Valor Médio para Integrais

TEOREMA 1.5.11 Se f : [a, b] → R é contínua, então existe c ∈ [a, b] tal que∫ b

a

f (x) dx =

f (c) (b− a).

EXEMPLO 1.5.12 No Exemplo 1.5.4 obtemos que∫ 4

0

(x2 + 1)dx =76

3. Determine, se existir,

um número que satisfaça o teorema do valor médio para esta integral.

Solução: Como f(x) = x2+1 é uma função contínua no intervalo [0, 4] o Teorema do ValorMédio para Integrais garante que existe c ∈ (0, 4) de modo que∫ 4

0

(x2 + 1)dx = f(c)(4− 0).

Assim,

c2 + 1 =76

4 · 3⇒ c2 =

16

3⇒ c = ±4

√3

3.

Observe que c = −4√3

3não está no intervalo que procuramos a solução. Portanto, c =

4√3

3satisfaz a conclusão do Teorema 1.5.11.

O Teorema do Valor Médio para Integrais tem uma interpretação geométrica interessante

se f(x) ≥ 0 em [a, b]. Neste caso∫ b

a

f(x)dx é a área sob o gráco de f de a até b, e o número

f(c) do Teorema 1.5.11 é a ordenada do ponto P do gráco de f com abscissa c (veja aFigura 1.15) Traçando-se uma reta horizontal por P a área da região retangular limitadapor essa reta, pelo eixo x e pelas reta x = a e x = b é f(c)(b−a) e que, pelo Teorema 1.5.11,é a mesma que a área sob o gráco de f de a até b.

OBSERVAÇÃO 1.5.13 O número c do Teorema 1.5.11 não é necessariamente único. De fato,se f for uma função constante então qualquer número c pode ser utilizado.

OBSERVAÇÃO 1.5.14 O número1

b− a

∫ b

a

f(x)dx é dito valor médio de f em [a, b].

16

Page 23: Apostila de Integrais 2

y

xca b

P(c, f(c))

y=f(x)

Figura 1.15: Interpretação geométrica do Teorema 1.5.11

1.6 Teorema Fundamental do Cálculo

Seja f : [a, b] → R uma função contínua integrável. Vamos xar o limite inferior a e variaro limite superior. Deniremos a função

F (x) =

∫ x

a

f (t) dt ∀x ∈ [a, b].

Caso f (t) seja sempre positiva, então F (x) será numericamente igual a área do trapezóidecurvilíneo da Figura 1.16.

y

x

f(x)

a x x+ x

F(x)

F(x+ x)

Figura 1.16: Representação geométrica de F (x)

TEOREMA 1.6.1 Seja f : [a, b] → R uma função contínua no intervalo [a, b], então a

função F (x) =

∫ x

a

f (t) dt é uma primitiva da função f , ou seja, F ′ (x) = f (x).

17

Page 24: Apostila de Integrais 2

DEMONSTRAÇÃO: Utilizando a denição de derivada, temos que

F ′ (x) = lim∆x→0

F (x+∆x)− F (x)

∆x

= lim∆x→0

1

∆x

[∫ x+∆x

a

f (t) dt−∫ x

a

f (t) dt

]= lim

∆x→0

1

∆x

[∫ x

a

f (t) dt+

∫ x+∆x

x

f (t) dt−∫ x

a

f (t) dt

]= lim

∆x→0

1

∆x

∫ x+∆x

x

f (t) dt,

porém, pelo Teorema 1.5.11, sabemos que existe c ∈ [x, x+∆x] tal que∫ x+∆x

x

f (t) dt = f (c) (x+∆x− x) = f(c)∆x

e portantoF ′ (x) = lim

∆x→0f (c)

quando ∆x → 0 temos que c → x como f é contínua, obtemos que f (c) → f(x) e assimca demonstrado que

F ′ (x) = lim∆x→0

F (x+∆x)− F (x)

∆x= f (x) .

Uma consequência desse teorema é o corolário que segue:

COROLÁRIO 1.6.2 Se f : [a, b] → R for contínua no intervalo [a, b], então F : [a, b] → R éderivável em (a, b) e F ′ (x) = f (x) .

A função F : [a, b] → R, denida acima, é denominada primitiva de f : [a, b] → R e peloTeorema 1.6.1 toda função contínua num intervalo [a, b] possui primitiva em [a, b].

TEOREMA 1.6.3 Se f : [a, b] → R for contínua em [a, b] , então∫ b

a

f(x)dx = G(b)−G(a)

onde G é qualquer primitiva de f, isto é, uma função tal que G′ = f.

DEMONSTRAÇÃO: Seja F (x) =

∫ x

a

f(t)dt. Pelo Teorema 1.6.1 sabemos que F ′(x) = f(x),

isto é, F é uma primitiva de f. Se G for qualquer outra primitiva de f em [a, b], então elasdiferem por uma constante, isto é,

G(x) = F (x) + c.

Assim,

G(b)−G(a) = [F (b) + c]− [F (a) + c] =

∫ b

a

f(t)dt−∫ a

a

f(t)dt =

∫ b

a

f(t)dt

18

Page 25: Apostila de Integrais 2

Trocando t por x obtemos ∫ b

a

f(x)dx = G(b)−G(a)

como queríamos demonstrar.A notação usual é ∫ b

a

f(x)dx = G(x)

∣∣∣∣∣b

a

.

O teorema fundamental do cálculo permite que sejam determinadas as integrais denidasdas funções contínuas em intervalos fechados sem usar o método visto para encontrar somassuperiores e inferiores.

EXEMPLO 1.6.4 Utilizando o Teorema Fundamental do Cálculo encontre a área sob o grácode f : [0, 4] → R denida por f (x) = x2 + 1.

Solução: Pelo Teorema 1.6.3 a área desejada é dada por

A =

∫ 4

0

(x2 + 1)dx =x3

3+ x

∣∣∣∣40

=64

3+ 4 =

76

3.

Compare este resultado com o resultado obtido no Exemplo 1.5.4.

EXEMPLO 1.6.5 Calcule a área da região situada entre o eixo x e a curva f(x) = 18(x2−2x+8),

com x no intervalo de [−2, 4].

Solução: Uma representação gráca pode ser visualizada na gura 1.17.

y

x

Figura 1.17: Área sob o gráco de f(x) = 18(x2 − 2x+ 8)

Pelo teorema fundamental do cálculo temos que

A =

∫ 4

−2

1

8(x2 − 2x+ 8)dx =

1

8(x3

3− x2 + 8x)

∣∣∣∣4−2

=1

8

[43

3− 42 + 8(4)−

((−2)3

3− (−2)2 + 8(−2)

)]=

1

8

[64

3− 16 + 32 +

8

3+ 4 + 16

]=

60

8=

15

2u.a.

19

Page 26: Apostila de Integrais 2

1.6.6 Fórmulas Clássicas para Resolver Integrais (Revisão)

Para utilizar o teorema fundamental do cálculo, é essencial que se saiba obter a primitiva(anti-derivada) de uma função. Vamos então relembrar, do cálculo I, alguns processos clás-sicos de integração que serão muito úteis na resolução de problemas que envolvem integraldenida.

i. Mudança de Variável

TEOREMA 1.6.7 Sejam f : [a, b] → R uma função contínua e g : [α, β] → R uma funçãoderivável tal que g′ é integrável e g ([α, β]) ⊂ [a, b] e, além disso g (α) = a e g (β) = b. Então∫ b

a

f (x) dx =

∫ β

α

f (g (t)) g′ (t) dt.

DEMONSTRAÇÃO: Sejam f : [a, b] → R uma função contínua e g : [α, β] → R uma funçãoderivável com g′ integrável e g ([α, β]) ⊂ [a, b] com g (α) = a e g (β) = b. Então f possuiuma primitiva F : [a, b] → R e, pelo Teorema Fundamental do Cálculo, temos∫ b

a

f (x) dx = F (g (β))− F (g (α)) .

Por outro lado, pela regra da cadeia temos que

(F g)′ (t) = F ′ (g (t)) g′ (t) = f (g (t)) g′ (t)

para todo t ∈ [α, β], consequentemente,

(F g) (t) : [α, β] → R

é uma primitiva da função integrável f (g (t)) g′ (t). Portanto, obtém-se:∫ β

α

f (g (t)) g′ (t) dt = F (g (β))− F (g (α)) =

∫ b

a

f (x) dx.

EXEMPLO 1.6.8 Calcular a integral denida∫ 5

1

√x− 1

xdx, usando o Teorema 1.6.7.

Solução: Primeiro vamos encontrar a função g (t). Seja t =√x− 1 (note que t ≥ 0), então

podemos escrever x = t2 + 1 e assim obtemos g (t) = t2 + 1, cuja derivada é g′ (t) = 2t.Vamos agora determinar os valores de α e β. Como temos que g (α) = a = 1 e g (β) = b = 5segue que

α2 + 1 = 1 ⇒ α2 = 0 ⇒ α = 0

β2 + 1 = 5 ⇒ β2 = 4 ⇒ β = 2.

Na sequência, determinaremos f (g (t)). Como f (x) =

√x− 1

x, obtemos

f (g (t)) =

√g (t)− 1

g (t)=

√t2 + 1− 1

t2 + 1=

t

t2 + 1.

20

Page 27: Apostila de Integrais 2

Finalmente, vamos determinar o valor da integral, usando o Teorema 1.6.7, obtemos:∫ 5

1

√x− 1

xdx =

∫ 2

0

t

t2 + 12tdt = 2

∫ 2

0

t2

t2 + 1dt = 2

∫ 2

0

t2 + 1− 1

t2 + 1dt =

= 2

∫ 2

0

t2 + 1

t2 + 1− 1

t2 + 1dt = 2

∫ 2

0

dt− 2

∫ 2

0

dt

t2 + 1=

= 2t

∣∣∣∣∣2

0

− 2 arctan t

∣∣∣∣∣2

0

= 4− 2 arctan 2.

ii. Integração por partes

TEOREMA 1.6.9 Sejam f, g : [a, b] → R funções que possuem derivadas integráveis, então

∫ b

a

f(x)g′(x)dx = f(x)g(x)

∣∣∣∣∣b

a

−∫ b

a

f ′(x)g(x)dx.

Na prática, costumamos chamar

u = f(x) ⇒ du = f ′(x)dxdv = g′(x)dx ⇒ v = g(x)

e substituindo na igualdade acima, obtemos:∫ b

a

udv = uv

∣∣∣∣∣b

a

−∫ b

a

vdu.

EXEMPLO 1.6.10 Determine o valor da integral∫ π

3

0

sin3 xdx.

Solução: Nesse caso, fazemos:

u = sin2 x ⇒ du = 2 sin x cos xdxdv = sin xdx ⇒ v =

∫sinxdx = − cos x

e encontramos∫ π3

0

sin3 xdx = sin2 x(− cos x)

∣∣∣∣∣π3

0

−∫ π

3

0

− cos x(2 sinx cosx)dx

= − sin2 x cos x

∣∣∣∣∣π3

0

+ 2

∫ π3

0

cos2 x sin xdx

= (− sin2 x cos x− 2

3cos3 x)

∣∣∣∣∣π3

0

= −3

4· 12− 1

12+

2

3=

5

24.

21

Page 28: Apostila de Integrais 2

1.7 Integrais Impróprias

DEFINIÇÃO 1.7.1 Seja f : [a,∞) → R uma função contínua para todo x ∈ [a,+∞). De-nimos ∫ +∞

a

f (x) dx = limb→+∞

∫ b

a

f (x) dx,

desde que o limite exista.

EXEMPLO 1.7.2 Encontre o valor numérico da integral∫ +∞

0

1

1 + x2dx.

y

x

Figura 1.18: Área sob o gráco de f(x) = 11+x2

Solução: Veja o gráco de f na Figura 1.18. Pela denição 1.7.1 temos que∫ +∞

0

1

1 + x2dx = lim

b→+∞

∫ b

0

1

1 + x2dx = lim

b→+∞arctanx

∣∣∣∣∣b

0

= limb→+∞

(arctan b− arctan 0) = limb→+∞

arctan b =π

2.

DEFINIÇÃO 1.7.3 Seja f : (−∞, b] → R uma função contínua para todo x ∈ (−∞, b].Denimos ∫ b

−∞f (x) dx = lim

a→−∞

∫ b

a

f (x) dx,

desde que o limite exista.

EXEMPLO 1.7.4 Encontre o valor numérico da integral∫ 0

−∞

1

1 + x2dx.

Solução: Pela denição 1.7.3 temos que

∫ 0

−∞

1

1 + x2dx = lim

a→−∞

∫ 0

a

1

1 + x2dx = lim

a→−∞arctanx

∣∣∣∣∣0

a

= lima→−∞

[arctan 0− arctan a] = − lima→−∞

arctan a = −(−π2

)=π

2.

DEFINIÇÃO 1.7.5 Seja f : (−∞,∞) → R uma função contínua para todo x ∈ (−∞,+∞).Denimos ∫ +∞

−∞f (x) dx = lim

a→−∞

∫ c

a

f (x) dx+ limb→+∞

∫ b

c

f (x) dx,

desde que os limites existam.

22

Page 29: Apostila de Integrais 2

EXEMPLO 1.7.6 Encontre o valor numérico da integral∫ +∞

−∞

1

1 + x2dx.

Solução: Pela denição 1.7.5, tomando c = 0, obtemos∫ +∞

−∞

1

1 + x2dx = lim

a→−∞

∫ 0

a

1

1 + x2dx+ lim

b→+∞

∫ b

0

1

1 + x2dx

= lima→−∞

arctanx

∣∣∣∣∣0

a

+ limb→+∞

arctanx

∣∣∣∣∣b

0

= lima→−∞

(arctan 0− arctan a) + limb→+∞

(arctan b− arctan 0)

= lima→−∞

arctan a+ limb→+∞

arctan b

= −(−π2

)+π

2= π.

1.8 Integral de uma Função Descontínua num Ponto c∈ [a, b]

DEFINIÇÃO 1.8.1 Seja f : [a, b] → R uma função contínua no intervalo [a, b], exceto noponto c ∈ [a, b]. Denimos∫ b

a

f (x) dx = limα→c−

∫ α

a

f (x) dx+ limβ→c−

∫ b

β

f (x) dx,

desde que os limites acima existam.

EXEMPLO 1.8.2 Encontre o valor numérico da integral∫ 1

−1

1

x2dx.

y

x

Figura 1.19: Área sob o gráco de f(x) = 1x2

23

Page 30: Apostila de Integrais 2

Solução: O integrando é contínuo em todo ponto pertencente ao intervalo [−1, 1] , excetoem x = 0 (observe a Figura 1.19). Pela denição 1.8.1, temos que∫ 1

−1

1

x2dx = lim

α→0−

∫ α

−1

1

x2dx+ lim

β→0+

∫ 1

β

1

x2dx

= limα→0−

−1

x

∣∣∣∣∣α

−1

+ limβ→0+

−1

x

∣∣∣∣∣1

β

= limα→0−

[−1

α−(−1

−1

)]+ lim

β→0+

[−1−

(−1

β

)]= [+∞− 1] + [−1 +∞] = +∞

Consequentemente, a função f(x) =1

x2não é integrável no intervalo [−1, 1].

OBSERVAÇÃO 1.8.3 Quando os limites que aparecem nas denições anteriores existem e sãonitos, dizemos que a integral imprópria converge. Caso contrário, ou seja, quando um doslimites não existir, dizemos que a integral imprópria diverge.

EXEMPLO 1.8.4 Classique as integrais abaixo em convergente ou divergente.

(a)∫ +4

−∞|x|exdx;

(b)∫ π

0

sinx

cos2 xdx.

Solução (a):∫ +4

−∞|x|exdx = lim

a→−∞

∫ 0

a

−xexdx+∫ 4

0

xexdx

= lima→−∞

−xex∣∣∣∣∣0

a

−∫ 0

a

−exdx

+ xex

∣∣∣∣∣4

0

−∫ 4

0

exdx

= lima→−∞

(0 + aea + e0 − ea

)+ 4e4 − 0− (e4 − 1)

= lima→−∞

aea − lima→−∞

ea + 3e4 + 1

= lima→−∞

a

e−a+ 3e4 + 1 = lim

a→−∞

1

−e−a+ 3e4 + 1 = 3e4 + 1

ou seja, a integral converge.

Solução (b): ∫ π

0

sin x

cos2 xdx = lim

a→π2−

∫ a

0

sinx

cos2 xdx+ lim

b→π2+

∫ π

b

sinx

cos2 xdx

= lima→π

2−

[1

cos x

∣∣∣∣∣a

0

]+ lim

b→π2+

[1

cosx

∣∣∣∣∣π

b

]

= lima→π

2−

[1

cos a− 1

]+ lim

b→π2+

[−1− 1

cos b

]= +∞− 2 +∞ = +∞

ou seja, a integral diverge.

24

Page 31: Apostila de Integrais 2

1.9 Aplicações da Integral Denida

1.9.1 Área em coordenadas retangulares

Vimos que, se uma função f for não negativa, isto é, f (x) ≥ 0 para todo x no intervalo[a, b], então a área da região delimitada pelas curvas x = a, x = b, y = 0 e y = f (x) é dadapor

A =

∫ b

a

f (x) dx.

No caso mais geral, estaremos interessados em calcular a área da região situada entre osgrácos de duas funções f e g, com f(x) ≥ g(x) para todo x ∈ [a, b], de acordo com a Figura1.20.

y

xba

y=f(x)

y=g(x)

Figura 1.20: Região entre duas curvas

Nesta situação, devemos utilizar uma diferença de áreas e obter que

A =

∫ b

a

f(x)dx−∫ b

a

g(x)dx =

∫ b

a

[f(x)− g(x)] dx.

Na expressão acima, o termo f(x)− g(x) corresponde à altura de um retângulo innite-simal de base dx.

Note que, se uma função g for negativa, isto é, se g(x) < 0 para todo x ∈ [a, b], a áreada região situada entre as curvas x = a, x = b, y = 0 e y = g (x) será dada por

A =

∫ b

a

[0− g(x)] dx = −∫ b

a

g(x)dx.

EXEMPLO 1.9.2 Calcule a área da região situada entre o eixo x e o gráco da função f (x) =2x, com x no intervalo [−2, 2] .

Solução: A representação gráca de f pode ser observada na Figura 1.21. Como esta funçãotem imagem negativa no intervalo [−2, 0] e não negativa no intervalo [0, 2], devemos procedercomo segue

A =

∫ 0

−2

(0− 2x)dx+

∫ 2

0

(2x− 0)dx =

∫ 0

−2

−2xdx+

∫ 2

0

2xdx = −x2∣∣∣∣∣0

−2

+ x2

∣∣∣∣∣2

0

= 8 u.a.

Logo, a área sob o gráco da função f (x) = 2x, no intervalo [−2, 2] , é igual a 8 unidades deárea.

25

Page 32: Apostila de Integrais 2

x

y

Figura 1.21: Área entre o eixo x e o gráco de f(x) = 2x

EXEMPLO 1.9.3 Calcule a área da região delimitada pelas curvas y = x2 e y =√x.

Solução: Nesse exemplo não foi especicado o intervalo em que está situada a região deli-mitada pelas curvas. Devemos determinar este intervalo encontrando os pontos de interseçãodas curvas.

Para isso, basta resolver o sistema de equações

y = x2

y =√x

. É fácil ver que a solução

vem da igualdade x2 =√x e os valores de x que tornam essa sentença verdadeira são x = 0

e x = 1. Desse modo, a região delimitada pelas curvas y = x2 e y =√x ca determinada se

x ∈ [0, 1].

y

x

Figura 1.22: Região delimitada por y = x2 e y =√x.

De acordo com a Figura 1.22, podemos observar que a área desejada pode ser obtidaatravés da diferença entre as áreas das regiões situadas sob o gráco de y =

√x e sob o

gráco de y = x2, com x ∈ [0, 1] .Assim, temos que

A =

∫ 1

0

(√x− x2

)dx =

2

3x

32 − 1

3x3

∣∣∣∣∣1

0

=2

3− 1

3=

1

3u.a.

Portanto, a área desejada é igual a1

3unidades de área.

EXEMPLO 1.9.4 Calcule a área da região hachurada na Figura 1.23.

Solução: Primeiro vamos identicar a lei que dene as funções lineares presentes no gráco.Uma reta passa pelos pontos (0,0) e (1,1) e a outra passa pelos pontos (0, 0) e (2, 1

2). Portanto

26

Page 33: Apostila de Integrais 2

x

y

Figura 1.23: Região hachurada do Exemplo 1.9.4

as equações destas retas são y = x e y = x4, respectivamente. Existem várias maneiras de

calcular esta área, uma delas está apresentada a seguir:

A =

∫ 1

0

(x− 1

4x

)dx+

∫ 2

1

(1

x− 1

4x

)dx

=3

4

∫ 1

0

xdx+

∫ 2

1

1

xdx− 1

4

∫ 2

1

xdx

=3

8x2∣∣∣∣10

+

(ln |x| − 1

8x2)∣∣∣∣2

1

=3

8+ ln(2)− 1

2−(ln(1)− 1

8

)=

4

8− 1

2+ ln(2) = ln(2) u.a.

Portanto, a área desejada é igual a ln(2) unidades de área.

EXEMPLO 1.9.5 Achar a área da região delimitada pelos grácos de y + x2 = 6 e y + 2x = 3.

Solução: Inicialmente, encontramos as interseções das curvas:y = 6− x2

y = 3− 2x⇒ 6− x2 = 3− 2x ⇒ x2 − 2x− 3 = 0 ⇒ x = −1 ou x = 3.

A seguir, fazemos a representação gráca da área delimitada, conforme ilustra a Figura1.24.

Podemos então obter a área desejada calculando a área sob a parábola e descontando aárea sob a reta, no intervalo de [−1, 3], ou seja,

A =

∫ 3

−1

[(6− x2)− (3− 2x)]dx

=

∫ 3

−1

(3− x2 + 2x)dx

= 3x− x3

3+ x2

∣∣∣∣3−1

= 9− 27

3+ 9− (−3 +

1

3+ 1) =

32

3u.a.

27

Page 34: Apostila de Integrais 2

y

x

Figura 1.24: Área delimitada por y + x2 = 6 e y + 2x = 3.

Portanto, a área desejada é igual a32

3unidades de área.

EXEMPLO 1.9.6 Encontre o valor da área delimitada pelas curvas y = x2, y = 2 − x2 ey = 2x+ 8.

Solução: Inicialmente vamos fazer uma representação gráca, conforme ilustra a Figura1.25. Na sequência, vamos encontrar as interseções das curvas.

Figura 1.25: Região delimitada por y = x2, y = 2− x2 e y = 2x+ 8

Para a reta e a parábola, temos o sistema

y = x2

y = 2x+ 8cujas soluções são x = 4, y =

16 e x = −2, y = 4.

Para as duas parábolas, temos os sistemas

y = x2

y = 2− x2cujas soluções são x = 1, y =

1 e x = −1, y = 1.Como ocorre duas trocas no limitante inferior da região, devemos dividir a área desejada

28

Page 35: Apostila de Integrais 2

em três partes, a saber:

A1 =

∫ −1

−2

(2x+ 8)− (x2)dx =

∫ −1

−2

(2x+ 8− x2)dx =8

3,

A2 =

∫ 1

−1

(2x+ 8)− (2− x2)dx =

∫ 1

−1

(2x+ 6 + x2)dx =38

3,

A3 =

∫ 4

1

(2x+ 8)− (x2)dx = 18.

Portanto, a área desejada é dada por

A = A1 + A2 + A3 =8

3+

38

3+ 18 =

100

3u.a.

EXEMPLO 1.9.7 Calcule, de duas formas distintas, a área da região delimitada pelas curvasx = y + 1 e x = y2 − 1.

Solução: Iniciamos com a representação geométrica da região, que está esboçada na Figura1.26. A seguir, devemos encontrar os pontos de interseção entre as curvas, igualando suas

x

y

Figura 1.26: Região entre as curvas x = y + 1 e x = y2 − 1

equações, obtendo

y2 − 1 = y + 1 ⇒ y2 − y − 2 = 0 ⇒ y = −1 e y = 2

e ainda,

y = −1 ⇒ x = 0 e y = 2 ⇒ x = 3.

Uma primeira forma de calcular a área desejada é proceder como nos exemplos anteriores,onde tomamos x como variável de integração. Para isso, devemos isolar y em função de x,obtendo

y = x− 1 e y = ±√x+ 1.

Note que o sinal positivo na última equação corresponde à porção da parábola situadaacima do eixo x e o sinal negativo corresponde a parte situada abaixo do eixo.

29

Page 36: Apostila de Integrais 2

Como ocorre troca na limitação inferior da região, devemos tomar uma soma de integraispara calcular sua área, conforme segue

A =

∫ 0

−1

√x+ 1− (−

√x+ 1)dx+

∫ 3

0

√x+ 1− (x− 1)dx

=

∫ 0

−1

2√x+ 1dx+

∫ 3

0

(√x+ 1− x+ 1)dx

=4

3

√(x+ 1)3

∣∣∣∣∣0

−1

+2

3

√(x+ 1)3 − x2

2+ x

∣∣∣∣∣3

0

=4

3+

16

3− 9

2+ 3− 2

3=

9

2u.a.

Uma segunda maneira de calcular esta área é mantendo y como variável independente etomar a integração em relação a y. Neste caso, a curva superior está situada à direita,ou seja,é a reta x = y+1 e a curva inferior está situada à esquerda, ou seja, é a parábola x = y2−1.Como desta forma não ocorre troca de limitação, podemos calcular a área tomando umaúnica integral

A =

∫ 2

−1

(y + 1)− (y2 − 1)dy

=

∫ 2

−1

(y − y2 + 2)dy =y2

2− y3

3+ 2y

∣∣∣∣∣2

−1

= 2− 8

3+ 4−

(1

2− 1

3− 2

)=

9

2u.a.

Observe que a troca da variável de integração resultou numa expressão cuja integralera mais simples de ser resolvida. Desta forma, é importante saber escrever integrais quepermitem calcular áreas tomando tanto x quanto y como variáveis de integração, para depoisoptar por resolver aquela que se mostrar mais simples.

EXEMPLO 1.9.8 Escreva a(s) integral(is) que permite(m) calcular a área da região delimitadasimultaneamente pelas curvas de equações y =

√x− 2, x+ y = 2 e x+ 2y = 5, tomando:

(a) integração em relação a x. (b) integração em relação a y.

Solução: Iniciamos com a representação geométrica da região, esboçada na Figura 1.27.Note que temos apenas o ramo superior da parábola, pois y =

√x− 2 ≥ 0.

O próximo passo é obter as interseções entre as curvas.

Entre as duas retas, temos o sistema

x+ y = 2x+ 2y = 5

, cuja solução é x = −1, y = 3.

Entre a parábola e uma das retas, temos o sistema

y =

√x− 2

x+ y = 2, cuja solução é x = 2,

y = 0.

E entre a outra reta e a parábola, temos o sistema

y =

√x− 2

x+ 2y = 5, cuja solução é x = 3,

y = 1.Agora podemos montar as integrais que permitem calcular a área desejada.

(a) Tomando integração em relação a x, devemos isolar y em função de x,obtendo y =5− x

2

30

Page 37: Apostila de Integrais 2

x

y

Figura 1.27: Região delimitada por y =√x− 2, x+ y = 2 e x+ 2y = 5

para a reta superior, y = 2−x para a reta inferior e y =√x− 2 para a parábola, que também

é um limitante inferior. Como ocorre troca na limitação inferior em x = 2, precisamos deduas integrais.

A =

∫ 2

−1

[(5− x

2

)− (2− x)

]dx+

∫ 3

2

[(5− x

2

)−(√

x− 2)]dx

=

∫ 2

−1

1 + x

2dx+

∫ 3

2

(5− x

2−

√x− 2

)dx.

(b) Tomando integração em relação a y, devemos isolar x em função de y, obtendo x = 5−2ypara a reta superior, x = 2− y para a reta inferior e x = y2 + 2 para a parábola, que nestecaso também é um limitante superior. Como ocorre troca na limitação superior em y = 1,necessitamos também de duas integrais.

A =

∫ 1

0

[(y2 + 2)− (2− y)

]dy +

∫ 3

1

[(5− 2y)− (2− y)] dy

=

∫ 1

0

(y2 + y)dy +

∫ 3

1

(3− y) dy.

Neste exemplo, as duas expressões obtidas envolvem soma de integrais. Mesmo assim,é fácil notar que a expressão na qual y é a variável independente é a mais simples de serresolvida. Assim, se o enunciado solicitasse que fosse calculado o valor numérico da área emquestão, deveríamos optar por resolver esta expressão.

EXEMPLO 1.9.9 A área de uma determinada região R pode ser calculada pela expressão

A =

∫ 2

1

[(2x2)− (2

√x)]dx+

∫ 4

2

[(−2x+ 12)− (2

√x)]dx.

(a) Represente geometricamente a região R.

(b) Escreva a área de R usando y como variável independente.

Solução (a): Interpretando a expressão da área dada acima temos: Quando x varia de1 até 2 a limitação superior é y = 2x2 e a limitação inferior é y = 2

√x e enquanto x

31

Page 38: Apostila de Integrais 2

Figura 1.28: Região R

varia de 2 até 4 o limitante superior é y = −2x + 12 e o inferior continua sendo y = 2√x.

Logo, temos que a região R é delimitada superiormente pelas curvas y = 2x2, y = −2x+12e inferiormente por y = 2

√x e sua representação geométrica está sombreada na Figura 1.28.

Solução (b): Os pontos de interseção são

A :

y = 2x2

y = 2√x

⇒ (1, 2); B :

y = 2x2

y = −2x+ 12⇒ (2, 8) e

C :

y = −2x+ 12y = 2

√x

⇒ (4, 4).

Logo, usando y como variável independente para escrever a área de R temos

A =

∫ 4

2

(y2

4−√y

2

)dy +

∫ 8

4

(12− y

2−√y

2

)dy.

1.9.10 Área delimitada por curvas escritas em equações paramétri-cas

Seja y = f (x) uma função contínua no intervalo [a, b], cujo gráco delimita uma região R.A seguir, vamos obter uma nova expressão para a área da região R, utilizando as equaçõesparamétricas x = ϕ (t) e y = ψ (t), com t ∈ [α, β] , da curva descrita por f. Para isto, bastalembrar que a área de uma região retangular é dada por

A =

∫ b

a

f (x) dx =

∫ b

a

ydx.

Agora, fazendo a substituição y = ψ (t) e dx = ϕ′(t)dt e supondo que a = ϕ(α) eb = ϕ(β) obtemos a expressão para o cálculo de área em coordenadas paramétricas:

A =

∫ β

α

ψ(t)ϕ′(t)dt.

32

Page 39: Apostila de Integrais 2

EXEMPLO 1.9.11 Encontre a área delimitada pela elipsex2

a2+y2

b2= 1.

Solução: As equações paramétricas da elipse dada são

x = ϕ (t) = a cos t e y = ψ (t) = b sin t.

Desse modo, temos quedx = ϕ′ (t) dt = −a sin tdt

Vamos agora determinar os valores de α e β. Utilizando a quarta parte da área desejada,temos que x varia de 0 até a. Assim, podemos fazer x = ϕ (α) = 0 e x = ϕ (β) = a. Logo

ϕ (α) = 0 ⇒ a cosα = 0 ⇒ cosα = 0 ⇒ α =π

2ϕ (β) = a⇒ a cos β = a⇒ cos β = 1 ⇒ β = 0.

Agora, para obter a área total interna à elipse basta utilizar a simetria da região e obterque

A = 4

∫ 0

π2

b sin t(−a sin t)dt = −4ab

∫ 0

π2

sin2 tdt

= 4ab

∫ π2

0

1

2(1− cos 2t) dt = 2ab

(t− 1

2sin 2t

) ∣∣∣∣∣π2

0

= 2ab

2− 1

2sinπ − 0

)= abπ.

EXEMPLO 1.9.12 Calcular a área da região que é interior a elipse E1 =

x = 2 cos ty = 4 sin t

e

exterior a elipse E2 =

x = 2 cos ty = sin t

.

Figura 1.29: Região entre as elipses.

Solução: A região cuja área desajamos calcular pode ser vista na Figura 1.29. Novamente,podemos utilizar argumentos de simetria e calcular a área da região situada no primeiroquadrante do plano xy e multiplicar o resultado por quatro. Neste quadrante, temos quex ∈ [0, 2]. No entanto

x = 0 ⇒ 2 cos t = 0 ⇒ t = π2

x = 2 ⇒ 2 cos t = 2 ⇒ cos t = 1 ⇒ t = 0,

33

Page 40: Apostila de Integrais 2

logo, para descrever a região que nos interessa, em coordenas paramétricas, devemos integrarde t = π

2até t = 0. Assim, notando que neste exemplo devemos tomar a diferença entre as

áreas sob as elipses E1 e E2, obtemos

A = 4

∫ 0

π2

[4 sin t(−2 sin t)dt− 4

∫ 0

π2

sin t(−2 sin t)]dt

=

∫ 0

π2

(−32 sin2 t+ 8 sin2 t)dt =

∫ 0

π2

−24 sin2 tdt

= 24

∫ π2

0

1

2(1− cos 2t)dt =

(12t− 12

2sin 2t

) ∣∣∣∣∣π2

0

= 6π u.a.

1.9.13 Área de um setor curvilíneo em coordenadas polares

No nal deste capítulo apresentamos uma breve revisão sobre coordenadas polares.Seja r = f (θ) uma função contínua que descreve uma curva em coordenadas polares, no

intervalo [α, β]. Como nosso interesse é determinar a área da região delimitada por r = f (θ)vamos tomar uma partição do intervalo [α, β], conforme ilustra a Figura 1.30.

Figura 1.30: Região Polar, com ∆θi = θi − θi−1 e ri = f(θi).

Seja X = θ0, θ1, θ2, θ3, ..., θn uma partição de [α, β] em que

α = θ0 < θ1 < θ2 < θ3 < ... < θn = β.

Sejam ∆θ1, ∆θ2, ∆θ3,..., ∆θn os subarcos da partição X e seja ri o comprimento do raiocorrespondente a um ângulo ξi ∈ ∆θi, isto é, θi−1 ≤ ξi ≤ θi.

A área do setor circular de raio ri e arco ∆θi é dada por

Ai =1

2(ri)

2∆θi

e a área aproximada área da região delimitada por r = f (θ) é dada por

An =n∑

i=1

12(ri)

2∆θi.

34

Page 41: Apostila de Integrais 2

Seja |∆θ| o subintervalo de maior diâmetro da partição X. Então, se n tender a innitoteremos que |∆θ| tenderá a zero. Desse modo poderemos escrever

A = limn→∞

An = lim|∆θ|→0

n∑i=1

1

2(ri)

2 ∆θi =1

2

∫ β

α

r2dθ

ou seja,

A =1

2

∫ β

α

r2dθ, (1.9.1)

que nos fornece uma expressão para o cálculo de áreas delimitadas por curvas em coordenadaspolares.

EXEMPLO 1.9.14 Determine a área da região que é simultaneamente exterior à cardióide r =1− cos θ e interior ao círculo r = 1.

Solução: A Figura 1.31 ilustra a região considerada.

Figura 1.31: Região delimitada por um cardióide e por uma circunferência.

Como esta região é simétrica em relação ao eixo x, podemos calcular o dobro da áreada porção situada no primeiro quadrante do plano xy. Neste quadrante, temos que o ângulopolar θ varia no intervalo [0, π

2]. Ainda, devemos notar que a área desejada é dada, em

coordenadas polares, pela diferença entres as áreas da circunferência e da cardióide. Assim,usando a expressão 1.9.1, obtemos

A =2

2

∫ π2

0

12dθ − 2

2

∫ π2

0

(1− cos θ)2dθ =

∫ π2

0

(2 cos θ − cos2 θ)dθ

=

∫ π2

0

2 cos θ − 1

2(1 + cos 2θ)dθ = 2 sin θ − 1

2θ − 1

4sin 2θ

∣∣∣∣∣π2

0

= 2− π

4.

Portanto, a área desejada é igual 2− π

4unidades de área.

EXEMPLO 1.9.15 Escreva, em coordenadas polares, a integral que calcula a área da regiãosimultaneamente exterior à circunferência r = 1 e interior a rosácea r = 2 cos(2θ).

Solução: A Figura 1.32 ilustra a região desejada. Para determinar os pontos de interseçãodas duas curvas fazemos

2 cos(2θ) = 1 ⇒ cos 2θ =1

2⇒ 2θ =

π

3⇒ θ =

π

6( no 1o quadrante).

35

Page 42: Apostila de Integrais 2

Figura 1.32: Região delimitada por uma rosácea e uma circunferência

Vamos calcular a área da região delimitada com θ no intervalo de [0, π6] e multiplicar por

8, já que as demais áreas são simétricas. Utilizando a Fórmula 1.9.1 e vericando que a áreadesejada é igual a área da rosácea menos a área da circunferência, obtemos

A = 8 · 12

∫ π6

0

[(2 cos(2θ))2 − (1)2]dθ = 4

∫ π6

0

(4 cos2(2θ)− 1)dθ.

EXEMPLO 1.9.16 Escreva a integral que permite calcular a área da região que é simultanea-mente interior as curvas r = 5 cos θ e r = 5

√3 sin θ.

Solução: Inicialmente, devemos identicar as curvas dadas. Utilizando as relações polaresx = r cos θ, y = r sin θ e r2 = x2 + y2, obtemos que

r = 5 cos θ ⇒ r2 = 5r cos θ ⇒ x2 + y2 = 5x⇒(x− 5

2

)2

+ y2 =25

4

r = 5√3 sin θ ⇒ r2 = 5

√3r sin θ ⇒ x2 + y2 = 5

√3y ⇒ x2 + (y − 5

√3

2)2 =

75

4

e assim, vemos que a região que nos interessa está situada no interior de duas circunferências,de centros deslocados da origem, conforme ilustra a Figura 1.33.

Figura 1.33: Região situada entre circunferências

A seguir, devemos determinar a interseção entre as curvas

5√3 sin θ = 5 cos θ ⇒

√3 tan θ = 1 ⇒ tan θ =

√3

3⇒ θ =

π

6.

Finalmente, observamos que ao descrever a região desejada, devemos considerar r =

5√3 sin θ para θ ∈ [0,

π

6] e r = 5 cos θ para θ ∈ [

π

6,π

2]. Portanto, como ocorre troca de

36

Page 43: Apostila de Integrais 2

limitação para o raio polar, necessitamos de uma soma de integrais para calcular a áreadesejada

A =1

2

∫ π6

0

(5√3 sin θ)2dθ +

1

2

∫ π2

π6

(5 cos θ)2dθ

=1

2

∫ π6

0

75 sin2 θdθ +1

2

∫ π2

π6

25 cos2 θdθ.

EXEMPLO 1.9.17 A área de uma determinada região R pode ser calculada, em coordenadaspolares, pela expressão

I = 2

[1

2

∫ π4

0

(2 sen(θ))2 dθ +1

2

∫ π2

π4

(√2)2 dθ

].

(a) Represente geometricamente a região R.

(b) Escreva a expressão que determina a área desta região usando coordenadas cartesianasem relação: (i) à variável x; (ii) à variável y.

(c) Calcule o valor da área da região R.

Solução (a): A partir da integral dada vemos que a região R possui simetria, há troca delimitação do raio polar em θ = π

4e as funções que delimitam a área são ρ = 2 senθ e ρ =

√2.

Estas curvas são, respectivamente, as circunferências x2 + (y− 1)2 = 1 e x2 + y2 =√2. Na

Figura abaixo estão representados os grácos destas curvas e R é a região simultaneamenteinterior as duas circunferências que está sombreada na Figura 1.34.

Figura 1.34: Região R

Solução (b): Interseção de ρ = 2 sin θ e ρ =√2 é a solução de:

ρ = 2 sin θ

ρ =√2

=⇒ θ =π

4ou

4

(esta interseção é dada na integral I). Em coordenadas cartesianas os pontos de interseçãodas curvas são (−1, 1) e (1, 1).

37

Page 44: Apostila de Integrais 2

(i) Integração em relação à variável x :

I =

∫ 1

−1

(√2− x2 − 1 +

√1− x2) dx ou I = 2

∫ 1

0

(√2− x2 − 1 +

√1− x2) dx

(ii) Integração em relação à variável y :

I = 2

∫ 1

0

√2y − y2 dy + 2

∫ √2

1

√2− y2 dy

Solução (c): Para calcular o valor da área da região R usaremos a expressão I dadaem coordenadas polares. Assim,

A = 2

[1

2

∫ π4

0

(2 sen(θ))2 dθ +1

2

∫ π2

π4

(√2)2 dθ

]

=

∫ π4

0

4 sen2θ dθ +∫ π

2

π4

2 dθ

= 4

∫ π4

0

1− cos(2θ)2

dθ + 2θ

∣∣∣∣∣π2

π4

= 2

(θ − sen(2θ)

2

) ∣∣∣∣∣π4

0

2= (π − 1) u.a.

1.10 Comprimento de Arco

1.10.1 Comprimento de Arco em Coordenadas Cartesianas

Seja y = f (x) uma função contínua no intervalo [a, b] , cujo gráco descreve o arco AB,conforme ilustra a Figura 1.35.

a bxi

Mn

xi-1x1

Δs

M0

Δx

f(xi)

Δy

y

x

f(xi-1)M1

Mi-1

Mi

Figura 1.35: Comprimento de arco

Vamos dividir o arco AB em subarcos por meio da partição

X = M0, M1, M2, ..., Mn

38

Page 45: Apostila de Integrais 2

em queA =M0 < M1 < M2 < ... < Mn = B

cujas abscissas sãox0, x1, x2, ..., xn.

Tracemos as cordas

M0M1, M1M2, · · · , Mi−1Mi, · · · , Mn−1Mn

e designemos os seus comprimentos por

∆S1, ∆S2, · · · , ∆Si, · · · , ∆Sn.

Obtém-se então a linha poligonal

AM0M1 · · ·Mn−1B

ao longo do arco AB cujo comprimento aproximado é dado por

ln = ∆S1 +∆S2 + · · ·+∆Si + · · ·+∆Sn

ou seja,

ln =n∑

i=1

∆Si. (I)

Mas ∆Si é a hipotenusa do triângulo de lados ∆xi e ∆yi, de modo que podemos escrever

(∆Si)2 = (∆xi)

2 + (∆yi)2 ,

dividindo tudo por ∆xi obtemos(∆Si

∆xi

)2=(

∆xi

∆xi

)2+(

∆yi∆xi

)2ou seja,

∆Si

∆xi=

√1 +

(∆yi∆xi

)2

e assim

∆Si =

√1 +

(∆yi∆xi

)2

∆xi. (II)

Agora, como

∆xi = xi − xi−1 e ∆yi = f (xi)− f (xi−1)

segue que∆yi∆xi

=f (xi)− f (xi−1)

xi − xi−1

e pelo teorema de Lagrange, sabemos que existe ξi ∈ [xi−1, xi] tal que

f (xi)− f (xi−1)

xi − xi−1

= f ′ (ξi) .

Portanto, obtemos que

39

Page 46: Apostila de Integrais 2

∆yi∆xi

= f ′ (ξi) . (III)

Substituindo (II) em (I) resulta que

ln =n∑

i=1

√1 +

(∆yi∆xi

)2∆xi (IV )

e substituindo (III) em (IV ) resulta que

ln =n∑

i=1

√1 + (f ′ (ξi))

2∆xi.

Seja |∆x| o intervalo de maior diâmetro de cada partição de AB. Então, se n→ ∞, segueque |∆x| → 0 e (ξi) → x. Assim:

l = limn→∞

ln = lim|∆x|→0

n∑i=1

√1 + (f ′ (ξi))

2∆xi =

∫ b

a

√1 + (f ′ (x))2dx.

Portanto, o comprimento do arco AB no intervalo [a, b] é dado por

l =

∫ b

a

√1 + (f ′ (x))2dx. (1.10.1)

EXEMPLO 1.10.2 Determinar o comprimento do arco da curva descrita por y =√x, com x

no intervalo [0, 4] .

Solução: A Figura 1.36 ilustra o comprimento de arco considerado.

y

x

Figura 1.36: Arco de f(x) =√x

Como y = f (x) =√x temos que f ′ (x) = 1

2√x. Aplicando a fórmula 1.10.1, obtemos

l =

∫ b

a

√1 + (f ′ (x))2dx =

∫ 4

0

√1 +

(1

2√x

)2

dx

=

∫ 4

0

√1 +

1

4xdx =

∫ 4

0

√4x+ 1

4xdx =

1

2

∫ 4

0

√4x+ 1√x

dx.

Note que esta última integral é imprópria, pois o integrando não é contínuo em x = 0. Noentanto, neste exemplo não será preciso aplicar limites para resolver a integral, pois podemosutilizar uma mudança de variáveis. Fazendo a substituição t2 = x, encontramos dx = 2tdt ecomo x ∈ [0, 4], obtemos que t ∈ [0, 2] . Logo

l =1

2

∫ 2

0

√4t2 + 1√t2

2tdt =

∫ 2

0

√4t2 + 1dt.

40

Page 47: Apostila de Integrais 2

Como o novo integrando agora é contínuo no intervalo de integração, podemos utilizar oteorema fundamental do cálculo e a técnica de substituições trigonométricas para encontrarque

l =1

2t√4t2 + 1 +

1

4ln(2t+

√4t2 + 1

) ∣∣∣∣∣2

0

=√17 +

1

4ln(4 +

√17) u.c.

1.10.3 Comprimento de um arco em coordenadas paramétricas

Sejam x = ϕ (t) e y = ψ (t) , com t ∈ [α, β] , as equações paramétricas da curva descritapor y = f (x) . Então, como dx = ϕ′ (t) dt e dy = ψ′ (t) dt, podemos escrever

f ′(x) =dy

dx=ψ′ (t) dt

ϕ′ (t) dt=ψ′ (t)

ϕ′ (t).

Substituindo na fórmula 1.10.1 obtemos

l =

∫ b

a

√1 + (f ′ (x))2dx

=

∫ β

α

√1 +

(ψ′ (t))2

(ϕ′ (t))2ϕ′ (t) dt

=

∫ β

α

√(ϕ′ (t))2 + (ψ′ (t))2

ϕ′ (t)2ϕ′ (t) dt

=

∫ β

α

√(ϕ′ (t))2 + (ψ′ (t))2

ϕ′ (t)ϕ′ (t) dt

=

∫ β

α

√(ϕ′ (t))2 + (ψ′ (t))2dt.

Portanto, o comprimento de arco em coordenadas paramétricas é dado por

l =

∫ β

α

√(ϕ′ (t))2 + (ψ′ (t))2dt. (1.10.2)

EXEMPLO 1.10.4 Mostre, usando coordenadas paramétricas, que o comprimento de uma cir-cunferência de raio r é igual a 2πr.

Solução: Em coordenadas paramétricas, a circunferência é descrita porx(t) = r cos ty(t) = r sin t

com t ∈ [0, 2π].

O seu comprimento de arco, em paramétricas, de acordo com 1.10.2 é dado por

l =

∫ 2π

0

√(−r sin t)2 + (r cos t)2dt =

∫ 2π

0

√r2(sin2 t+ cos2 t)dt =

∫ 2π

0

rdt = rt|2π0 = 2πr.

EXEMPLO 1.10.5 Calcule o comprimento de arco da astróide descrita por

41

Page 48: Apostila de Integrais 2

y

x

3

3-3

-3

Figura 1.37: Astróide

ϕ (t) = 3 cos3 t, ψ(t) = 3 sin3 t com t ∈ [0, 2π].

Solução: A curva pode ser visualizada na Figura 1.37.Como há simetria, podemos encontrar o comprimento do subarco situado no primeiro

quadrante, tomando t ∈ [0, π2] e multiplicar o resultado obtido por quatro.

Como ϕ′ (t) = −9 cos2 sin t e ψ′ (t) = 9 sin2 t cos t, substituindo na fórmula 1.10.2, obtemos

l = 4

∫ π2

0

√(−9 cos2 t sin t)2 +

(9 sin2 t cos t

)2dt = 4 · 9

∫ π2

0

√cos4 t sin2 t+ sin4 t cos2 tdt

= 36

∫ π2

0

√cos2 t sin2 t

(cos2 t+ sin2 t

)dt = 36

∫ π2

0

cos t sin tdt = 18 sin2 t

∣∣∣∣∣π2

0

= 18 u.c.

Portanto, o comprimento de arco da astróide dada é 18 unidades de comprimento.

EXEMPLO 1.10.6 As equações paramétricas do movimento de uma partícula no plano sãodadas por x = 3t e y = 2t

32 . Qual será a distância percorrida pela partícula entre os instantes

t = 0 e t = 1?

Solução: A distância percorrida pela partícula é igual ao comprimento de arco da curvaque descreve a sua trajetória. Aplicando a fórmula 1.10.2 para

x = ϕ(t) = 3t e y = ψ(t) = 2t32

com t ∈ [0, 1], obtemos

l =

∫ 1

0

√32 + (3t

12 )2dt =

∫ 1

0

√9 + 9tdt

= 3

∫ 1

0

√1 + tdt = 2(1 + t)

32

∣∣∣∣∣1

0

= 2(2)32 − 2(1)

32 = 4

√2− 2 u.c.

Portanto, a distância percorrida pela partícula entre os instantes t = 0 e t = 1 é igual a4√2− 2 unidades de comprimento.

42

Page 49: Apostila de Integrais 2

1.10.7 Comprimento de arco em coordenadas polares

Sejam ϕ (θ) = r cos θ e ψ (θ) = r sin θ as coordenadas polares da curva r = f (θ), com θ ∈[α, β]. Substituindo r por f (θ) nas equações paramétricas vem

ϕ (θ) = f (θ) cos θ e ψ (θ) = f (θ) sin θ

e assim

ϕ′ (θ) = f ′ (θ) cos θ − f (θ) sin θ = r′ cos θ − r sin θ

ψ′ (θ) = f ′ (θ) senθ + f (θ) cos θ = r′senθ + r cos θ.

Agora(ϕ′ (t))

2+ (ψ′ (t))

2= (r′ cos θ − rsenθ)

2+ (r′senθ + r cos θ)

2

que após aplicar os produtos notáveis e simplicar, resulta em

(ϕ′ (t))2+ (ψ′ (t))

2= (r′)

2+ r2.

Substituindo na equação 1.10.2, obtemos a fórmula para o cálculo do comprimento dearco em coordenadas polares, que é dada por

l =

∫ β

α

√(r′)2 + r2dθ. (1.10.3)

EXEMPLO 1.10.8 Encontrar o comprimento de arco do cardióide r = a (1 + cos θ).

Solução: Por simetria, podemos determinar o comprimento do arco situado no primeiroe segundo quadrante e multiplicar por dois. Como r = a (1 + cos θ) tem-se r′ = −a sin θ.Substituindo na fórmula 1.10.3 vem

l =

∫ β

α

√(r′)2 + r2dθ

= 2

∫ π

0

√(−a sin θ)2 + (a (1 + cos θ))2dθ

= 2a

∫ π

0

√sin2 θ + 1 + 2 cos θ + cos2 θdθ

= 2a

∫ π

0

√2 + 2 cos θdθ

= 2a · 2∫ π

0

cosθ

2dθ

= 4a · 2 sin 1

∣∣∣∣∣π

0

= 8a u.c.

Logo, o comprimento de arco do cardióide r = a (1 + cos θ) é igual a 8a u.c.

EXEMPLO 1.10.9 Determine o comprimento de arco da porção da espiral r = 2e2θ (com θ ≥ 0)que está situada dentro da circunferência r = a, onde a > 2.

Solução: Inicialmente, vamos obter os limitantes de integração. Na interseção da espiralcom a circunferência, temos que

43

Page 50: Apostila de Integrais 2

2e2θ = a ⇒ e2θ =a

2⇒ 2θ = ln

a

2⇒ θ =

1

2lna

2

Portanto, a porção da espiral que nos interessa é descrita por θ ∈[0, 1

2ln a

2

]. Ainda,

como temos r = 2e2θ segue que r′ = 4e2θ e assim, substituindo na expressão 1.10.3 obtemoso comprimento em coordenada polares

l =

∫ 12ln a

2

0

√(4e2θ)2 + (2e2θ)2dθ =

∫ 12ln a

2

0

√20e4θdθ

=

∫ 12ln a

2

0

2√5e2θdθ =

√5e2θ

∣∣∣∣∣12ln a

2

0

=√5(a2− 1)u.c.

1.11 Volume de um Sólido de Revolução

Considere o sólido T gerado pela rotação da curva y = f(x) em torno do eixo x, nointervalo [a, b] como na Figura 1.38

x

y

z

a b

y=f(x)

r=f(x)

dx

Cálculo do elemento de volume

dV= r dx

dV= f(x) dx

π ²

π ²[ ]

x

y

a b

y=f(x)

Área plana

Figura 1.38: Rotação de uma curva em torno do eixo x

Seja P = x0, x1, · · · , xn uma partição do intervalo [a, b] e sejam ∆x1, ∆x2, · · · , ∆xnos subintervalos da partição. Se ξi ∈ ∆xi, então o volume do cilindro de raio f (ξi) e altura∆xi é dado por

Vi = π [f (ξi)]2∆xi

e o volume aproximado do sólido será dado pela soma dos volumes dos n− cilindros, isto é,

Vn =n∑

i=1

π [f (ξi)]2∆xi.

Seja |∆θ| o subintervalo de maior diâmetro, então se n→ ∞, segue que |∆θ| → 0, ξi → xe o volume V do sólido T será dado por

V = limn→∞

Vn = lim|∆θ|→0

n∑i=1

π [f (ξi)]2∆xi = π

∫ b

a

[f (x)]2 dx.

Portanto, o volume de um sólido de revolução (em torno do eixo x) é calculado pelaexpressão

V = π

∫ b

a

[f (x)]2 dx. (1.11.1)

44

Page 51: Apostila de Integrais 2

EXEMPLO 1.11.1 A m de que não haja desperdício de ração e para que seus animais estejambem nutridos, um fazendeiro construiu um recipiente com uma pequena abertura na parteinferior, que permite a reposição automática da alimentação, conforme mostra a Figura 1.39.Determine, usando sólidos de revolução, a capacidade total de armazenagem do recipiente,em metros cúbicos.

2m

4m

6m

cilindro

cone

Figura 1.39: Forma do recipiente.

Solução: Vamos encontrar o volume do cilindro (V1) e do cone (V2.) Assim, o volume totalserá dado por V = V1 + V2.

Para determinar V1 vamos rotacionar a reta y = 2 em torno do eixo x (Figura 1.40).

x

y

-2

y

z

x

Figura 1.40: Cilindro de Revolução

Aplicando a expressão 1.11.1, obtemos

V1 = π

∫ 4

0

22dx = 4π · 4 = 16π.

Já para o cone, como temos um raio r = 2 e altura h = 6, obtemos a reta y = 13x para

rotacionar em torno do eixo x (Figura 1.41).

y

x

y

z

x

Figura 1.41: Cone de Revolução

Aplicando a expressão 1.11.1 mais uma vez, obtemos

V2 = π

∫ 6

0

1

9x2dx =

1

27πx3

∣∣∣∣∣6

0

=63π

27= 8π.

Portanto o volume desejado é dado por V = 16π + 8π = 24π u.v.

45

Page 52: Apostila de Integrais 2

EXEMPLO 1.11.2 Calcule o volume do sólido gerado pela rotação da curva f(x) = x3, com xno intervalo [1,2], em torno do eixo x.

Solução: O sólido desejado pode ser visualizado na Figura 1.42.

x

y

x

r

y

z

Figura 1.42: Sólido gerado pela rotação de y = x3 em torno do eixo x

E o volume desejado é dado por

V = π

∫ 2

1

(x3)2dx = π

∫ 2

1

x6dx =πx7

7

∣∣∣∣21

=127π

7u.v.

EXEMPLO 1.11.3 Determinar o volume do sólido gerado pela revolução da região delimitadapelas curvas y = x2 e y = x+ 2 em torno do eixo x (veja a Figura 1.43).

x

y

x

y

z

Figura 1.43: Sólido gerado pela rotação de uma região plana em torno do eixo x

Solução: Nesse exemplo não foi especicado o intervalo em que está situada a região delimi-tada pelas curvas. Para determinar este intervalo, devemos encontrar os pontos de interseçãodas curvas dadas. Igualando suas equações, obtemos

x2 = x+ 2 ⇒ x2 − x− 2 = 0 ⇒ x = −1 e x = 2.

A Figura 1.43 indica que o sólido desejado está situado entre duas superfícies. Assim,seu volume é dado pela diferença entre os volumes externo e interno. De acordo com 1.11.1,

46

Page 53: Apostila de Integrais 2

temos que

V = π

∫ 2

−1

(x+ 2)2dx− π

∫ 2

−1

(x2)2dx

= π

∫ 2

−1

(x2 + 4x+ 4− x4)dx

= π

(1

3x3 + 2x2 + 4x− 1

5x5) ∣∣∣∣∣

2

−1

=72

5π u.v.

EXEMPLO 1.11.4 Encontre o volume do sólido de revolução gerado pela rotação da curva(x− 2)2 + y2 = 1 em torno do eixo y.

Solução: Observe na Figura 1.44 a circunferência geratriz do sólido.

y

1

1 2 3-1

-1

x

Figura 1.44: circunferência (x− 2)2 + y2 = 1

Isolando a variável x na equação da circunferência, obtemos

(x− 2)2 = 1− y2 ⇒ x = 2±√

1− y2

Observe que o volume do sólido desejado é formado pelo volume obtido pela rotação dacurva x = 2 +

√1− y2 em torno do eixo y, menos o volume obtido pela rotação da curva

x = 2−√

1− y2. Portanto, o volume desejado é igual a

V = V1 − V2,

onde

V1 = π

∫ 1

−1

(2 +√

1− y2)2dy

e

V2 = π

∫ 1

−1

(2−√

1− y2)2dy

ou seja,

V = π

∫ 1

−1

[(2 +√1− y2)2 − (2−

√1− y2)2]dy = π

∫ 1

−1

8√

1− y2dy.

Para resolver esta integral, utilizamos a substituição trigonométrica y = sin θ, com dy =cos θdθ e assim, obtemos que

47

Page 54: Apostila de Integrais 2

V = π

∫ π2

−π2

8√1− sin2 θ cos θdθ

= 8π

∫ π2

−π2

cos2 θdθ = 4π

∫ π2

−π2

(1 + cos 2θ)dθ

= π[4θ + 2 sin (2θ)]

∣∣∣∣∣π2

−π2

= 4π2.

Portanto, o volume desejado é igual a 4π2 unidades de volume.

1.11.5 Rotação em torno de uma Reta Paralela a um Eixo Coorde-nado

Até agora consideremos somente sólidos gerados por rotações de curvas em torno de umdos eixos coordenados, onde y = f(x) ou x = g(y) eram os raios dos cilindros de revolução(elementos de volume).

No caso mais geral, podemos rotacionar a curva y = f(x), com x ∈ [a, b], em torno dareta y = c, de acordo com a Figura a 1.45.

y

r

y=c

y=f(x)

xba

y

r

y=c

y=f(x)

x

z

ba

Figura 1.45: Sólido obtido pela rotação y = f(x) em torno da reta y = c

Neste caso, o raio do cilindro innitesimal é igual à distância entre a curva e o eixo derevolução, ou seja, é dado por

r = c− f(x)

e o volume do sólido resultante é dado por

V = π

∫ b

a

(c− f(x))2dx.

De forma semelhante, se a curva x = g(y), com y ∈ [a, b], for rotacionada em torno dareta x = c, o volume do sólido resultante é dado por

V = π

∫ b

a

(c− g(y))2dy.

Note que quando c = 0 temos novamente a revolução em torno dos eixos coordenados.

48

Page 55: Apostila de Integrais 2

EXEMPLO 1.11.6 Calcule o volume do sólido obtido quando a porção da pará bola y = 2− x2

que está situada acima do eixo x é rotacionada em torno da reta y = 3.

Solução: Na Figura 1.46 podemos observar a curva geratriz, o eixo de revolução e o sólidode revolução obtido.

y

x

y

x

z

Figura 1.46: Curva geratriz e sólido de revolução obtido pela rotação de y = 2−x2 em tornode y = 3.

Como rotacionamos em torno de uma reta paralela ao eixo das abscissas, devemos efetuara integração em relação a x. O intervalo de integração, denido aqui pela parte da parábolasituada acima do eixo x, é descrito por x ∈ [−

√2,√2].

Já o raio de rotação, dado pela distância entre a curva e o eixo de rotação, é dado por

r = 3− (2− x2) = 1 + x2

e assim, o volume desejado é dado por

V = π

∫ √2

−√2

(1 + x2)2dx = π

∫ √2

−√2

(1 + 2x2 + x4)dx =94

15

√2π.

EXEMPLO 1.11.7 Escreva as integrais que permitem calcular o volume do sólido obtido quandoa região situada entre as curvas y = x2 e y = 2x é rotacionada em torno:

(a) do eixo y; (b) da reta y = 5; (c) da reta x = 2.

Solução: A região a ser rotacionada está representada na Figura 1.47.

y

x

Figura 1.47: Região a ser rotacionada

As interseções entre as curvas são dadas por

49

Page 56: Apostila de Integrais 2

x2 = 2x ⇒ x(x− 2) = 0 ⇒ x = 0, x = 2 ⇒ y = 0, y = 4.

No item (a), rotacionamos em torno do eixo das ordenadas e, por isso, devemos tomar aintegração em relação a y. Como o só lido resultante será vazado, devemos tomar a diferençaentre os volumes dos sólidos externo e interno.

O raio externo, denido pela parábola, é dado por x =√y. O raio interno é denido pela

reta e é dado por x =y

2. Assim, o volume desejado é calculado pela integral

V = π

∫ 4

0

(√y)2 − π

∫ 4

0

(y

2)2dy = π

∫ 4

0

(y − y2

4

)dy.

Já no item (b), como rotacionamos em torno de uma reta paralela ao eixo das abscissas,devemos tomar a integração em relação a x. Novamente o sólido resultante será vazado edevemos tomar a diferença entre os volumes dos sólidos externo e interno.

O raio externo, denido pela distância entre a parábola e o eixo de rotação, é dado porr = 5 − x2 e o raio interno, denido pela distância entre a reta e o eixo de rotação, é dadopor r = 5− 2x. O volume do novo sólido é calculado pela integral

V = π

∫ 2

0

(5− x2)2dx− π

∫ 2

0

(5− 2x)2dx

= π

∫ 2

0

(25− 10x2 + x4)− (25− 20x+ 4x2)dx

= π

∫ 2

0

(−14x2 + x4 + 20x)dx.

Por m, como no item (c) rotacionamos em torno de uma reta paralela ao eixo dasordenadas, devemos tomar a integração em relação a y. Mais uma vez devemos tomar adiferença entre os volumes dos sólidos externo e interno.

O raio externo, neste caso, é denido pela reta e é dado por r = 2− y

2e o raio interno,

agora denido pela parábola, é dado por r = 2−√y.

Assim, o último volume desejado é calculado pela integral

V = π

∫ 4

0

(2− y

2)2dy − π

∫ 4

0

(2−√y)2dy

= π

∫ 4

0

(4− 2y +y2

4)− (4− 4

√y + y)dy

= π

∫ 4

0

(−3y +y2

4+ 4

√y)dy.

EXEMPLO 1.11.8 Seja R a região sob o gráco de f(x) =1√xe acima do eixo x com x ∈ [0, 4].

Determine:

(a) a área da região R, se existir;

(b) o volume do sólido obtido pela rotação da região R em torno do eixo x, se existir.

(c) o volume do sólido obtido pela rotação da região R em torno do eixo y, se existir.

50

Page 57: Apostila de Integrais 2

Solução (a):

A =

∫ 4

0

1√xdx = lim

a→0+

∫ 4

a

x−12 dx = lim

a→0+2√x

∣∣∣∣∣4

a

= lima→0+

(2√4− 2

√a) = 2u.a.

Solução (b):

V = π

∫ 4

0

(1√x

)2

dx = π lima→0+

∫ 4

a

1

xdx = π lim

a→0+ln x

∣∣∣∣∣4

a

= lima→0+

(ln 4− ln a) = +∞

Portanto o sólido obtido não tem volume nito.Solução (c):

V = π

∫ 12

0

(4)2 dy + π

∫ +∞

12

(1

y2

)2

dy = π · 16 · 12+ π lim

b→+∞

∫ b

12

y−4 dy

= 8π + π limb→+∞

(− 1

3x3

) ∣∣∣∣∣b

12

= 8π + π limb→+∞

(− 1

3b3+

8

3

)=

32π

3u.v.

51

Page 58: Apostila de Integrais 2

1.12 Exercícios Gerais

1. Dadas as funções f, g : [1, 3] → R denidas por f (x) = x+2 e g (x) = x2 + x encontreS (f, P ) e S (g, P ) .

2. Dada a função f : [−2, 5] → R denida por f (x) = x2 + 2 encontre S(f, P ) .

3. Determine as expressões para a soma superior e para a soma inferior de f(x) =5− x2, considerando x ∈ [1, 2].

4. Utilize somas superiores para calcular a área da região situada entre as curvas y =x4 + 2, x = 0, x = 1 e y = 0.

5. Utilize a denição de integral denida para calcular∫ 3

1

(x2 − 2x)dx. (Observe que é

preciso provar que a função é integrável.)

6. Utilize soma de áreas de retângulos circunscritos para calcular∫ 4

0

(−x2 − 1)dx.

7. Utilize soma de áreas de retângulos circunscritos para determinar a área sob o grácode f(x) = x3 + 1, para x ∈ [0, b], onde b > 0 é arbitrário.

8. Calcule, usando somas superiores, a área da região situada entre o gráco de f(x) = ex

e o eixo x, entre as retas x = −1 e x = 2.

9. Utilize somas inferiores para calcular a área da região situada entre a curva x = y2 eo eixo y, com y ∈ [0, 2].

10. Considere f : [a, b] → R uma função contínua. Mostre que:

(a) Se f é uma função par, então∫ a

−af(x)dx = 2

∫ a

0f(x)dx.

(b) Se f é uma função ímpar, então∫ a

−af(x)dx = 0.

(c) Interprete geometricamente os itens anteriores.

11. Um metereologista estabelece que a temperatura T (em oF ), num dia de inverno é dadapor T (t) = 1

20t(t− 12)(t− 24), onde o tempo t é medido em horas e t = 0 corresponde

à meia-noite. Ache a temperatura média entre as 6 horas da manhã e o meio dia.Sugestão: utilize o teorema do valor médio para integrais.

12. Encontre uma função f contínua, positiva e tal que a área da região situada sob o seugráco e entre as retas x = 0 e x = t seja igual a A(t) = t3, para todo t > 0.

13. Determine uma função f diferenciável, positiva e tal que∫ x

0

f(t)dt = [f(x)]2 para todo

x ∈ R.

14. Seja f : R → R uma função contínua e dena uma nova função g : R → R por

g(x) =

∫ x3

x2

f(t)dt. Calcule o valor de g′(1), sabendo que f(1) = 2.

52

Page 59: Apostila de Integrais 2

15. (ENADE) Considere g : R → R uma função com derivadadg

dtcontínua e f a função

denida por f(x) =∫ x

0

dg

dt(t)dt para todo x ∈ R.

Nessas condições avalie as armações que seguem.

I A função f é integrável em todo intervalo [a, b], a, b ∈ R, a < b.

II A função f é derivável e sua derivada é a função g.

III A função diferença f − g é uma função constante.

É correto o que se arma em

(a) I, apenas.

(b) II, apenas.

(c) I e III, apenas.

(d) II e III, apenas.

(e) I, II e III.

Justique sua resposta.

16. Seja f : [0, 1) → R denida por f (x) =1√

1− x2. Verique se

∫ 1

0

f (x) dx existe.

17. Determine o valor das seguintes integrais, se possível.

(a)∫ √

2

1xe−x2

dx (b)∫ 1

−1x2

√x3+9

dx (c)∫ π

4

0tan2 x sec2 xdx

(d)∫ 1

0x sinxdx (e)

∫ 43

34

1

x√1 + x2

dx (f)∫ 3

0x√x+1

dx

(g)

∫ 2

1

(√x+

13√x+ 4

√x

)dx (h)

∫ π3

0

tanxdx (i)

∫ 4

1

x√2 + 4x

dx

18. Encontre, se existir, o valor de cada uma das seguintes integrais:

(a)

∫ 1

0

(x+

√x− 1

3√x

)dx (e)

∫ 0

−∞ xexdx (i)

∫ 4

0

x√16− x2

dx (m)

∫ 1

−∞exdx

(b)∫ 2

0x2 ln(x)dx (f)

∫ ∞

−∞xe−|x−4|dx (j)

∫ +∞

0

xe−xdx (n)

∫ 1

−1

1

x4dx

(c)

∫ +∞

1

1

x2cos

(1

x

)dx (g)

∫ 5

1

1√5− x

dx (k)

∫ +∞

1

1

x√x2 − 1

dx (o)

∫ 1

0

1

x3dx

(d)

∫ √2

2

0

1√1− x2

dx (h)

∫ +∞

0

e−xdx (l)

∫ 1

0

1√1− x

dx (p)

∫ +∞

−2

1

(x+ 1)2dx

19. Os engenheiros de produção de uma empresa estimam que um determinado poço pro-duzirá gás natural a uma taxa dada por f(t) = 700e−

15t milhares de metros cúbicos,

onde t é o tempo desde o início da produção. Estime a quantidade total de gás naturalque poderá ser extraída desse poço.

20. Determine todos os valores de p para os quais∫ +∞

1

1

xpdx converge.

53

Page 60: Apostila de Integrais 2

21. Determine para quais valores de p ∈ R a integral∫ +∞

e

1

x(lnx)pdx converge.

22. Calcule, se possível, as seguintes integrais impróprias:

(a)∫ +∞1

xe−x2dx (b)

∫ +∞−∞

arctanxx2+1

dx (c)∫ π

2

−∞ sin 2xdx

(d)∫ 1

0x lnxdx (e)

∫ 9

0e√x

√xdx (f)

∫ π

0cosx√1−sinx

dx

23. Em equações diferenciais, dene-se a Transformada de Laplace de uma função f por

L(f(x)) =

∫ +∞

0

e−sxf(x)dx,

para todo s ∈ R para o qual a integral imprópria seja convergente. Encontre a Trans-formada de Laplace de:

(a) f(x) = eax (b) f(x) = cos x (c) f(x) = sinx

24. A função gama é denida para todo x > 0 por

Γ(x) =

∫ +∞

0

tx−1e−tdt.

(a) Calcule Γ(1) e Γ(2).

(b) Mostre que, para n inteiro positivo, Γ(n+ 1) = nΓ(n).

25. Encontre a área da região limitada pelas curvas:

(a) y = sin x, y = cosx , x = 0 e x = π2.

(b) y − x = 6, y − x3 = 0 e 2y + x = 0.

(c) y = −x2 + 9 e y = 3− x.

(d) y = sin x, y = x sinx, x = 0 e x = π2.

(e) 28− y − 5x = 0, x− y − 2 = 0, y = 2x e y = 0.

26. Represente geometricamente a região cuja área é calculada por

A =

∫ 2

0

[(y + 6)− (

√4− y2)

]dy.

27. Calcule a área de cada região delimitada pelas curvas dadas abaixo através de:

(i) integração em relação a x (ii) integra ção em relação a y.

(a) y = x+ 3 e x = −y2 + 3.

(b) 2x+ y = −2, x− y = −1 e 7x− y = 17.

(c) y = x2 − 1, y = 2x2 e y = 32x2.

(d) y + x = 6, y =√x e y + 2 = 3x.

28. Represente geometricamente a região cuja área é calculada pela expressão

A =

∫ 2

1

[(2x2)−(2

x

)]dx+

∫ 4

2

[(62− 15x

4

)−(2

x

)]dx.

A seguir, reescreva esta expressão utilizando y como variável independente.

54

Page 61: Apostila de Integrais 2

29. Estabeleça a(s) integral(is) que permite(m) calcular a área da região hachurada na

gura abaixo, delimitada simultaneamente pelas curvas y = x, y = x2 e y =4

x− 1,

mediante:

(a) integração em relação a x. (b) integração em relação a y.

y

x

30. Encontre uma reta horizontal y = k que divida a área da região compreendida entreas curvas y = x2 e y = 9 em duas partes iguais.

31. A área de uma determinada região R pode ser calculada pela expressão

A =

∫ √2

2

−√2

2

(√1− x2 −

√2x2)dx.

Reescreva esta expressão, utilizando:

(a) integração em relação a y; (b) coordenadas paramétricas.

32. Represente geometricamente a região cuja área, em coordenadas paramétricas, é dadapor

A = 2

∫ 0

π

3 sin t(−3 sin t)dt− 2

∫ 0

π

3 sin t(−2 sin t)dt.

33. Uma ciclóide é uma curva que pode ser descrita pelo movimento do ponto P (0, 0) deum círculo de raio a, centrado em (0, a), quando este círculo gira sobre o eixo x. Pode-se representar esta ciclóide através das equações x = a(t− sin t) e y = a(1− cos t), comt ∈ [0, 2π]. Determine a área da região delimitada pela ciclóide.

34. Uma curva de equação x23 + y

23 = a

23 é chamada astróide. Calcule a área da região

delimitada pela astróide obtida quando a = 5.

35. Calcule a área da região situada simultaneamente no interior dos seguintes pares decurvas:

(a) r = 3 cos θ e r = 1 + cos θ;

(b) r = 1 + cos θ e r = 1;

(c) r = sin θ e r = 1− cos θ;

(d) r2 = cos(2θ) e r2 = sin(2θ);

(e) r = 2 (1 + sin θ) e r = 2 (1 + cos θ) .

36. Encontrar a área simultaneamente interior ao círculo r = 6 cos θ e exterior a r =2(1 + cos θ).

55

Page 62: Apostila de Integrais 2

37. Calcule a área da região simultaneamente interior à curva r = 4 + 4 cos θ e exterior àr = 6.

38. Calcule a área da região simultaneamente interior à curva r = 1 + cos θ e exterior àr = 2 cos θ.

39. Calcule a área da região simultaneamente interior às curvas r = sin(2θ) e r = sin θ.

40. Determine a área da região simultaneamente interior às rosáceas r = sin(2θ) e r =cos(2θ).

41. Escreva a integral que permite calcular a área sombreada entre as curvas r = sin(2θ)e r =

√3 cos(2θ), dada na gura abaixo.

42. Seja R a porção da região simultaneamente interior às curvas r = 2 cos θ e r = 4 sin θque está situada no exterior da curva r = 1. Escreva as integrais que permitem calcular:

(a) a área da região R;

(b) o comprimento de arco da fronteira da região R.

43. Calcule a área das regiões sombreadas nas guras abaixo:

(a) r = 1 e r = 2 cos(2θ) (b) r = 2e14θ (c) r = sin(3θ) e r = cos(3θ)

44. Represente geometricamente a região cuja área, em coordenadas polares, é dada por

I = 2

[1

2

∫ π6

0

sin2 θdθ +1

2

∫ π4

π6

cos2(2θ)dθ

].

45. Monte a(s) integral(is) que permite(m) calcular a área hachurada na gura abaixo,delimitada pelas curvas r = 2 + 2 cos θ, r = 4 cos(3θ) e r = 2.

56

Page 63: Apostila de Integrais 2

46. Calcule o comprimento de arco das curvas dadas por:

(a) x = 13y3 + 1

4y, com 2 ≤ y ≤ 5;

(b) x = 3 + t2 e y = 6 + 2t2, com 1 ≤ t ≤ 5;

(c) x = 5t2 e y = 2t3, com 0 ≤ t ≤ 1;

(d) x = et cos t e y = et sin t, com 0 ≤ t ≤ π2;

(e) r = e−θ, com 0 ≤ θ ≤ 2π;

(f) r = cos2 12θ, com 0 ≤ θ ≤ π;

47. Determine a distância percorrida por uma partícula que se desloca entre os pontosA(2, 3) e B(0, 3) cuja posição, no instante t, é dada por x(t) = 1 + cos(3

√t) e

y(t) = 3− sen(3√t).

48. A posição de uma partícula, num instante t, é dada por x(t) = 2 cos t+2t sin t e y(t) =2 sin t − 2t cos t. Calcule a distância percorrida por esta partícula entre os instantest = 0 e t = π

2.

49. Suponha que as equações x(t) = 4t3 + 1 e y(t) = 2t92 descrevam a trajetória de uma

partícula em movimento. Calcule a distância que esta partícula percorre ao se deslocarentre os pontos A(5, 2) e B(33, 32

√2).

50. Calcule a distância percorrida por uma partícula que se desloca, entre os instantest = 0 e t = 4, de acordo com as equações x(t) = 1 + 2 cos(3t

52 ) e y(t) = 5− 2 sin(3t

52 ).

51. A curva descrita por x(t) = 3e−t cos 6t e y(t) = 3e−t sin 6t, chamada de espiral logarít-mica e está representada geometricamente na Figura 1.48. Mostre que o arco descritopor esta espiral, quando t ∈ [0,+∞), possui comprimento nito.

y

x

Figura 1.48: Espiral logarítmica

52. Encontre o comprimento das curvas que limitam a região formada pela interseção dascurva r =

√3 sin θ e r = 3 cos θ, situada no primeiro quadrante.

57

Page 64: Apostila de Integrais 2

53. Represente gracamente o arco cujo comprimento é calculado pela integral

l =

∫ π6

0

√48 cos2 θ + 48 sin2 θdθ +

∫ π2

π6

√16 sin2 θ + 16 cos2 θdθ.

54. Monte as integrais que permitem calcular o comprimento do arco da fronteira da regiãoque é simultaneamente interior à r = 1 + sin θ e r = 3 sin θ.

55. Calcule o volume do sólido obtido pela revolução da curva yx2 = 1, com x ≥ 1, emtorno do eixo x.

56. Determinar o volume do sólido de revolução gerado pela rotação da curvax2

a2+y2

b2= 1

em torno do eixo x.

57. Determinar o volume do toro gerado pela rotação do círculo de equação x2+(y − b)2 =a2 em torno do eixo x, supondo a < b.

58. Obtenha o volume do sólido obtido pela revolução da região delimitada por:

(a) y =√4− x, 3y = x e y = 0, em torno do eixo x;

(b) y = |x|+ 2, y = x2, x = −2 e x = 1 em torno do eixo x;

(c) y = x2 e y = 2, em torno da reta y = 2;

(d) y = 1− x2 e x− y = 1, em torno da reta y = 3;

(e) x+ y = 3 e y + x2 = 3, em torno da reta x = 2.

59. Determine o volume do sólido obtido quando a região situada sob a curva y = ex eacima do eixo x, com x ≤ 0, é rotacionada em torno da reta y = 2.

60. Um hiperbolóide de uma folha de revolução pode ser obtido pela rotação de umahipérbole em torno do seu eixo imaginário. Calcule o volume do sólido delimitadopelos planos x = −3, x = 3 e pelo hiperbolóide obtido pela rotação de 9y2 − 4x2 = 36em torno do eixo x.

61. Quando uma determinada região R é rotacionada em torno do eixo y, o volume dosólido resultante pode ser calculado pela expressão

V = π

∫ 2

13

[(7− 3y

2

)2

−(1

y

)2]dy.

Represente geometricamente a região R e, a seguir, calcule o volume do sólido obtidoquando R é rotacionada em torno da reta y = 3.

62. Considere a região R delimitada simultaneamente pelas curvas y = x3 e x = y3.

(a) Obtenha a(s) integral(is) que permite(m) calcular o perímetro da região R.

(b) Calcule o volume do sólido obtido quando a região R é rotacionada em torno doeixo y.

(c) Escreva as integrais que permitem calcular o volume do sólido obtido quando aregião R é rotacionada em torno da reta y = 1.

58

Page 65: Apostila de Integrais 2

63. Escreva as integrais que permitem calcular o volume do sólido obtido quando a regiãodelimitada pelas curvas y = x2 − 4 e y = x− 2 é rotacionada em torno:

(a) do eixo x (b) da reta y = 2 (c) da reta x = −3.

64. Considere a região R delimitada pelas curvas y = x3 e y = 2x, que está situada noprimeiro quadrante e abaixo da reta y = 2− x.

(a) Determine o volume do sólido obtido quando a região R é revolucionada em tornodo eixo x.

(b) Escreva as integrais que permitem calcular o volume do sólido obtido quando aregião R é revolucionada em torno da reta x = −1.

65. Mostre, via volume de sólidos de revolução, que o volume de um cone de raio r e altura

h é V =πr2h

3.

66. Mostre, via volume de sólidos de revolução, que o volume de uma esfera de raio a é

V =4

3πa3.

59

Page 66: Apostila de Integrais 2

1.13 Respostas

1. S (f, P ) = 8 +2

ne S (g, P ) =

38

3+

10

n+

4

3n2

2. S (f, P ) =175

3− 133

2n+

133

6n2

3. S (f, P ) =8

3+

3

2n− 1

6n2e S (f, P ) =

8

3− 3

2n− 1

6n2

4. S (f, P ) =11

5+

1

2n+

1

3n2− 1

30n4

5. 23

6. −763

7. 14b4 + b

8. e2 − e−1

9. 83

10. Dica para os itens (a) e (b): use propriedades para quebrar o lado esquerdo em duasintegrais, use a denição de função par (ou ímpar) e use a substituição de variáveisu = −x para reescrever uma das integrais.

11. 18, 9oF

12. f(t) = 3t2

13. f(x) = x2

14. g′(1) = 2

15. Item (c)

16.∫ 1

0

f (x) dx =1

17. .(a) 1

2e−1 − 1

2e−2 (b) 2

3

√10− 4

3

√2 (c) 1

3

(d) sin 1− cos 1 (e) 0, 405 (f) 83

(g) 3, 202 (h) ln 2 (i) 32

√2

18. .(a) − 1

3(e) − 1 (i) 4 (m) e

(b) 83ln 2− 8

9(f) 8 (j) 1 (n) nao existe

(c) sin 1 (g) 4 (k) 12π (o) nao existe

(d) 14π (h) 1 (l) 2 (p) nao existe

19. 3500 m3

20. Converge para p > 1.

21. Converge para p > 1.

60

Page 67: Apostila de Integrais 2

22. .(a) 1

2e−1 (b) 0 (c) nao existe

(d) − 14

(e) 2e3 − 2 (f) 0

23. (a)1

s− apara s > a (b)

s

s2 + 1para s > 0 (c)

1

s2 + 1para s > 0

24. (a) Γ(1) = 1, Γ(2) = 1

25. (a) 2√2− 2 (b) 22 (c) 125

6(d) 2− 2 sin 1 (e) 17

26. .y

x

27. (a) 1256

(b) 16 (c) 32−4√2

3(d) 23

6

28. A =

∫ 2

12

(62− 4y

15

)−(2

y

)dy +

∫ 8

2

(62− 4y

15

)−

(√2y

2

)dy

29. .

(a) A =

∫ 2

1

(x2 − x

)dx+

∫ 1+√

172

2

(4

x− 1− x

)dx

(b) A =

∫ 1+√

172

1

(y −√y) dy +

∫ 4

1+√

172

(y + 4

y−√

y

)dy

30. k = 93√4

31. .

(a) A = 2

∫ √2

2

0

√y

4√2dy + 2

∫ 1

√22

√1− y2dy

(b) A =

∫ π4

3π4

− sin2 tdt−∫ √

22

−√

22

√2t2dt

32. .y

x

33. 3a2π

34. 3πa2

8

35. (a) 5π4

(b) 54π − 2 (c) 1

2(π − 2) (d) 1−

√22

(e) 6π − 8√2

61

Page 68: Apostila de Integrais 2

36. 4π

37. 18√3− 4π

38. π2

39. 14π − 3

16

√3

40. π2− 1

41. Uma das várias respostas possíveis é:

A =

∫ π4

0

1

2(√3 cos 2θ)2dθ +

∫ π6

0

1

2(sin 2θ)2dθ +

∫ π4

π6

1

2(√3 cos 2θ)2dθ

42. (a) A =1

2

∫ arctan 12

arcsin 14

(16 sin2 θ − 1)dθ +1

2

∫ π3

arctan 12

(4 cos2 θ − 1

)dθ

(b) l =

∫ arctan 12

arcsin 14

4dθ +

∫ π3

arctan 12

2dθ +

∫ π3

arcsin 14

43. (a) 9√3

8− π

4(b) 4e

9π4 − 8e

5π4 + 4e

π4 (c) π

8− 1

4

44. .

45. Uma das várias respostas possíveis é:

A =1

2

∫ π9

0

[(2 + 2 cos θ)2 − (4 cos 3θ)2

]dθ +

1

2

∫ π2

π9

[(2 + 2 cos θ)2 − 4

]dθ

+1

2

∫ π9

0

4dθ +1

2

∫ π6

π9

(4 cos 3θ)2dθ

46. .(a) 1563

40(b) 24

√5 (c) 68

27

√34− 250

27

(d)√2e

π2 −

√2 (e)

√2(1− e−2π) (f) 2

47. πu.c. (observe que a resolução da integral envolve uma integral com descontinuidade)

48. π2

4

49. 35227

√22− 250

27

50. 192

62

Page 69: Apostila de Integrais 2

51. O comprimento desejado é nito e igual a√333.

52. 13

√3π + π

2

53. Arco composto de dois subarcos de circunferências, conforme gura abaixo:y

x

54. l = 2

∫ π6

0

√9 cos2 θ + 9 sin2 θdθ + 2

∫ π2

π6

√cos2 θ + (1 + sin θ)2dθ

55. π3

56. 4πab2

3

57. 2π2a2b

58. (a) 32π (b) 92π

5(c) 64

15

√2π (d) 162

5π (e) 1

59. 72π

60. 32π

61. 41027π − 6π ln 6

62. (a) l =∫ 1

−1

(√1 + 9x4 +

√1 +

1

9x

−43

)dx (b) V = 32

35π

(c) V = π

∫ 0

−1

(1− 3√x)2 − (1− x3)2dx+ π

∫ 1

0

(1− x3)2 − (1− 3√x)2dx

63. .

(a) V = π

∫ 2

−1

(x4 − 9x2 + 4x+ 12)dx (b) V = π

∫ 2

−1

(20− 13x2 − x4 + 8x)dx

(c) V = π

∫ 0

−4

(y + 8 + 4√y + 4)dy − π

∫ −3

−4

(y + 8− 4√y + 4)dy − π

∫ 0

−3

(y2 + 8y + 16)dy

64. (a) 134189π (b) V = π

∫ 1

0

(1 + 3√y)2 −

(1 +

y

2

)2dy + π

∫ 43

1

(3− y)2 −(1 +

y

2

)2dy

65. Dica: Note que um cone tal como desejado pode ser obtido pela rotaç ão em torno doeixo y da reta y = h

rx, com x ∈ [−r, r] e y ∈ [0, h].

66. Dica: Note que a esfera pode ser obtida pela rotação da circunferência x2+y2 = a2 emtorno de qualquer eixo coordenado.

63

Page 70: Apostila de Integrais 2

1.14 Revisão de Coordenadas Polares no R2

No sistema de coordenadas polares, as coordenadas consistem de uma distância e damedida de um ângulo em relação a um ponto xo e a uma semirreta xa. A Figura 1.49ilustra um ponto P num sistema de coordenadas polares. O ponto xo, denotado por O, é

θ

r

oA

P

Figura 1.49: Ponto P usando coordenadas polares

chamado pólo ou origem. A semirreta xa OA é chamada eixo polar. O ponto P ca bemdeterminado através do par ordenado (r, θ), onde r representa a distância entre a origem e oponto P, e θ representa a medida, em radianos, do ângulo orientado AOP. O segmento OP,é chamado raio.

Relação entre o Sistema de Coordenadas Cartesianas Retangulares e o Sistemade Coordenadas Polares

x = r cos θy = r sin θr2 = x2 + y2

r =√x2 + y2

tan θ =y

x

.

Algumas equações em coordenadas polares e seus respectivos grácos

Retas

1. θ = θ0 ou θ = θ0 ± nπ, n ∈ Z é uma reta que passa pela pólo e faz um ângulo θ0 ouθ0 ± nπ radianos com o eixo polar.

2. r sin θ = a e r cos θ = b, com a, b ∈ R, são retas paralelas ao eixo polar e θ = π2,

respectivamente.

Circunferências

1. r = a, a ∈ R é uma circunferência de raio |a|.

2. r = 2a cos θ é uma circunferência de raio |a|, com centro sobre o eixo polar e tangenteao eixo θ = π

2de modo que

(i) se a > 0 o gráco está à direita do pólo;

(ii) se a < 0 o gráco está à esquerda do pólo.

64

Page 71: Apostila de Integrais 2

3. r = 2b sin θ é uma circunferência de raio |b|, com centro sobre o eixo θ = π2e tangente

ao eixo polar de modo que

(i) se b > 0 o gráco está acima do pólo;

(ii) se b < 0 o gráco está abaixo do pólo.

Limaçons

Equações do tipo r = a± b cos θ ou r = a± b sin θ, onde a, b ∈ R o gráco varia conformeos casos abaixo.

1. se b > a, então o gráco tem um laço. Veja a Figura 1.50.

r=a-bcosθ r=a+bcosθ r=a+bsinθ r=a-bsinθ

Figura 1.50: Limaçons com laço

2. se b = a, então o gráco tem o formato de um coração, por isso é conhecido comoCardióide. Veja a Figura 1.51.

r=a(1+ cos )θ r=a(1- cos )θ r=a(1- sin )θ r=a(1+ sin )θ

Figura 1.51: Cardióide

3. se b < a, então o gráco não tem laço e não passa pelo pólo. Veja a Figura 1.52.

r=a - bcosθ r=a+bcosθ r=a+bsinθ r=a - bsinθ

Figura 1.52: Limaçons sem laço

65

Page 72: Apostila de Integrais 2

Rosáceas

Equações do tipo r = a cos(nθ) ou r = a sin(nθ), onde a ∈ R e n ∈ N o gráco variaconforme os casos abaixo.

1. Se n é par temos uma rosácea com 2n pétalas. Veja a Figura 1.53.

r = acos(4 )θ r = asin(4 )θ

Figura 1.53: Rosáceas com 2n pétalas

2. Se n é ímpar temos uma rosácea com n pétalas. Veja a Figura 1.54.

r=a cos(5 )θ r=a sin(5 )θ

Figura 1.54: Rosáceas com n pétalas

Lemniscatas

Equações do tipo r2 = ±aa cos(2θ) ou r2 = ±a2 sin(2θ), onde a ∈ R. Os grácos para cadacaso estão na Figura 1.55.

66

Page 73: Apostila de Integrais 2

r²=a²cos(2 )θ

r²=-a²cos(2 )θr²=a²sin(2 )θ

r²=-a²sin(2 )θ

Figura 1.55: Lemniscatas

Espirais

As equações seguintes representam algumas espirais.

1. Espiral hiperbólica: rθ = a, a > 0.

2. Espiral de Arquimedes: r = aθ, a > 0.

3. Espiral logarítmica: r = eaθ.

4. Espiral parabólica: r2 = θ.

A Figura 1.56 ilustra estas espirais.

r =a ( >0)θ θ

(a, /2)π

r =a ( <0)θ θ

(a, /2)π

r=a ( 0)θ θ ³ r=a ( 0)θ θ£

r=eaθ θr= θr=-

Figura 1.56: Espirais

67

Page 74: Apostila de Integrais 2

Capítulo 2

FUNÇÕES DE VÁRIAS VARIÁVEIS EDIFERENCIAÇÃO PARCIAL

Objetivos (ao nal do capítulo espera-se que o aluno seja capaz de):

1. Denir funções de várias variáveis e dar exemplos práticos;

2. Encontrar o domínio e fazer o gráco (esferas, cones,cilindros, parabolóides, planos einterseções entre essas superfícies) com funções de várias variáveis com duas variáveisindependentes;

3. Usando a denição mostrar que o limite de uma função de duas variáveis existe;

4. Vericar se uma função de duas variáveis é contínua num ponto;

5. Encontrar derivadas parciais e interpretá-las geometricamente quando a função for deduas variáveis independentes;

6. Encontrar derivadas parciais de funções compostas;

7. Encontrar as derivadas parciais de funções implícitas;

8. Resolver problemas que envolvam derivadas parciais como taxa de variação;

9. Representar geometricamente as diferenciais parciais e totais;

10. Resolver problemas que envolvam diferenciais parciais e totais;

11. Encontrar derivadas parciais de ordem superior;

12. Encontrar os extremos de uma função de duas variáveis quando existem;

13. Resolver problemas que envolvam extremos de funções de duas variáveis;

14. Resolver exercícios usando uma ferramenta tecnológica.

A prova será composta por questões que possibilitam vericar se os objetivos foramatingidos. Portanto, esse é o roteiro para orientações de seus estudos. O modelo de formu-lação das questões é o modelo adotado na formulação dos exercícios e no desenvolvimentoteórico desse capítulo, nessa apostila.

68

Page 75: Apostila de Integrais 2

2.1 Introdução

Um fabricante pode constatar que o custo da produção C de um determinado artigo de-pende da qualidade do material usado, do salário-hora dos operários, do tipo de maquinarianecessário, das despesas de manutenção e da supervisão. Dizemos então que C é função decinco variáveis, porque depende de cinco quantidades diferentes. Neste Capítulo estudare-mos as funções de várias variáveis, começando com o caso de funções de duas variáveis eestendendo então a um número arbitrário de variáveis. Como exemplo de função de duasvariáveis podemos utilizar a área de um retângulo, função esta muito conhecida.

Consideremos o retângulo de base a e altura b. A área desse retângulo é

A = ab.

Por outro lado, se a for uma variável x podemos escrever a área desse retângulo em funçãode x, isto é,

A (x) = xb.

Desse modo, temos a área como função de uma variável. Podemos também, fazer variara base e a altura simultaneamente. Nesse caso, tomando b = y teremos a área dada por

A(x, y) = xy,

ou seja, a área é expressa como função de duas variáveis.A função A (x, y) é denida para todo par de pontos pertencentes ao plano R2 e a imagem

é um número real. O convencional é escrever A : R2 → R.Um raciocínio análogo pode ser feito para o volume de um paralelepípedo. Sejam a, b e

c as dimensões de um paralelepípedo. O volume será dado por

V = abc.

Por outro lado, se a for uma variável x podemos escrever o volume desse paralelepípedoexpresso como função de uma variável x, isto é,

V (x) = xbc.

Podemos também, fazer variar as dimensões a e b simultaneamente, isto é, tomando b = yteremos o volume do paralelepípedo expresso como uma função de duas variáveis x e y, ouseja,

V (x, y) = xyc.

Também é possível variar as três dimensões simultaneamente e, nesse caso tomando z = co volume do paralelepípedo será expresso como uma função de três variáveis x, y e z, isto é,

V (x, y, z) = xyz.

A função V (x, y, z) é denida para toda tripla de pontos pertencentes ao espaço R3 e aimagem é um número real. O convencional é escrever V : R3 → R. Vejamos um exemploque envolve mais do que três variáveis.

EXEMPLO 2.1.1 Suponhamos que uma pessoa vá a um supermercado e a nota de compras sejadescrita conforme o modelo abaixo.

69

Page 76: Apostila de Integrais 2

Nota de comprasProdutos Unidades Preço por unidade TotalLeite 2 pacotes 1,00 2,00Pão 10 0,10 1,00

Laranja 2kg 0,50 1,00Maçã 2kg 2,50 5,00Açúcar 5kg 0,60 3,00

Total a pagar 12,00

Suponhamos que as variáveis x, y, z, w e t representem, respectivamente, leite, pão,laranja, maçã e açúcar, então podemos escrever a função "total a pagar por

T (x, y, z, w, t) = x+ 0, 1y + 0, 5z + 2, 5w + 0, 6t.

A função T é uma função de cinco variáveis. Para encontrar o total a pagar referente atabela anterior, fazemos

T (2, 10, 2, 2, 5) = 2 + 0, 1 (10) + 0, 5 (2) + 2, 5 (2) + 0, 6 (5)= 2 + 1 + 1 + 5 + 3 = 12.

A função T (x, y, z, w, t) é denida para todo ponto (x, y, z, w, t) ∈ R5. O convencional éescrever T : R5 → R.

Note que, em todos os exemplos acima, a imagem da função é um número real. Combase nesses exemplos vamos denir funções de várias variáveis.

2.2 Função de Várias Variáveis

DEFINIÇÃO 2.2.1 Seja D um subconjunto de Rn e seja (x1, x2, x3, · · · , xn) ∈ D. Se a cadan−upla ordenada pertencente a D corresponder um único número real f (x1, x2, x3, · · · , xn) ,dizemos que f é uma função de n−variáveis, denida em D com imagem em R. O subcon-junto D é chamado domínio de f. Convencionalmente escreve-se f : D ⊂ Rn → R.EXEMPLO 2.2.2 Vejamos alguns exemplos de funções de várias variáveis:

(a) f : D ⊂ R2 → R denida por f (x, y) = 2x+ 3y + 1.(b) f : D ⊂ R3 → R denida por f (x, y, z) = x2 + y + z + 6.(c) f : D ⊂ R4 → R denida por f (x, y, z, w) = x2 + y2 + z + w + 6.(d) f : D ⊂ R5 → R denida por f (x, y, z, w, t) = x2 + y2 + z + w + t2 + 6.

EXEMPLO 2.2.3 A função z = f(x, y) =1√y − x

é uma função de duas variáveis, cujo

domínio é D = (x, y) ∈ R2 tal que y > x. Geometricamente, D é formado por todos ospontos do plano xy que estão situados "acima"da reta y = x. Já a função w = f(x, y, z) =

(x2+y2+z2)−12 é uma função de três variáveis cujo domínio são todos os pontos (x, y, z) ∈ R3

para os quais x2 + y2 + z2 = 0, ou seja, todos os ponto de R3, com exceção da origem.

EXEMPLO 2.2.4 A temperatura em um ponto (x, y) de uma placa de metal plana é dada porT (x, y) = x2 + 4y2 graus.

(a) Determine a temperatura no ponto (3, 1).(b) Determine e represente geometricamente a curva ao longo da qual a temperatura tem

um valor constante igual a 16 graus.

Solução: (a) Temos que T (3, 1) = 32 + 4 = 13 graus.(b) A curva desejada tem equação T (x, y) = 16, ou seja, x2 + 4y2 = 16, que nos fornece aelipse x2

16+ y2

4= 1, representada na Figura 2.1.

70

Page 77: Apostila de Integrais 2

y

x

Figura 2.1: 16 graus ao longo da elipse.

2.2.5 Gráco de uma Função de Várias Variáveis

DEFINIÇÃO 2.2.6 Seja f : D ⊂ Rn → R uma função de n variáveis. Denimos o grácode f como o subconjunto de Rn+1 formado por todos os pontos da forma

(x1, x2, · · · , xn, f(x1, x2, · · · , xn)) ⊂ Rn+1,

onde (x1, x2, · · · , xn) ∈ Rn.

No caso n = 2, o gráco de f é uma superfície em R3. Quando n ≥ 3, não é mais possívelvisualizar o gráco de f, pois este será um subconjunto de R4.

EXEMPLO 2.2.7 O gráco de f (x, y) = 9 − x2 − y2 é um parabolóide, conforme mostra aFigura 2.2.

Figura 2.2: Parabolóide z = f(x, y) = 9− x2 − y2

A equação de uma superfície pode ser escrita na forma implícita ou explícita, em funçãode duas variáveis, isto é, F (x, y, z) = 0 ou z = f(x, y).

EXEMPLO 2.2.8 A equação da esfera centrada na origem pode ser escrita como segue

• Implicitamente: x2 + y2 + z2 −R2 = 0.

• Explicitamente em função de x e y, com z = ±√R2 − x2 − y2.

71

Page 78: Apostila de Integrais 2

Representação Gráca de uma Superfície

Para representar gracamente uma superfície procede-se como segue:

1. Determina-se as interseções com os eixos cartesianos determinando os pontos

(x, 0, 0), (0, y, 0) e (0, 0, z).

2. Determina-se os traços das superfícies sobre os planos coordenados

(a) xy fazendo z = 0 na equação da superfície;

(b) xz fazendo y = 0 na equação da superfície;

(c) yz fazendo x = 0 na equação da superfície.

3. Determina-se as simetrias

(a) em relação aos planos coordenados

• Uma superfície é simétrica em relação ao plano xy se para qualquer ponto P (x, y, z)existe um ponto P ′(x, y,−z);

• Uma superfície é simétrica em relação ao plano xz se para qualquer ponto P (x, y, z)existe um ponto P ′(x,−y, z);

• Uma superfície é simétrica em relação ao plano yz se para qualquer ponto P (x, y, z)existe um ponto P ′(−x, y, z).

(b) em relação aos eixos coordenados

• Uma superfície é simétrica em relação ao eixo x se para qualquer ponto P (x, y, z)existe um ponto P ′(x,−y,−z);

• Uma superfície é simétrica em relação ao eixo y se para qualquer ponto P (x, y, z)existe um ponto P ′(−x, y,−z);

• Uma superfície é simétrica em relação ao eixo z se para qualquer ponto P (x, y, z)existe um ponto P ′(−x,−y, z).

(c) em relação à origem

• Uma superfície é simétrica em relação à origem se para qualquer ponto P (x, y, z)existe um ponto P ′(−x,−y,−z).

4. Secções e Extensão: Quando os traços principais não forem sucientes para caracte-rização da superfície, recorre-se a determinação de secções com planos paralelos aosplanos coordenados. Para isso fazemos

• z = k sendo k uma constante na equação F (x, y, z) = 0, isto é, teremos a equaçãoF (x, y, k) = 0 sobre o plano coordenado xy;

• y = k sendo k uma constante na equação F (x, y, z) = 0, isto é, teremos a equaçãoF (x, k, z) = 0 sobre o plano coordenado xz;

• x = k sendo k uma constante na equação F (x, y, z) = 0, isto é, teremos a equaçãoF (k, y, z) = 0 sobre o plano coordenado yz.

EXEMPLO 2.2.9 Esboçar geometricamente a superfície de equação

−x2

52+y2

42− z2

32= 1.

72

Page 79: Apostila de Integrais 2

Solução: Vamos proceder conforme os passos listados acima.

1. Interseções com os eixos coordenados: Os pontos (x, 0, 0) e (0, 0, z) não são reais e oponto (0, y, 0) é duplo ou seja temos os pontos P (0, 4, 0) e P ′(0,−4, 0).

2. Traços sobre os planos coordenados

• Sobre o plano xy : Fazendo z = 0 tem-se a hipérbole −x2

52+y2

42= 1 (Figura 2.3).

Figura 2.3: Traço sobre xy

• Sobre o plano xz : Fazendo y = 0 tem-se o conjunto vazio.

• Sobre o plano yz : Fazendo x = 0 tem-se a hipérboley2

42− z2

32= 1 (Figura 2.4).

Figura 2.4: Traço sobre yz

3. Simetrias: Explicitamente, a equação −x2

52+ y2

42− z2

32= 1 pode ser escrita como

y = 4

√1 +

x2

52+z2

32ou y = −4

√1 +

x2

52+z2

32

logo, é simétrica em relação aos planos coordenados, aos eixos coordenados e à origem.

4. Secções e extensões: fazendo z = k, com k ∈ R, obtemos uma família de hipérboles deeixo real paralelo ao eixoy. Fazendo y = k, com k > 4 ou k < −4, obtemos uma famíliade elipses. Fazendo x = k, com k ∈ R, obtemos novamente uma família de hipérbolesde eixo real paralelo ao eixo y.

• Por exemplo, fazendo z = 3 temos a equação de uma hipérbole (Figura 2.5)

−x2

52+y2

42− 32

32= 1 ⇒ −x

2

52+y2

42= 2.

73

Page 80: Apostila de Integrais 2

Figura 2.5: Traço sobre o plano z = 3.

• Por exemplo, fazendo y = ±8 temos a equação de elipses (Figura 2.6)

−x2

52+

(±8)2

42− z2

32= 1 ⇒ −x

2

52− z2

32= −3 ⇒ x2

52+z2

32= 3.

Figura 2.6: Traços sobre os planos y = ±8.

5. Construção da superfície. Os elementos fornecidos pela discussão acima permitemconstruir a superfície hipebólica de duas folhas, conforme a Figura 2.7.

z

y

x

Figura 2.7: Hiperbolóide de duas folhas

OBSERVAÇÃO 2.2.10 Note que a gura acima não é o gráco de uma função de duas variáveis,é a representação geométrica de uma superfície cuja equação é dada explicitamente pelas

funções: z = −3

√−1− x2

25+y2

16e z = 3

√−1− x2

25+y2

16.

EXEMPLO 2.2.11 Considere a função de duas variáveis f(x, y) =√

4− 4x2 − y2. Determineo domínio de f(x, y), construa e identique o gráco de z = f(x, y).

74

Page 81: Apostila de Integrais 2

Solução: D(f) = (x, y) ∈ R2/ 4x2 + y2 ≤ 4 = (x, y) ∈ R2/ x2 +y2

4≤ 1, ou seja, o

domínio de f(x, y) é o conjunto de pontos do plano xy no interior da elipse x2 +y2

4= 1.

O gráco de f(x, y) é uma superfície, ou seja, um conjunto de ponto em R3 dado por

Gr(f) = (x, y, z) ∈ R3/ (x, y) ∈ D(f) e z = f(x, y).

Assim temos z =√

4− 4x2 − y2 que é um ramo (z ≥ 0) do gráco de x2 +y2

4+z2

4= 1,

esta é a equação de um elipsóide com centro na origem. Logo, o gráco de z = f(x, y) estárepresentado na Figura 2.8.

Figura 2.8: Ramo z ≥ 0 do elipsóide x2 +y2

4+z2

4= 1

2.2.12 Curvas e Superfícies de Nível

Uma curva ao longo da qual uma função de duas variáveis z = f(x, y) tem valor constante(como a elipse do Exemplo 2.2.4) é denominada curva de nível ou curva de contorno def.

A equação de uma curva de nível k para f é da forma f(x, y) = k. Quando a funçãof representa uma distribuição de temperatura, suas curvas de nível são chamadas isoter-mas. Se f representa o potencial elétrico, as curvas de nível de f são chamadas de curvasequipotenciais.

Suponha que uma superfície S é o gráco de uma função z = f(x, y). Se a interseção deS com o plano z = k é não vazia, então ela é uma curva de nível f(x, y) = k. A cada pontodesta curva de nível corresponde um único ponto na superfície S que está k unidades acimado plano xy, se k > 0, ou k unidades abaixo dele, se k < 0. Ao considerarmos diferentesvalores para a constante k, obtemos um conjunto de curvas chamado demapa de contornode S.

Tal mapa de contorno facilita a visualização da superfície. Quando as curvas de nível sãomostradas em intervalos equi-espaçados de k, a proximidade de curvas sucessivas nos dá ainformação sobre a aclividade de S. Quanto mais próximas as curvas, signica que os valoresde z mudam mais rapidamente do que quando elas estão mais afastadas, ou seja, quandocurvas de nível estão juntas, a superfície é "íngreme".

EXEMPLO 2.2.13 Seja f(x, y) = x2 + y2. Faça um mapa de contorno de f, mostrando ascurvas de nível em 1, 2, 3, 4, 5.

75

Page 82: Apostila de Integrais 2

Solução: As curvas de nível são as circunferências x2 + y2 = k. Um mapa de contorno de fpode ser visto na Figura 2.9.

y

x

Figura 2.9: Curvas de Nível: x2 + y2 = k

Embora não possamos visualizar o gráco de uma função de três variáveis w = f(x, y, z),podemos considerar as superfícies de equações f(x, y, z) = k, que são chamadas de superfíciesde nível de f. Ainda, toda superfície denida por uma equação em x, y, z pode ser consideradacomo uma superfície de nível de alguma função de três variáveis. Por exemplo, o hiperbolóide

da Figura 2.7 é a superfície de nível g(x, y, z) = 1 onde g(x, y, z) = −x2

52+y2

42− z2

32.

2.2.14 Distâncias e Bolas no Espaço

Sejam P (x1, x2, · · · , xn) e A (y1, y2, · · · , yn) dois pontos de Rn. A distância de P até A,denotada por ||P − A|| , é dada por

||P − A|| =√

(x1 − y1)2 + (x2 − y2)

2 + · · ·+ (xn − yn)2.

DEFINIÇÃO 2.2.15 Sejam A (y1, y2, · · · , yn) um ponto de Rn e ε > 0 um número real. De-nominamos bola aberta de centro A e raio ε ao conjunto de todos os pontos P (x1, x2, · · · , xn) ∈Rn tais que ||P − A|| < ε, ou seja,

B (A, ε) = (x1, x2, · · · , xn) ∈ Rn; ||P − A|| < ε .

EXEMPLO 2.2.16 No plano, para ε = 1 e A(1, 2) temos a bola aberta

B ((1, 2) , 1) =P (x, y) ∈ R2; ||(x, y)− (1, 2)|| < 1

que é gracamente representada pela Figura 2.10.

y

x

Figura 2.10: Bola aberta B ((1, 2) , 1) .

76

Page 83: Apostila de Integrais 2

EXEMPLO 2.2.17 Sejam A (1, 1, 2) e ε = 1 então a bola aberta

B((1, 1, 2) , 1) =P (x, y, z) ∈ R3 ; ||(x, y, z)− (1, 1, 2)|| < 1

está gracamente representada pela Figura 2.11.

z

y

x

Figura 2.11: Bola aberta B((1, 1, 2) , 1)

2.3 Limite de uma Função de duas Variáveis

Vamos estudar a existência do limite de uma função de duas variáveis. O raciocínioanálogo é feito para funções de n variáveis.

DEFINIÇÃO 2.3.1 Seja f uma função de duas variáveis denida numa bola aberta B (A, r) ,exceto possivelmente em A (x0, y0) . Dizemos que o número L é o limite de f (x, y) quando(x, y) tende para (x0, y0) se, dado ε > 0, podemos encontrar um δ > 0 tal que |f (x, y)− L| <ε sempre que 0 < ||(x, y)− (x0, y0)|| < δ. Nesse caso, escrevemos

lim(x,y)→(x0,y0)

f (x, y) = L.

EXEMPLO 2.3.2 Mostre que lim(x,y)→(1,3)

(2x+ 3y) = 11.

Solução: Devemos mostrar que, dado ε > 0, existe δ > 0 tal que |f (x, y)− 11| < ε sempreque 0 < ||(x, y)− (1, 3)|| < δ. Assim

|f (x, y)− 11| = |2x+ 3y − 11|= |(2x− 2) + (3y − 9)|= |2 (x− 1) + 3 (y − 3)|≤ |2 (x− 1)|+ |3 (y − 3)|= 2 |(x− 1)|+ 3 |(y − 3)| < ε

e obtemos que

2 |(x− 1)|+ 3 |(y − 3)| < ε. ( I )

Por outro lado, de 0 < ||(x, y)− (x0, y0)|| < δ, segue que

0 <

√(x− 1)2 + (y − 3)2 < δ.

77

Page 84: Apostila de Integrais 2

Agora, pela denição de módulo, temos que

|x− 1| =√

(x− 1)2 ≤√

(x− 1)2 + (y − 3)2 < δ

e

|y − 3| =√

(y − 3)2 ≤√

(x− 1)2 + (y − 3)2 < δ

e assim

2 |(x− 1)|+ 3 |(y − 3)| < 2δ + 3δ = 5δ. ( II )

Portanto, de (I) e (II) podemos formar o sistema de inequações2 |(x− 1)|+ 3 |(y − 3)| < ε2 |(x− 1)|+ 3 |(y − 3)| < 5δ

Assim, podemos admitir que 5δ = ε e encontrar que δ =ε

5.

Logo, dado ε > 0 existe δ =ε

5tal que |f (x, y)− 11| < ε sempre que 0 < ||(x, y)− (1, 3)|| <

δ, o que prova pela denição que lim(x,y)→(1,3)

2x+ 3y = 11.

OBSERVAÇÃO 2.3.3 No Cálculo 1, vimos que para existir o limite de uma função de uma va-riável, quando x se aproxima de x0, é necessário que os limites laterais lim

x→x+0

f(x) e limx→x−

0

f(x)

existam e sejam iguais. Já para funções de duas variáveis, a situação análoga é mais com-plicada, pois no plano há uma innidade de curvas (caminhos) ao longo das quais o ponto(x, y) pode se aproximar de (x0, y0) . Porém, se o limite da Denição 2.3.1 existe, é pre-ciso então que f(x, y) tenda para L, independentemente do caminho considerado. Essa ideianos fornece uma importante regra (Teorema 2.3.4) para investigar a existência de limites defunções de duas variáveis.

TEOREMA 2.3.4 Seja f uma função de duas variáveis denida numa bola aberta centradaem A (x0, y0), exceto possivelmente em A (x0, y0) . Se f (x, y) tem limites diferentes quando(x, y) tende para (x0, y0) por caminhos diferentes, então

lim(x,y)→(x0,y0)

f (x, y) não existe.

EXEMPLO 2.3.5 Vamos mostrar que lim(x,y)→(0,0)

xy

x2 + y2não existe.

Solução: Considere C1 = (x, y) ∈ R2; x = 0 . Note que C1 é exatamente o eixo y e é umcaminho que passa pelo ponto (0, 0) . Assim,

lim(x,y)→

C1(0,0)

f (x, y) = lim(0,y)→(0,0)

f (0, y) = limy→0

0 · y02 + y2

= 0.

Considere agora C2 = (x, y) ∈ R2; y = kx. Note que C2 é o conjunto de retas quepassam pelo ponto (0, 0) . Assim

lim(x,y)→

C2(0,0)

f (x, y) = lim(x,kx)→(0,0)

f (x, kx) = lim(x,kx)→(0,0)

xkx

x2 + (kx)2

= limx→0

x2k

x2 (1 + k2)=

k

1 + k2.

78

Page 85: Apostila de Integrais 2

Mostramos então que

lim(x,y)→

S1(0,0)

f (x, y) = lim(x,y)→

S2(0,0)

f (x, y)

e com isso, concluímos que lim(x,y)→(0,0)

xy

x2 + y2não existe.

EXEMPLO 2.3.6 Vamos mostrar que lim(x,y)→(0,0)

3x2y

x2 + y2existe.

Solução: Primeiro vamos vericar se, por caminhos diferentes, o limite tem o mesmo valornumérico. Considerando C1 = (x, y) ∈ R2; y = kx , o conjunto de retas que passam peloponto (0, 0) temos

lim(x,y)→

C1(0,0)

f (x, y) = lim(x,kx)→(0,0)

f (x, kx) = lim(x,kx)→(0,0)

3x2kx

x2 + (kx)2

= limx→0

x3k

x2 (1 + k2)= lim

x→0

xk

1 + k2= 0.

Considerando agora C2 = (x, y) ∈ D; y = kx2, o conjunto de parábolas que passampelo ponto (0, 0) , temos que

lim(x,y)→

C2(0,0)

f (x, y) = lim(x,kx2)→(0,0)

f(x, kx2

)= lim

(x,kx2)→(0,0)

3x2kx2

x2 + (kx2)2

= limx→0

3x4k

x2 (1 + k2x2)= lim

x→0

3x2k

1 + k2x2= 0.

Como lim(x,y)→

C1(0,0)

f (x, y) = lim(x,y)→

C2(0,0)

f (x, y) , segue que há probabilidades de que L = 0

seja o limite de f (x, y) = 3xyx2+y2

. Para conrmar, devemos vericar se a Denição 2.3.1 estásatisfeita. Devemos mostrar que, dado ε > 0, existe δ > 0 tal que |f (x, y)− 0| < ε sempreque 0 < ||(x, y)− (0, 0)|| < δ. Assim,

|f (x, y)− 0| =∣∣∣∣ 3x2y

x2 + y2

∣∣∣∣ = |3x2y||x2 + y2|

=3 |x2| |y|x2 + y2

< ε. ( I )

De 0 < ||(x, y)− (0, 0)|| < δ obtemos 0 <√x2 + y2 < δ. Sendo x2 ≤ x2 + y2 e |y| =√

y2 ≤√x2 + y2 podemos escrever

3 |x2| |y|x2 + y2

≤ 3 (x2 + y2) |y|x2 + y2

= 3 |y| < 3√x2 + y2 < 3δ. ( II )

Comparando (I) com (II) podemos admitir que 3δ = ε, donde vem δ =ε

3.

Portanto, mostramos que existe o limite existe e que lim(x,y)→(0,0)

3x2y

x2 + y2= 0.

EXEMPLO 2.3.7 Calcule, se possível, o valor de lim(x,y)→(0,1)

3x4(y − 1)4

(x4 + y2 − 2y + 1)3.

79

Page 86: Apostila de Integrais 2

Solução: Iniciamos investigando a existência do limite, utilizando diferentes caminhos quepassam pelo ponto (0, 1).

Utilizando os caminhos lineares C1 = (x, y) ∈ R2; y = kx+ 1 temos que

lim(x,y)→

C1(0,1)

3x4(y − 1)4

(x4 + (y − 1)2)3= lim

(x,kx+1)→(0,1)

3x4(kx)4

(x4 + (kx)2)3

= limx→0

3k4x8

x6(x2 + k2)3= 0.

Agora, usando os caminhos parabólicos C2 = (x, y) ∈ R2; y = kx2 + 1 temos que

lim(x,y)→

C2(0,1)

3x4(y − 1)4

(x4 + (y − 1)2)3= lim

(x,kx2+1)→(0,1)

3x4(kx2)4

(x4 + (kx2)2)3

= limx→0

3k4x12

x12(1 + k2)3=

3k4

(1 + k2)3.

Portanto, como obtemos limites diferentes por caminhos distintos, concluímos que o limitenão existe.

EXEMPLO 2.3.8 Calcule, se possível, o valor de lim(x,y,z)→(3,1,−5)

(x+ 2y + z)3

(x− 3)(y − 1)(z + 5).

Solução: Iniciamos investigando a existência do limite. Como temos uma função de 3 va-riáveis, devemos usar caminhos em R3. Se v = (a, b, c) são as coordenadas de um vetor diretorde uma reta que passa pelo ponto (3, 1,−5), podemos utilizar as equações paramétricas paradenir o caminho retilíneo

C1 =(x, y, z) ∈ R3; x = 3 + at, y = 1 + bt, z = −5 + ct

.

Para nos aproximarmos de (3, 1,−5) por C1, basta fazermos o parâmetro t→ 0 e assim

lim(x,y,z)→

C1(3,1,−5)

(x+ 2y + z)3

(x− 3)(y − 1)(z + 5)= lim

t→0

(3 + at+ 2 + 2bt− 5 + ct)3

(at)(bt)(ct)

= limt→0

(at+ 2bt+ ct)3

abct3=

(a+ 2b+ c)3

abc.

Atribuindo diferentes valores para a, b, c, ou seja, utilizando caminhos retilíneos distintospara nos aproximarmos de (3, 1,−5) obtemos limites também distintos. Portanto, pela regrados dois caminhos, o limite em questão não existe.

2.3.9 Propriedades dos Limites

(i) Se f : R2 → R é denida por f(x, y) = ax+by+c, então lim(x,y)→(x0,y0)

f (x, y) = ax0+by0+c.

(ii) Se lim(x,y)→(x0,y0)

f (x, y) e lim(x,y)→(x0,y0)

g (x, y) existem e c ∈ R, então:

(a) lim(x,y)→(x0,y0)

[f (x, y)± g(x, y)] = lim(x,y)→(x0,y0)

f (x, y)± lim(x,y)→(x0,y0)

g (x, y) .

(b) lim(x,y)→(x0,y0)

cf (x, y) = c lim(x,y)→(x0,y0)

f (x, y)

80

Page 87: Apostila de Integrais 2

(c) lim(x,y)→(x0,y0)

[f (x, y) .g(x, y)] = lim(x,y)→(xo,yo)

f (x, y) · lim(x,y)→(x0,y0)

g (x, y) .

(d) lim(x,y)→(x0,y0)

[f (x, y)

g(x, y)] =

lim(x,y)→(x0,y0)

f (x, y)

lim(x,y)→(x0,y0)

g (x, y)desde que lim

(x,y)→(x0,y0)g (x, y) = 0.

(e) lim(x,y)→(x0,y0)

[f (x, y)]n =

(lim

(x,y)→(x0,y0)f (x, y)

)n

para todo n ∈ Z∗+.

PROPOSIÇÃO 2.3.10 Se g é uma função de uma variável, contínua num ponto a, e f(x, y)é uma função tal que lim

(x,y)→(x0,y0)f (x, y) = a, então lim

(x,y)→(x0,y0)(g f) (x, y) = g(a), ou seja,

lim(x,y)→(x0,y0)

g(f (x, y)) = g

(lim

(x,y)→(x0,y0)f (x, y)

).

EXEMPLO 2.3.11 Calcular lim(x,y)→(1,2)

ln(x2 + xy − 1).

Solução: Considerando as funções

f(x, y) = x2 + xy − 1 e g(u) = lnu,

temos que lim(x,y)→(1,2)

f(x, y) = 2 e que g é contínua em u = 2. Aplicando a proposição acima,

obtemos

lim(x,y)→(1,2)

(g f)(x, y) = lim(x,y)→(1,2)

ln(x2 + xy − 1)

= ln

(lim

(x,y)→(1,2)(x2 + xy − 1)

)= ln 2.

EXEMPLO 2.3.12 Se lim(x,y)→(2,−2)

[x2 − y2

x+ y· f(x, y) + ln

(x2 + 2xy + y2

x+ y+ 1

)]= −2, determine

lim(x,y)→(2,−2)

f(x, y).

Solução: Como o limite dado existe, temos pelas propriedades de limites:

−2 = lim(x,y)→(2,−2)

[x2 − y2

x+ y· f(x, y) + ln

(x2 + 2xy + y2

x+ y+ 1

)]= lim

(x,y)→(2,−2)

x2 − y2

x+ y· lim(x,y)→(2,−2)

f(x, y) + ln

(lim

(x,y)→(2,−2)

(x2 + 2xy + y2

x+ y+ 1

))= lim

(x,y)→(2,−2)

(x+ y)(x− y)

x+ y· lim(x,y)→(2,−2)

f(x, y) + ln

(lim

(x,y)→(2,−2)

((x+ y)2

x+ y+ 1

))= lim

(x,y)→(2,−2)(x− y) · lim

(x,y)→(2,−2)f(x, y) + ln

(lim

(x,y)→(2,−2)(x+ y + 1)

)= 4 · lim

(x,y)→(2,−2)f(x, y) + ln(1)

= 4 · lim(x,y)→(2,−2)

f(x, y)

logo, lim(x,y)→(2,−2)

f(x, y) = −1

2.

81

Page 88: Apostila de Integrais 2

PROPOSIÇÃO 2.3.13 Se lim(x,y)→(x0,y0)

f(x, y) = 0 e g(x, y) é uma função limitada em alguma

bola aberta de centro (x0, y0), exceto possivelmente em (x0, y0), então

lim(x,y)→(x0,y0)

f(x, y).g(x, y) = 0.

EXEMPLO 2.3.14 Mostre que lim(x,y)→(0,0)

x2y

x2 + y2= 0.

Solução: Consideremos f(x, y) = x e g(x, y) =xy

x2 + y2.

Sabemos que lim(x,y)→(0,0)

x = 0, então basta mostrar que g(x, y) é limitada.

Escrevendo g em coordenadas polares, temos que

g(x, y) =xy

x2 + y2=r2 cos θ sin θ

r2= cos θ sin θ.

Evidentemente, |cos θ sin θ| ≤ 1 e portanto temos que g(x, y) é limitada. Logo, pela

proposição anterior, lim(x,y)→(0,0)

x2y

x2 + y2= 0.

Outra maneira de resolver usando ainda a Proposição 2.3.13.

Sejam f(x, y) = y e g(x, y) =x2

x2 + y2. Então lim

(x,y)→(0,0)f(x, y) = 0 e

|g(x, y)| = x2

x2 + y2≤ 1 para todo (x, y) = (0, 0),

ou seja, g(x, y) é limitada para todo (x, y) = (0, 0), logo pela Proposição acima temos oresultado desejado.

EXEMPLO 2.3.15 Calcule, se existir, lim(x,y)→(0,0)

2x2y2 − 2xy3

3x2 + 3y2.

Solução: Usando as propriedades temos:

lim(x,y)→(0,0)

2x2y2 − 2xy3

3x2 + 3y2= lim

(x,y)→(0,0)

(2x2

3

y2

x2 + y2− 2xy

3

y2

x2 + y2

)

= lim(x,y)→(0,0)

2x2

3· y2

x2 + y2− lim

(x,y)→(0,0)

2xy

3· y2

x2 + y2

Como lim(x,y)→(0,0)

2x2

3= 0, lim

(x,y)→(0,0)

2xy

3= 0, e

y2

x2 + y2é uma função limitada numa vizi-

nhança da origem, exceto em (0, 0), temos pela Proposição 2.3.13

lim(x,y)→(0,0)

2x2y2 − 2xy3

3x2 + 3y2= lim

(x,y)→(0,0)

2x2

3· y2

x2 + y2− lim

(x,y)→(0,0)

2xy

3· y2

x2 + y2= 0.

82

Page 89: Apostila de Integrais 2

2.4 Continuidade de uma Função de duas Variáveis

DEFINIÇÃO 2.4.1 Seja f : D ⊂ R2 → R uma função de duas variáveis e (x0, y0) ∈ D.Dizemos que f é contínua em (x0, y0) se satisfaz as condições:

(i) f (xo, yo) existe(ii) lim

(x,y)→(x0,y0)f (x, y) existe

(iii) lim(x,y)→(x0,y0)

f (x, y) = f (x0, y0) .

EXEMPLO 2.4.2 Verique se a função f (x, y) =

xy

x2 + y2se (x, y) = (0, 0)

0 se (x, y) = (0, 0)é contínua

em (0, 0) .

Solução: Devemos vericar se f satisfaz as condições da Denição 2.4.1.

(i) Como f (0, 0) = 0, a primeira condição está satisfeita.

(ii) Vimos no Exemplo 2.3.5 que lim(x,y)→(0,0)

xyx2+y2

não existe. Portanto, a segunda condição

da Denição 2.4.1 não é satisfeita.

Logo, f (x, y) não é contínua em (0, 0) .

EXEMPLO 2.4.3 A função denida por f(x, y) =

x4 − (y − 1)4

x2 + (y − 1)2se (x, y) = (0, 1)

0 se (x, y) = (0, 1)é con-

tínua em (0, 1)?

Solução: Devemos vericar se f satisfaz as condições da Denição 2.4.1.

(i) Como f(0, 1) = 0, a primeira condição está satisfeita.

(ii) Vamos vericar se lim(x,y)→(0,1)

f (x, y) existe e é igual a zero (se for diferente a função não

será contínua no ponto)

lim(x,y)→(0,1)

x4 − (y − 1)4

x2 + (y − 1)2= lim

(x,y)→(0,1)

[x2 − (y − 1)2][x2 + (y − 1)2]

x2 + (y − 1)2= lim

(x,y)→(0,1)

[x2 + (y − 1)2

]= 0.

(iii) Dos itens anteriores, segue que

lim(x,y)→(0,1)

f(x, y) = 0 = f(0, 1).

Portanto, a função f(x, y) dada é contínua no ponto (0, 1).

EXEMPLO 2.4.4 Verique se a função f (x, y) =

3x2y

x2 + y2se (x, y) = (0, 0)

0 se (x, y) = (0, 0)é contínua em

(0, 0) .

Solução: Devemos vericar se f satisfaz as condições da Denição 2.4.1.

(i) Como f (0, 0) = 0, a primeira condição está satisfeita.

83

Page 90: Apostila de Integrais 2

(ii) Como vimos no Exemplo 2.3.6, lim(x,y)→(0,0)

3x2y

x2 + y2= 0, a segunda condição está satisfeita.

(iii) Segue dos itens anteriores que

lim(x,y)→(0,0)

f(x, y) = f (0, 0) .

Portanto, as três condições da Denição 2.4.1 estão satisfeitas. Logo, f (x, y) é contínuaem (0, 0) .

EXEMPLO 2.4.5 Utilize argumentos consistentes para determinar, se existir, o valor de b quetorne as funções denidas abaixo contínuas.

(a) f(x, y) =

x2y2

x4+y2, se (x, y) = (0, 0)

b, se (x, y) = (0, 0).

(b) g(x, y) =

x3(y−5)2

2x7+3(y−5)4, se (x, y) = (0, 5)

b, se (x, y) = (0, 5)

Solução (a) 1: Queremos determinar, se existe, lim(x,y)→(0,0)

f(x, y). Para tal, primeiro veri-

caremos se por caminhos diferentes obtemos o mesmo valor numérico para este limite.

Considere o caminho C1 = (x, y) ∈ R2/ y = kx

lim(x,y)−→

C1(0,0)

f(x, y) = lim(x,kx)→(0,0)

f(x, kx) = limx→0

[x2(kx)2

x4 + (kx)2

]

= limx→0

[k2x4

x2(x2 + k2)

]= lim

x→0

[k2x2

x2 + k2

]= 0

Considere o caminho C2 = (x, y) ∈ R2/ y = kx2

lim(x,y)−→

C2(0,0)

f(x, y) = lim(x,kx2)→(0,0)

f(x, kx2) = limx→0

[x2k2x4

x4 + k2x4

]= lim

x→0

[k2x2

1 + k2

]= 0

Como por C1 e C2 obtivemos o limite como sendo 0, há probabilidades que o limite exista.Para conrmar devemos mostrar que dado ϵ > 0, existe δ > 0 de modo que

|f(x, y)| < ϵ sempre que 0 < ∥(x, y)− (0, 0)∥ < δ.

Por propriedades modulares temos

|f(x, y)| =∣∣∣∣ x2y2

x4 + y2

∣∣∣∣ = x2y2

x4 + y2≤ x2(x4 + y2)

x4 + y2= x2 ≤ x2 + y2 < δ2

assim, escolhendo δ =√ϵ, provamos usando a denição, que lim

(x,y)→(0,0)f(x, y) = 0. Portanto,

escolhendo b = 0 temos que a função f(x, y) é contínua em todos os pontos (x, y).

Solução (a) 2: Note que podemos escrever

lim(x,y)→(0,0)

f(x, y) = lim(x,y)→(0,0)

x2y2

x4 + y2= lim

(x,y)→(0,0)x2

y2

x4 + y2= lim

(x,y)→(0,0)x2 · lim

(x,y)→(0,0)

y2

x4 + y2

84

Page 91: Apostila de Integrais 2

Como lim(x,y)→(0,0)

x2 = 0 ey2

x4 + y2é uma função limitada numa vizinhança da origem, exceto

em (0, 0), temos que

lim(x,y)→(0,0)

f(x, y) = lim(x,y)→(0,0)

x2 · lim(x,y)→(0,0)

y2

x4 + y2= 0.

Portanto, escolhendo b = 0 temos que a função f(x, y) é contínua em todos os pontos (x, y).

Solução (b): Queremos determinar, se existe, lim(x,y)→(0,5)

g(x, y). Para tal, primeiro veri-

caremos se por caminhos diferentes obtemos o mesmo valor numérico para este limite.

Considere o caminho C1 = (x, y) ∈ R2/ y = kx+ 5

lim(x,y)−→

C1(0,5)

g(x, y) = lim(x,kx+5)→(0,5)

g(x, kx+ 5) = limx→0

[x3(kx)2

2x7 + 3(kx)4

]

= limx→0

[k2x5

x4(2x3 + 3k2)

]= lim

x→0

[k2x

2x3 + 3k2

]= 0

Considere o caminho C2 = (x, y) ∈ R2/ y = kx2 + 5

lim(x,y)−→

C2(0,5)

g(x, y) = lim(x,kx2+5)→(0,5)

g(x, kx2 + 5) = limx→0

[x3k2x4

2x7 + 3k2x8

]= lim

x→0

[k2

2 + 3k2x

]=k2

2

Como pelo caminho C2 obtivemos o valor do limite dependendo de k temos que para valoresdistintos de k obtemos respostas distintas para o valor do limite, logo lim

(x,y)→(0,5)g(x, y) não

existe. Portanto, não existe b de modo que g(x, y) seja contínua no ponto (0, 5).

2.5 Derivadas Parciais

Seja z = f(x, y) uma função real de duas variáveis reais e seja (x0, y0) um ponto dodomínio de f. Fixando y0 podemos considerar a função de uma variável g(x) = f(x, y0). Aderivada desta função no ponto x = x0, quando existe, denomina-se derivada parcial de f,em relação a x, no ponto (x0, y0) e indica-se por

∂f

∂x(x0, y0) ou

∂z

∂x(x0, y0).

Assim,

∂f

∂x(x0, y0) = g′(x0) = lim

x→x0

g(x)− g(x0)

x− x0

= limx→x0

f(x, y0)− f(x0, y0)

x− x0

= lim∆x→0

f(x0 +∆x, y0)− f(x0, y0)

∆x

De modo análogo, xando x0 podemos considerar a função de uma variável h(y) =f(x0, y). A derivada desta função no ponto y = y0, quando existe, denomina-se derivadaparcial de f, em relação a y, no ponto (x0, y0) e indica-se por

∂f

∂y(x0, y0) ou

∂z

∂y(x0, y0).

85

Page 92: Apostila de Integrais 2

Assim,

∂f

∂y(x0, y0) = h′(y0) = lim

y→y0

h(y)− y(y0)

y − y0

= limy→y0

f(x0, y)− f(x0, y0)

y − y0

= lim∆y→0

f(x0, y0 +∆y)− f(x0, y0)

∆y

Assim, denimos

DEFINIÇÃO 2.5.1 Seja f : D ⊂ R2 → R uma função real de duas variáveis reais e (x, y) ∈D. As derivadas parciais ∂f

∂xe ∂f

∂yde f em (x, y) são dadas por

∂f (x, y)

∂x= lim

∆x→0

f (x+∆x, y)− f (x, y)

∆x

e∂f (x, y)

∂y= lim

∆y→0

f (x, y +∆y)− f (x, y)

∆y.

EXEMPLO 2.5.2 Seja f (x, y) = x2y + xy2 encontre ∂f(x,y)∂x

e ∂f(x,y)∂y

.

Solução: Aplicando a Denição 2.5.1 obtemos

∂f (x, y)

∂x= lim

∆x→0

f (x+∆x, y)− f (x, y)

∆x

= lim∆x→0

(x+∆x)2y + (x+∆x)y2 − (x2y + xy2)

∆x

= lim∆x→0

x2y + 2xy∆x+ y (∆x)2 + xy2 + y2∆x− x2y − xy2

∆x

= lim∆x→0

2xy∆x+ y (∆x)2 + y2∆x

∆x

= lim∆x→0

(2xy + y∆x+ y2)∆x

∆x= lim

∆x→02xy + y∆x+ y2 = 2xy + y2.

Analogamente, encontra-se que∂f (x, y)

∂y= lim

∆y→0

f (x, y +∆y) + f (x, y)

∆y= x2 + 2xy.

OBSERVAÇÃO 2.5.3 Note que, para encontrar ∂f∂x

bastou considerar y como uma constante nafunção f (x, y) e aplicar as regras de derivação estudadas na derivação de funções de umavariável. Para encontrar ∂f

∂yderiva-se em relação a y, mantendo x constante.

EXEMPLO 2.5.4 Seja f (x, y) = 3x2y + 2 sinxy, encontre ∂f∂x

e ∂f∂y.

Solução: Tomando y constante no primeiro caso e x no segundo, obtemos

∂f (x, y)

∂x= 6xy + 2y cos xy

∂f (x, y)

∂y= 3x2 + 2x cos xy.

86

Page 93: Apostila de Integrais 2

OBSERVAÇÃO 2.5.5 No caso de f ter mais de duas variáveis, são consideradas constantestodas as variáveis em relação a qual f não está sendo derivada.

EXEMPLO 2.5.6 Seja f (x, y, z, t) = 3x2yz3t2 + 2 sinx2yz3t2. Encontre as derivadas parciais∂f

∂x,∂f

∂y,∂f

∂ze∂f

∂t.

Solução: Fazendo y, z, t constantes podemos derivar parcialmente em x :

∂f (x, y, z, t)

∂x= 6xyz3t2 + 4xyz3t2 cosx2yz3t2.

Agora, fazendo x, z, t constantes, obtemos a derivada parcial em relação a y :

∂f (x, y, z, t)

∂y= 3x2z3t2 + 2x2z3t2 cos x2yz3t2.

Tomando x, y, t constantes temos a derivada parcial em z :

∂f (x, y, z, t)

∂z= 9x2yz2t2 + 6x2yz2t2 cos x2yz3t2.

Finalmente, mantendo x, y, z constantes, encontramos

∂f (x, y, z, t)

∂t= 6x2yz3t+ 4x2yz3t cosx2yz3t.

2.5.7 Interpretação Geométrica das derivadas parciais

Podemos interpretar geometricamente a derivada parcial como uma taxa de inclinação.Seja f (x, y) uma função de duas variáveis e seja y = y0. Então, f (x, y0) descreve uma

curva sobre a superfície S. Marcamos um ponto P (x0, y0) sobre a curva f (x, yo) e traçamosuma reta t1 tangente à curva neste ponto com coeciente angular m = tgα. Então ∂f(x0,y0)

∂x=

tgα, ou seja, ∂f(x0,y0)∂x

é o coeciente angular da reta tangente à curva f (x, y0) no ponto

P (x0, y0, f(x0, y0)) (veja a Figura 2.12). Analogamente, ∂f(x0,y0)∂y

é o coeciente angular dareta t2 tangente à curva f (x0, y) no ponto P (x0, y0, f(x0, y0)) , conforme ilustra a Figura2.13.

EXEMPLO 2.5.8 Determine a equação de um plano que seja tangente ao parabolóide z =x2 + y2, no ponto P (1, 2, 5).

Solução: Note que a superfície desejada é o gráco da função z = f(x, y) = x2 + y2. Paradeterminar a equação do plano tangente desejado, devemos obter dois vetores pertencentesa este plano, ou seja, dois vetores tangentes ao parabolóide, no ponto P. Para isso, fazendoy = 2 encontramos a curva z = f(x, 2) = x2 + 4. A reta tangente a essa curva, no ponto P,é dada por

z − z0 =∂f(x0, y0)

∂x(x− x0) = 2x0(x− x0),

ou seja,z − 5 = 2(x− 1) ⇒ z = 2x+ 3, no plano y = 2.

Da geometria analítica, temos que o vetor diretor a esta reta tangente é dado por b1 =(1, 0, 2). Da mesma forma, fazendo x = 1, obtemos a curva z = f(1, y) = 1 + y2, cuja retatangente, em P, é dada por

z − z0 =∂f(x0, y0)

∂y(y − y0) = 2y0(y − y0),

ou seja,

87

Page 94: Apostila de Integrais 2

Figura 2.12: Interpretação Geométrica de ∂f∂x

Figura 2.13: Interpretação Geométrica de ∂f∂y

z − 5 = 4(y − 2) ⇒ z = 4y + 3 no plano x = 1.

Assim, encontramos o vetor diretor b2 = (0, 1, 4). Agora podemos obter o vetor normalao plano tangente desejado, tomando

b = b1 × b2 =

∣∣∣∣∣∣i j k1 0 20 1 4

∣∣∣∣∣∣ = (−2,−4, 1).

Portanto, a equação geral do plano desejado é dada por

−2x− 4y + 1z + d = 0.

Como este plano deve passar por P (1, 2, 5), substituindo suas coordenadas na equaçãoacima, obtemos d = 5. Portanto, o plano tangente ao parabolóide z = x2 + y2, no pontoP (1, 2, 5), tem equação −2x− 4y + z + 5 = 0.

88

Page 95: Apostila de Integrais 2

De forma geral, a maneira como estas retas tangentes t1 e t2 foram construídas, umano plano y = y0 e a outra no plano x = x0, elas não são paralelas e como (x0, y0, f(x0, y0)) éo ponto de interseção destas retas, temos que elas são concorrentes, logo denem um únicoplano π que as contém, este plano é o plano tangente à superfície z = f(x, y) no pontoP (x0, y0, f(x0, y0)). Além disso, se C é outra curva qualquer contida na superfície z = f(x, y)que passa pelo ponto P, então a reta tangente à curva C passando por P também pertenceao plano π. Para determinar a equação do plano tangente precisamos do vetor normal nao plano e um ponto que pertence ao plano. Como t1 e t2 são retas contidas no plano πtemos que o vetor normal n é dado pela produto vetorial dos vetores diretores destas retase P (x0, y0, f(x0, y0)) é um ponto que pertence ao plano π. Assim,

n = v1 × v2 =

(1, 0,

∂f

∂x(x0, y0)

)×(0, 1,

∂f

∂y(x0, y0)

)=

(−∂f∂x

(x0, y0), −∂f

∂y(x0, y0), 1

).

Usando as componentes do vetor normal e as coordenadas do ponto P, obtemos que a equaçãodo plano π tangente à superfície z = f(x, y) no ponto P (x0, y0, f(x0, y0)) é dada por:

∂f

∂x(x0, y0)(x− x0) +

∂f

∂y(x0, y0)(y − y0)− (z − z0) = 0.

EXEMPLO 2.5.9 Considere a superfície z = x2 + y2. Determine o(s) ponto(s) onde um planoπ, que passa pelos pontos (1, 1, 1) e (2,−1, 1), é tangente a esta superfície.

Solução: Sabemos que o vetor normal do plano tangente à superfície z = x2 + y2 no ponto(x0, y0, z0) é dado por (

−∂f∂x

(x0, y0),−∂f

∂y(x0, y0), 1

),

logo, a equação do plano tangente π é dada por

π : −∂f(x0, y0)∂x

x− ∂f(y − y0)

∂yy + z + d = 0

substituindo as derivadas parciais temos,

π : −2x0x− 2y0y + z + d = 0.

Queremos encontrar o ponto P (x0, y0, z0) que pertence ao plano π e a superfície z = x2+ y2,isto é, z0 = x20 + y20, e sabemos que os pontos P1(1, 1, 1) e P2(2,−1, 1) pertencem ao planoπ. Logo, substituindo os pontos P, P1 e P2 na equação de π temos o seguinte sistema pararesolver

−2x0x0 − 2y0y0 + x20 + y20 + d = 0−2x0 − 2y0 + 1 + d = 0−4x0 + 2y0 + 1 + d = 0

d = x20 + y20

−2x0 − 2y0 + 1 + d = 0x0 = 2y0

d = 5y20

5y20 − 6y0 + 1 = 0x0 = 2y0

y0 = 1x0 = 2z0 = 5

OU

y0 = 1

5

x0 = 25

z0 = 15

P1 (2, 1, 5)

P2

(25, 15, 15

)Portanto, há dois pontos de tangência P1 (2, 1, 5) e P2

(2

5,1

5,1

5

).

89

Page 96: Apostila de Integrais 2

2.6 Derivadas Parciais de Ordem Superior

Seja z = f (x, y) uma função cujas derivadas parciais∂f

∂xe∂f

∂ytambém são deriváveis.

Cada uma dessas derivadas parciais poderá ser novamente derivada em relação a x e a y.Denotaremos:

• ∂

∂x

(∂f

∂x

)=∂2f

∂x2é a segunda derivada parcial de f em relação a x;

• ∂

∂x

(∂

∂x

(∂f

∂x

))=∂3f

∂x3é a terceira derivada parcial de f em relação a x;

• ∂

∂y

(∂f

∂x

)=

∂2f

∂y∂xé a segunda derivada parcial de f primeiro em relação a x e depois

em relação a y;

• ∂

∂x

(∂f

∂y

)=

∂2f

∂x∂yé a segunda derivada parcial de f primeiro em relação a y e depois

em relação a x;

• ∂

∂y

(∂

∂y

(∂f

∂y

))=∂3f

∂y3é a terceira derivada parcial de f em relação a y;

No caso da função f ter mais de duas variáveis a notação segue a mesma lógica. Porexemplo, se temos f (x, y, z, t) tem-se

• ∂

∂t

(∂

∂z

(∂

∂y

(∂f

∂x

)))=

∂4f

∂t∂z∂y∂xpara representar a quarta derivada de f , primeiro

em relação a x, depois em relação a y e assim sucessivamente.

EXEMPLO 2.6.1 Seja f (x, y, z, t) = x3y4z5t2 encontrar∂4f

∂x∂y∂z∂t.

Solução: Derivamos inicialmente em relação a t, obtendo

∂f

∂t(x, y, z, t) = 2x3y4z5t,

a seguir, derivamos em relação a z

∂2f

∂z∂t(x, y, z, t) = 10x3y4z4t,

para após derivarmos em y

∂3f

∂y∂z∂t(x, y, z, t) = 40x3y3z4t,

e nalmente derivarmos em x e obter

∂4f

∂x∂y∂z∂t(x, y, z, t) = 120x2y3z4t.

90

Page 97: Apostila de Integrais 2

EXEMPLO 2.6.2 Uma função de duas variáveis u é dita harmônica se satisfaz a equação∂2u

∂x2+

∂2u

∂y2= 0, conhecida como equação de Laplace em R2. Mostre que a função

u(x, y) = ex sin y + ey cos x

é uma função harmônica.

Solução: Tomando as derivadas parciais sucessivas de u, temos

∂u

∂x= (sin y) ex − (sinx) ey

∂2u

∂x2= (sin y) ex − (cosx) ey

∂u

∂y= (cosx) ey + (cos y) ex

∂2u

∂y2= (cosx) ey − (sin y) ex.

Substituindo na equação de Laplace, obtemos que

∂2u

∂x2+∂2u

∂y2= (sin y) ex − (cosx) ey + (cosx) ey − (sin y) ex = 0.

Como a função u dada satisfez a equação de Laplace, mostramos que ela é uma funçãoharmônica.

2.7 Extremos de uma Função de duas Variáveis

Seja f uma função de duas variáveis. Dizemos que f tem um máximo relativo no ponto(a, b) se existir um bola aberta de centro (a, b) e raio ϵ > 0 tal que, para todo (x, y) perten-cente à bola, tem-se f (x, y) ≤ f (a, b) . Por outro lado, se f (x, y) ≥ f (a, b) para todo (x, y)pertencente à bola, dizemos que f tem um ponto de mínimo relativo no ponto (a, b) .

Os pontos de máximos e de mínimos de f são denominados pontos extremos de f. Aimagem de um ponto de máximo é chamada de valor máximo de f, da mesma forma que aimagem de um ponto de mínimo é denominada valor mínimo de f.

2.7.1 Ponto Crítico

DEFINIÇÃO 2.7.2 Seja (a, b) um ponto pertencente ao domínio de f. Se∂f

∂x(a, b) e

∂f

∂y(a, b)

são ambas nulas ou se uma delas não existir, então (a, b) é denominado ponto crítico de f.Os pontos críticos de f são os candidatos a pontos de máximo ou mínimo.

2.7.3 Ponto de Máximo e Ponto de Mínimo

TEOREMA 2.7.4 Seja (a, b) um ponto pertencente ao domínio de f. Suponhamos que∂f

∂x,

∂f

∂y,∂2f

∂x2,∂2f

∂y2,

∂2f

∂x∂ye

∂2f

∂y∂xexistem e são contínuas numa bola aberta de centro (a, b) .

Suponhamos que (a, b) seja um ponto crítico e sejam ainda:

91

Page 98: Apostila de Integrais 2

∆(a, b) =

∣∣∣∣∣∣∣∣∂2f

∂x2(a, b)

∂2f

∂y∂x(a, b)

∂2f

∂x∂y(a, b)

∂2f

∂y2(a, b)

∣∣∣∣∣∣∣∣ e Θ(a, b) =∂2f

∂x2(a, b) .

Então:(i) se ∆ > 0 e Θ < 0, a função f tem um máximo relativo em (a, b) ;(ii) se ∆ > 0 e Θ > 0, a função f tem um mínimo relativo em (a, b) ;(iii) se ∆ = 0, nada podemos armar;(iv) se ∆ < 0, a função f tem um ponto de sela em (a, b) .

EXEMPLO 2.7.5 Encontre os pontos críticos das funções abaixo e classique-os como pontosde máximo, mínimo ou de sela.

(a) f(x, y) = 4xy − x4 − 2y2;

(b) f(x, y) = 3x4 + 2y4;

Solução (a): Vamos iniciar encontrando os pontos críticos. Como as derivadas parciais são

∂f(x, y)

∂x= 4y − 4x e

∂f(x, y)

∂y= 4x− 4y

e estão sempre bem denidas, os pontos críticos de f são dados por4x− 4y = 04y − 4x3 = 0

⇒ x− x3 = 0 ⇒ x(1− x2) = 0 ⇒ x = 0; x = ±1

Assim os pontos críticos são P (0, 0), Q(1, 1) e R(−1,−1). A seguir, vamos analisar odelta. Como

(x, y) =

∣∣∣∣ −12x2 44 −4

∣∣∣∣ = 48x2 − 16,

temos que

(0, 0) = −16, (1, 1) = 32 (−1,−1) = 32.

Na sequência, vamos analisar o valor de Θ(x, y) = ∂2f∂x2 = −12x2. Temos que

Θ(0, 0) = 0 Θ(1, 1) = −12 Θ(−1,−1) = −12.

Portanto, de acordo com o Teorema 2.7.4, concluímos que

(0, 0) < 0 e o ponto P (0, 0) é de sela,(1, 1) > 0 e Θ < 0 e o ponto Q(1, 1) é ponto de máximo,

(−1,−1) > 0 e Θ < 0 e o ponto R(−1,−1) é ponto de máximo.

Solução (b): Vamos iniciar encontrando os pontos críticos. Como as derivadas parciais são

∂f(x, y)

∂x= 12x3 e

∂f(x, y)

∂y= 8y3

e estão sempre bem denidas, os pontos críticos de f são dados por

92

Page 99: Apostila de Integrais 2

12x3 = 08y3 = 0

⇒x = 0y = 0

Assim, o único ponto crítico é P (0, 0). Logo,

(x, y) =

∣∣∣∣ −36x2 00 24y2

∣∣∣∣ = 864x2y2 ⇒ (0, 0) = 0.

Portanto, de acordo com o Teorema 2.7.4, nada podemos concluir. Analisando os valores dafunção observamos que f(0, 0) = 0 e f(x, y) > 0 para todo (x, y) = (0, 0). Portanto, (0, 0) éum ponto de mínimo da função f(x, y) = 3x4 + 2y4.

EXEMPLO 2.7.6 Determine as dimensões de uma caixa retangular sem tampa destinada aoacondicionamento de 108 cm3 de volume se queremos usar a mínima quantidade em materialpara sua confecção.

Solução: Sejam x o comprimento da base, y a largura da base e z a altura da caixa, S asuperfície e V o volume da caixa. Então podemos escrever o sistema

S(x, y, z) = xy + 2xz + 2yzV (x, y, z) = xyz

A função S(x, y, z) pode ser escrita como uma função de duas variáveis, se z for substi-

tuído porV

xy. Desse modo temos

S(x, y) = xy +2V

y+

2V

x.

Aplicando o Teorema 2.7.4, vamos determinar os pontos críticos de S. Inicialmente, de-vemos resolver o sistema de equações denido pelas derivadas parciais. Como

∂S

∂x(x, y) = y − 2V

x2

∂S

∂y(x, y) = x− 2V

y2

temos que y − 2V

x2= 0

x− 2V

y2= 0

⇒yx2 = 2Vxy2 = 2V

⇒ yx2 = xy2

como sabemos que x, y = 0, podemos dividir ambos os lados da última igualdade por xy eencontrar que x = y. Portanto, obtemos que 2V = x3 e como V = 108, segue que x =3√2 (108) = 6 e y = 6. Logo, o ponto (a, b) = (6, 6) é único ponto crítico da função S(x, y) =

xy +2V

y+

2V

x.

Na sequência, vamos classicar este ponto crítico. Para isso, precisamos obter os valoresde ∆(6, 6) e Θ(6, 6) . Tomando as segundas derivadas, temos que

93

Page 100: Apostila de Integrais 2

∂2S

∂x2(x, y) =

4V

x3donde vem

∂2S

∂x2(6, 6) =

4 (108)

63= 2,

∂2S

∂x∂y(x, y) = 1 donde vem

∂2S

∂x∂y(6, 6) = 1,

∂2S

∂y∂x(x, y) = 1 donde vem

∂2S

∂y∂x(6, 6) = 1,

∂2S

∂y2(x, y) =

4V

y3donde vem

∂2S

∂y2(6, 6) =

4 (108)

63= 2.

Portanto,

∆ =

∣∣∣∣ 2 11 2

∣∣∣∣ = 3 e Θ = 2.

Como ∆ = 3 > 0 e Θ = 2 > 0, pelo segundo item do Teorema 2.7.4, obtemos que f temum mínimo relativo no ponto (6, 6) . Logo, as dimensões da base da caixa são x = 6cm e

y = 6cm. Ainda, como z =V

xysegue que z =

108

6 (6)= 3.

Portanto, as dimensões da caixa, para que o custo de fabricação seja mínimo, são x =6 cm, y = 6 cm e z = 3 cm.

EXEMPLO 2.7.7 Um fabricante faz 2 modelos de um item, padrão e de luxo. Custa R$ 40, 00para fabricar um modelo padrão e R$ 60, 00 para o de luxo. Uma rma de pesquisa demercado estima que se o modelo padrão for vendido por x reais e o de luxo por y reais, entãoo fabricante venderá 500(y − x) do item padrão e 45000 + 500(x − 2y) do de luxo a cadaano. Com que preços os itens devem ser vendidos para maximizar o lucro?

Solução: A função lucro é dada por:

L(x, y) = 500(y − x)(x− 40) + (45000 + 500(x− 2y))(y − 60).

As derivadas parciais de L são dadas por

∂L(x, y)

∂x= 1000y − 1000x− 10 000

e∂L(x, y)

∂y= 1000x− 2000y + 85 000

Como as derivadas estão sempre bem denidas, para encontrar os pontos críticos de Ldevemos fazer

∂L(x, y)

∂x= 0 e

∂L(x, y)

∂y= 0

Resolvendo este sistema, temos1000y − 1000x− 10 000 = 01000x− 2000y + 85000 = 0

−1000x+ 1000y = 100001000x− 2000y = −85000

⇒x = 65y = 75

.

Portanto, o único ponto crítico é (65, 75). Vamos analisar se este ponto crítico é um pontode máximo. Como

94

Page 101: Apostila de Integrais 2

∂2L

∂x2= −1000,

∂2L

∂y2= −2000,

e

∂2L

∂x∂y= 1000,

∂2L

∂y∂x= 1000,

temos que

=

∣∣∣∣ −1000 10001000 −2000

∣∣∣∣ = 106 > 0 e Θ =∂2L

∂x2= −1000 < 0.

Portanto, o ponto P (65, 75) é, de fato, um ponto de máximo. Logo, o item padrão serávendido por R$ 65, 00 e o de luxo por R$ 75, 00.

EXEMPLO 2.7.8 Encontre as coordenadas do ponto que pertence a superfície z = xy+2 e cujoquadrado da distância à origem do sistema de coordenadas cartesianas seja mínimo. Qual éesse valor mínimo?

Solução: Queremos determinar o ponto Q(x, y, z) de mínimo da função

f(x, y, z) = d(Q,O)2 = x2 + y2 + z2,

com a condição que Q é um ponto da superfície z = xy + 2. Substituindo na função dadistância obtemos a função

f(x, y) = x2 + y2 + x2y2 + 4xy + 4.

Para encontrar os pontos críticos de f, tomamos

∂f(x, y)

∂x= 2x+ 2xy2 + 4y

e∂f(x, y)

∂y= 2y + 2x2y + 4x.

Como as derivadas parciais sempre estão denidas os pontos críticos de f são as soluções dosistema

∂f(x,y)∂x

= 0

∂f(x,y)∂y

= 0

2x+ 2xy2 + 4y = 0

2y + 2x2y + 4x = 0

Temos que P1(0, 0) é uma solução do sistema. Para as demais soluções do sistema, multipli-cando a primeira equação por x e a segunda por y obtemos

2x2 + 2x2y2 + 4xy = 0

−2y2 − 2x2y2 − 4xy = 0⇒ 2x2 − 2y2 = 0 ⇒ y = ±x.

Se y = x voltando na primeira equação temos,

2x+ 2x3 + 4x = 0 ⇒

x = 0x2 + 3 = 0

⇒ x = 0 ⇒ P1(0, 0).

95

Page 102: Apostila de Integrais 2

Se y = −x voltando na primeira equação temos,

2x+ 2x3 − 4x = 0 ⇒

x = 0x2 − 1 = 0

⇒x = 0x = ±1

⇒P2(1,−1)P3(−1, 1)

.

Portanto, temos três pontos críticos P1(0, 0), P2(1,−1) e P3(−1, 1). Usaremos o teste dasegunda derivada para classicá-los. Temos que

∆(x, y) =

∣∣∣∣∣∣∣∂2f(x,y)

∂x2

∂2f(x,y)∂y∂x

∂2f(x,y)∂x∂y

∂2f(x,y)∂y2

∣∣∣∣∣∣∣ =∣∣∣∣∣∣2 + 2y2 4xy + 4

4xy + 4 2 + 2x2

∣∣∣∣∣∣= 4(1 + y2)(1 + x2)− 16(xy + 1) = 4 + 4x2 + 4y2 + 4x2y2 − 16xy − 16

e

Θ(x, y) =∂2f(x, y)

∂x2= 2 + 2y2.

Aplicando nos pontos críticos, obtemos:∆(0, 0) = −12 < 0 ⇒ P1(0, 0) é um ponto de sela de f(x, y).∆(1,−1) = 16 > 0 e Θ(1,−1) = 4 > 0 ⇒ P2(1,−1) é ponto de mínimo de f(x, y).∆(−1, 1) = 16 > 0 e Θ(−1, 1) = 4 > 0 ⇒ P3(−1, 1) é ponto de mínimo de f(x, y).Assim os candidatos a para o ponto Q são: P2(1,−1, 1), e P3(−1, 1, 1). Substituindo na

expressão da distância ao quadrado obtemos:

d(P2, O)2 = 3 e d(P3, O)

2 = 3.

Portanto, os dois pontos são pontos de mínimo para o quadrado da distância e o valor mínimoé 3.

2.8 Derivada de uma Função Composta

Antes de discutir a derivada de uma função composta, vamos falar sobre composição defunções de duas variáveis.

Consideremos as funções u(x, y) = x2y+ y e v (x, y) = x+ y2. Podemos denir uma novafunção F por F (u, v) = 2u2 + 3v. Reescrevendo F em função de x e y temos:

F (u(x, y), v (x, y)) = 2 [u(x, y)]2 + 3 [v (x, y)]

= 2(x2y + y)2 + 3(x+ y2)

= 2(x4y2 + 2x2y2 + y2) + 3x+ 3y2

= 2x4y2 + 4x2y2 + 2y2 + 3x+ 3y2

= 2x4y2 + 4x2y2 + 5y2 + 3x

e assim,F (u(1, 2), v (1, 2)) = 2 (1)4 (2)2 + 4 (1)2 (2)2 + 5 (2)2 + 3 (1) = 47.

Ou, como

u(x, y) = x2y + y e v (x, y) = x+ y2

segue que

u(1, 2) = (1)2 2 + 2 = 4 e v (1, 2) = 1 + 22 = 5,

96

Page 103: Apostila de Integrais 2

e entãoF (u(1, 2), v (1, 2)) = F (4, 5) = 2 (4)2 + 3 (5) = 47.

Nosso interesse é encontrar ∂F∂x

e ∂F∂y. A função

F (x, y) = 2x4y2 + 4x2y2 + 5y2 + 3x

pode ser escrita como uma função x e y. Isto é,

F (u(x, y), v (x, y)) = 2x4y2 + 4x2y2 + 5y2 + 3x

e, nesse caso, temos∂F

∂x(x, y) = 8x3y2 + 8xy2 + 3

e∂F

∂y(x, y) = 4x4y + 8x2y + 10y.

Como podemos observar, obter as derivadas parciais através desse processo não é muitoanimador. Isso é motivação suciente para estudar a Regra da Cadeia. Se tivermosuma função composta f (g (x)) sabemos que [f (g (x))]′ = f ′ (g (x)) g′ (x) . A mesma teoria éaplicada para encontrar a derivada parcial de uma função composta de várias variáveis.

DEFINIÇÃO 2.8.1 Seja z (x, y) = F (u(x, y), v (x, y)) então

∂z (x, y)

∂x=∂F (u, v)

∂u

∂u

∂x+∂F (u, v)

∂v

∂v

∂x

e

∂z (x, y)

∂y=∂F (u, v)

∂u

∂u

∂y+∂F (u, v)

∂v

∂v

∂y

EXEMPLO 2.8.2 Consideremos as funções u(x, y) = x2y + y e v (x, y) = x + y2. Denindouma nova função z por z (x, y) = F (u, v) = 2u2 + 3v. Encontre as derivadas parciais de zem relação a x e y.

Solução: Inicialmente, determinamos as derivadas parciais das funções u(x, y), v(x, y) eF (u, v) :

∂F

∂u= 4u,

∂u

∂x= 2xy,

∂v

∂x= 1,

∂F

∂v= 3,

∂u

∂y= x2 + 1,

∂v

∂y= 2y.

e utilizando a regra da cadeia (Denição 2.8.1), obtemos as derivadas parciais

97

Page 104: Apostila de Integrais 2

∂z (x, y)

∂x=∂F

∂u

∂u

∂x+∂Fu

∂v

∂v

∂x

= 4u∂u

∂x+ 3

∂v

∂x

= 4 (x2y + y) (2xy) + 3 (1)

= 8x3y2 + 8xy2 + 3

e

∂z (x, y)

∂y=∂F

∂u

∂u

∂y+∂F

∂v

∂v

∂y

= 4u∂u

∂y+ 3

∂v

∂y

= 4 (x2y + y) (x2 + 1) + 3 (2y)

= 4x4y + 8x2y + 10y.

EXEMPLO 2.8.3 Determine∂F

∂xe∂F

∂ypara F (x, y) = ln 5

√(x4 + 2xy + y3) + (2xy + 3x2).

Solução: Podemos reescrever a função F como F (u, v) = ln(u+ v)15 , onde

u(x, y) = x4 + 2xy + y3

ev(x, y) = 2xy + 3x2.

Usando a regra da cadeia, temos:

∂F

∂x=

∂F

∂u

∂u

∂x+∂F

∂v

∂v

∂x

=1

5

1

u+ v

∂u

∂x+

1

5

1

u+ v

∂g

∂x

=1

5

(4x3 + 2y) + (2y + 6x)

x4 + y3 + 4xy + 3x2

=6x+ 4y + 4x3

20xy + 15x2 + 5x4 + 5y3.

O cálculo da derivada em relação a y é deixado como exercício para o estudante.

EXEMPLO 2.8.4 Variação dos valores de uma função ao longo de uma hélice:

Encontredw

dtse w = xy+z onde x = cos t, y = sin t e z = t. Qual é o valor desta derivada

em t = 0?

98

Page 105: Apostila de Integrais 2

Solução: Pela regra da cadeia, obtemos

dw

dt=

∂w

∂x

dx

dt+∂w

∂y

dy

dt+∂w

∂z

dz

dt

= y(− sin t) + x(cos t) + 1(1)

= sin t(− sin t) + (cos t)(cos t) + 1

= − sin2 t+ cos2 t+ 1 = 1 + cos 2t.

Logo, para t = 0, temos quedw

dt= 1 + cos 0 = 2.

EXEMPLO 2.8.5 Sendo α uma constante e w = f(u, v), onde u = x cos α − y sen α ev = x sen α+ y cos α, sabendo que f é diferenciável mostre que

∂2w

∂x2+∂2w

∂y2=∂2w

∂u2+∂2w

∂v2.

Solução: Usando a regra da cadeia para as derivadas parciais de primeira e segunda ordemobtemos:

∂w

∂x=∂f

∂u

∂u

∂x+∂f

∂v

∂v

∂x=∂f

∂ucos α+

∂f

∂vsen α

∂2w

∂x2= cosα

∂x

(∂f

∂u(u, v)

)+ senα

∂x

(∂f

∂v(u, v)

)= cos α

(∂2f

∂u2∂u

∂x+

∂2f

∂v∂u

∂v

∂x

)+ sen α

(∂2f

∂u∂v

∂u

∂x+∂2f

∂v2∂v

∂x

)= cos 2α

∂2f

∂u2+ cos α sen α

∂2f

∂v∂u+ sen α cos α

∂2f

∂u∂v+ sen 2α

∂2f

∂v2(1)

∂w

∂y=∂f

∂u

∂u

∂y+∂f

∂v

∂v

∂y=∂f

∂u(− sen α) +

∂f

∂vcos α

∂2w

∂y2= −senα ∂

∂y

(∂f

∂u(u, v)

)+ cosα

∂y

(∂f

∂v(u, v)

)= − sen α

(∂2f

∂u2∂u

∂y+

∂2f

∂v∂u

∂v

∂y

)+ cos α

(∂2f

∂u∂v

∂u

∂y+∂2f

∂v2∂v

∂y

)= sen 2α

∂2f

∂u2− cos α sen α

∂2f

∂v∂u− sen α cos α

∂2f

∂u∂v+ cos 2α

∂2f

∂v2(2)

Das Expressões (1) e (2), temos:

∂2w

∂x2+∂2w

∂y2=∂2w

∂u2( sen 2α+ cos 2α) +

∂2w

∂v2( sen 2α+ cos 2α) =

∂2w

∂u2+∂2w

∂v2

e assim provamos que de fato a equação dada é verdadeira.

2.9 Derivada Parcial como Taxa de Variação

Suponhamos que f é uma função de duas variáveis. Então, a derivada parcial∂f

∂x(x0, y0)

nos dá a razão instantânea de variação de f, no ponto P (x0, y0) , por unidade de variaçãode x. Isto é, a taxa de variação de f por unidade de x no ponto P (x0, y0) . Analogamente,∂f

∂y(x0, y0) nos dá a taxa de variação de f por unidade de y.

99

Page 106: Apostila de Integrais 2

EXEMPLO 2.9.1 Sabendo que a pressão P (em quilopascals), o volume V (em litros) e atemperatura T (em kelvins) de um mol de um gás ideal estão relacionados pela fórmulaPV = 8T, encontre a taxa de variação instantânea de V por unidade de P, quando T = 300ke V = 100L.

Solução: Estamos interessados na taxa de variação instantânea de V por unidade de P, demodo que devemos escrever V em função de T e P, ou seja,

V (T, P ) =8T

P.

A taxa de variação instantânea da pressão P por unidade de T é dada pela derivadaparcial

∂V (T, P )

∂P= −8T

P 2.

Para determinar P usamos a relação

PV = 8T

e obtemos

P =8 · 300100

= 24kPa.

Portanto,∂V (300, 24)

∂P= −8 · 300

(24)2= −4, 17.

EXEMPLO 2.9.2 A altura de um cone circular é 100 cm e decresce a uma razão de 10cm/s.O raio da base é 50cm e cresce à razão de 5cm/s. Determine a velocidade da variação dovolume deste cone.

Solução: Primeiro vamos escrever o volume do cone em função do tempo:

V (t) =πr2(t)h(t)

3,

logo, pela regra da cadeia, temos que

dV

dt=

∂V

∂r

dr

dt+∂V

∂h

dh

dt=

2πrh

3

dr

dt+πr2

3

dh

dt

=2π50.100

3(5) +

π(50)2

3(−10)

=50000π

3− 25000π

3=

25000π

3cm3/s.

2.10 Diferencias Parciais e Totais

Os diferenciais de uma função nos dão uma estimativa da variação da função quandodamos acréscimos às variáveis independentes.

Para entender o signicado dos diferenciais parciais e total vamos, primeiramente, exa-minar alguns exemplos.

EXEMPLO 2.10.1 Consideremos um retângulo de lados x e y. A área desse retângulo é dadapor A (x, y) = xy. Veja a Figura 2.14.

100

Page 107: Apostila de Integrais 2

Figura 2.14: Acréscimos diferenciais nos lados de um retângulo

Se ao lado x for dado um acréscimo innitesimal dx, a área do novo retângulo será dadapor

A(x+ dx, y) = (x+ dx) y = xy + ydx

e assim obtemosA (x+ dx, y)− A (x, y) = ydx.

A variação innitesimal desta área será dAx = ydx.

Sendo ∂A(x,y)∂x

= y, podemos escrever dAx =∂A (x, y)

∂xdx.

Analogamente, a diferencial parcial em relação a y é dada por dAy =∂A (x, y)

∂ydy.

Agora, se aos lados x e y forem dados acréscimos innitesimais dx e dy,a área do novoretângulo será

A (x+ dx, y + dy) = (x+ dx) (y + dy)

= xy + ydx+ xdy + dxdy

= A(x, y) + ydx+ xdy + dxdy

e assim,A (x+ dx, y + dy)− A (x, y) = ydx+ xdy + dxdy.

e a variação total dA, da área é

A = ydx+ xdy + dxdy.

Sendo ∂A(x,y)∂x

= y, ∂A(x,y)∂y

= x e como o produto dos innitesimais dx e dy é desprezível,isto é, dxdy ≈ 0, então a estimativa da variação total é

dA =∂A (x, y)

∂xdx+

∂A (x, y)

∂ydy.

EXEMPLO 2.10.2 Consideremos um paralelepípedo de lados x, y e z. Então, o volume desteparalelepípedo será dado por V (x, y, z) = xyz. Desenvolvendo um raciocínio análogo ao doexemplo anterior obtemos:

V (x+ dx, y, z) = (x+ dx) yz = xyz + yzdx

ou seja,V (x+ dx, y, z)− V (x, y, z) = yzdx

101

Page 108: Apostila de Integrais 2

e a variação innitesimal do volume será dVx = yzdx, que pode ser escrita como

dVx =∂V (x, y, z)

∂xdx.

Analogamente, obtemos

dVy =∂V (x, y, z)

∂ydy e dVz =

∂V (x, y, z)

∂zdz.

Se aos lados x e y forem dados acréscimos innitesimais dx e dy o volume do novoparalelepípedo será

V (x+ dx, y + dy, z) = (x+ dx) (y + dy) z

= xyz + yzdx+ xzdy + zdxdy

= V (x, y, z) + yzdx+ xzdy + zdxdy

e entãodVxy = yzdx+ xzdy + zdxdy.

O produto zdxdy tende a zero. Logo, é desprezível e, portanto, a estimativa da variaçãoinnitesimal parcial do volume do paralelepípedo após dado um acréscimo aos lados x e yserá dada por

dVxy =∂V (x, y, z)

∂xdx+

∂V (x, y, z)

∂ydy.

Finalmente, se aos lados x, y, z forem dados acréscimos innitesimais dx, dy e dz, ovolume do novo paralelepipedo será

V (x+ dx, y + dy, z + dz) = (x+ dx) (y + dy) (z + dz)

= (xy + ydx+ xdy + dxdy) (z + dz)

= xyz + yzdx+ xzdy + zdxdy + xydz + ydxdz + xdydz + dxdydz

e então

V (x+ dx, y + dy, z + dz)−V (x, y, z) = yzdx+xzdy+zdxdy+xydz+ydxdz+xdydz+dxdydz,

ou seja, o variação total do volume é

V = yzdx+ xzdy + zdxdy + xydz + ydxdz + xdydz + dxdydz.

Na Figura 2.15, podemos ver o parelelepípedo resultante dos acréscimos atribuídos a cadauma das variáveis e, na Figura 2.16, vemos cada um dos volumes resultantes que compõe odiferencial de volume dV.

Os produtos zdxdy, ydxdz, xdydz e dxdydz tendem a zero. Logo, a soma destestermos é desprezível e, portanto, a estimativa da variação innitesimal total do volume doparalelepípedo, após dado um acréscimo aos lados x, y e z será dada por

dV = yzdx+ xzdy + xydz,

que, em virtude de suas derivadas parciais, pode ser reescrita como

dV =∂V (x, y, z)

∂xdx+

∂V (x, y, z)

∂ydy +

∂V (x, y, z)

∂zdz.

Geralmente, escreve-se

dV =∂V

∂xdx+

∂V

∂ydy +

∂V

∂zdz.

De forma geral,

102

Page 109: Apostila de Integrais 2

Figura 2.15: Papalelepípedo resultante dos acréscimos atribuídos a cada lado.

Figura 2.16: Volumes que compõe o diferencial de volume dV .

DEFINIÇÃO 2.10.3 Se f (x, y, z) é uma função diferenciável, então a diferencial total de fé dada por

df =∂f

∂xdx+

∂f

∂ydy +

∂f

∂zdz. (2.10.1)

EXEMPLO 2.10.4 Usando diferencial, determine a variação do volume do recipiente mostradona Figura 2.17, quando sua altura aumenta em 3% e seu o raio decresce em 1%.

4

5

2cilindro

cone

Figura 2.17: Recipiente do Exemplo 2.10.4

103

Page 110: Apostila de Integrais 2

Solução: O volume desejado pode ser escrito como V = V1 + V2, onde V1 é o volume docilindro e V2 é o volume do cone. No cilindro temos

V1 = πR2h, R = 4, h = 2, dR =−4

100= −0.04; dh = 2

3

100= 0.06

e no cone, temos

V2 =πR2H

3, R = 4, H = 5; dR =

−4

100= −0.04; dH = 5

3

100= 0.15.

Portanto a diferencial do volume total é igual a

dV = dV1 + dV2

=

(∂V1∂R

dR +∂V1∂h

dh

)+

(∂V2∂R

dR +∂V2∂H

dH

)= 2πRhdR + πR2dh+

2πRh

3dR +

πR2

3dh

= 2π · 4 · 2 · (−0, 04) + π · 16 · (0, 06) + 2π · 4 · 53

(−0, 04) +16π

3(0, 15)

= −0, 64π + 0, 96π − 1, 6π

3+

2, 4π

3= 0, 32π +

0, 8

3π ∼= 0, 59π.

EXEMPLO 2.10.5 Vamos considerar uma lata cilíndrica fechada, com dimensões r = 2cme h = 5 cm. O custo do material usado em sua confecção é de R$ 0, 81 por cm2. Seas dimensões sofrerem um acréscimo de 10% no raio e 2% na altura, qual será o valoraproximado do acréscimo no custo da caixa? E qual é o valor exato do acréscimo no custoda caixa?

Solução: Podemos escrever a função custo como

C(r, h) = 0.81(2πrh+ 2πr2),

onde 2πrh representa a área lateral da caixa e πr2 a área da base e da tampa. Quando o raiode base sofre um acréscimo de 10%, passa de 2 para 2, 2 cm, portanto ∆r = 0, 2. Quandoa altura sofre um acréscimo de 2%, passa de 5cm para 5, 1cm, portanto, ∆h = 0, 1. Vamosusar a diferencial para encontrar o valor aproximado do acréscimo do custo

dC =∂C

∂rdr +

∂C

∂hdh

= 0, 81(2πh+ 4πr)dr + 0, 81.(2πr)dh

= 0, 81(10π + 8π)0.2 + 0, 81.(4π)0, 1 u 10, 17.

Portanto, o valor aproximado do acréscimo no custo da caixa quando as dimensões sãomodicadas é de R$10, 17, ou um acréscimo de 14, 28%.

Para saber o valor exato do acréscimo no custo da caixa, temos que calcular

∆C = C(2, 2; 5, 1)− C(2, 5)

= 0, 81(2π(2, 2) · (5, 1) + 2π(2, 2)2

)− 0, 81(20π + 8π) u 10, 47.

Assim, o valor exato é de R$10, 47, ou um acréscimo de 14, 7%. Observamos, assim, queo erro do cálculo aproximado foi de 0, 42%.

104

Page 111: Apostila de Integrais 2

EXEMPLO 2.10.6 Uma caixa em forma de paralelepípedo, tem dimensões internas iguais a6cm, 8cm e 12cm. Sendo a espessura das paredes 0,2cm, do fundo 0,3cm e da tampa 0,1cm,fazer uma estimativa em cm3 do volume de material necessário a ser usado na confecção dacaixa.

Solução: Vamos usar a diferencial total para fazer a estimativa solicitada. Sejam x = 6,y = 8 e z = 12. Como a espessura das paredes é 0,2cm temos

dx = dy = 2 (0, 2) = 0, 4

e sendo a espessura do fundo 0,3 e da tampa 0,1 temos

dz = 0, 3 + 0, 1 = 0, 4.

Como V = xyz, segue que a estimativa desejada é dada por

dV =∂V

∂xdx+

∂V

∂ydy +

∂V

∂zdz

= yzddx+ xzdy + xydz

= 8.12.0, 4 + 6.12.0, 4 + 6.8.0, 4 = 86, 4 cm3.

EXEMPLO 2.10.7 Use diferenciais para estimar o valor de√(0, 01)2 + (3, 02)2 + (3, 9)2.

Solução: Considere a função w = f(x, y, z) =√x2 + y2 + z2, temos que f(0, 3, 4) =

√25 =

5. Queremos determinar uma aproximação para f(0.01, 3.02, 3.9) e pela teoria de diferencialtemos que

f(0.01, 3.02, 3.9) ≈ f(0, 3, 4) + dw,

onde dw =∂w

∂xdx+

∂w

∂ydy +

∂w

∂zdz, com dx = 0, 01, dy = 0, 02 e dz = −0, 1. Assim,

(0.01, 3.02, 3.9) ≈ f(0, 3, 4)+x

w·(0, 01)+ y

w·(0, 02)+ z

w·(−0, 1) = 5+0+

3

5·(0, 02)−4

5·(0, 1) = 4, 932.

2.11 Derivadas de Funções Implícitas

Seja y = y(x) uma função denida implicitamente pela equação F (x, y) = 0. Por exemplo,x2 + y2 − 9 = 0 ou x2y3 + x3y2 + xy + x + y − 9 = 0. A equação x2 + y2 − 9 = 0 pode serfacilmente explicitada em função de x ou de y. Porém, não podemos fazer o mesmo com aequação x2y3+x3y2+xy+x+ y−9 = 0. Também, fazendo F (x, y) = x2+ y2−9 facilmente

encontramosdy

dxedx

dy, o mesmo não ocorre se zermos F (x, y) = x2y3+x3y2+xy+x+y−9.

Nosso interesse está em encontrar uma forma de determinar com rapidez as derivadasdy

dxe

dx

dy.

Inicialmente, vamos resolver o problema usando o conhecimento adquirido em Cálculo I.Vamos derivar y implicitamente em relação a x, na equação

x2y3 + x3y2 + xy + x+ y − 9 = 0,

obtendo

105

Page 112: Apostila de Integrais 2

(2xy3 + 3x2y2y′) + (3x2y2 + 2x3yy′) + (y + xy′) + 1 + y′ = 0(3x2y2y′ + 2x3yy′ + xy′ + y′) + (2xy3 + 3x2y2 + y + 1) = 0(3x2y2 + 2x3y + x+ 1) y′ = − (2xy3 + 3x2y2 + y + 1) .

Logo,

y′ =dy

dx= −2xy3 + 3x2y2 + y + 1

3x2y2 + 2x3y + x+ 1. (I)

Sendo F (x, y) = x2y3 + x3y2 + xy+ x+ y− 9, obtemos as derivadas parciais de F, dadaspor

∂F (x, y)

∂x= 2xy3 + 3x2y2 + y + 1

e∂F (x, y)

∂y= 3x2y2 + 2x3y + x+ 1.

Observando estes resultados e comparando com (I), podemos escrever a fórmula

dy

dx= −

∂F (x, y)

∂x∂F (x, y)

∂y

sempre que F (x, y) ,∂F (x, y)

∂xe∂F (x, y)

∂yforem contínuas em (x, y) e

∂F (x, y)

∂y= 0.

Se z = z(x, y) é denida implicitamente em função de x e y pela equação F (x, y, z) = 0,usando o mesmo procedimento anterior obtém-se suas derivadas parciais, que serão denotadas

por∂z

∂xe∂z

∂y.

EXEMPLO 2.11.1 Dada a função implícita x2 + y2 + z2 − 9 = 0, encontrar∂z

∂x,∂y

∂xe∂x

∂z.

Solução: Escrevendo F (x, y, z) = x2 + y2 + z2 − 9, obtemos

∂F (x, y, z)

∂x= 2x,

∂F (x, y, z)

∂y= 2y,

∂F (x, y, z)

∂y= 2z.

Agora, substituindo convenientemente na fórmula acima, encontramos

∂z

∂x= −

∂F

∂x∂F

∂z

= −2x

2z= −x

z= − x√

9− (x2 + y2),

∂y

∂x= −

∂F

∂x∂F

∂y

= −2x

2y= −x

y= − x√

9− (x2 + z2),

106

Page 113: Apostila de Integrais 2

∂x

∂z= −

∂F

∂z∂F

∂x

= −2z

2x= −z

x= − z√

9− (y2 + z2).

EXEMPLO 2.11.2 Uma função z(x, y) é dada implicitamente por uma equação do tipo F

(x

y,z

x2

)=

0, onde F (u, v) é uma função diferenciável tal que∂F

∂v= 0. Mostre que z satisfaz a equação

diferencial parcial x∂z

∂x+ y

∂z

∂y= 2z.

Resolução: Como z depende implicitamente de x e y, devemos utilizar a expressão paraderivação implícita

∂z

∂x= −

∂F

∂x∂F

∂z

e∂z

∂y= −

∂F

∂y∂F

∂z

Agora, para obter as derivadas de F, denimos u =x

ye v =

z

x2e utilizamos a regra da

cadeia para obter

∂F

∂x=∂F

∂u

∂u

∂x+∂F

∂v

∂v

∂x=∂F

∂u

(1

y

)+∂F

∂v

(−2z

x3

)=

1

y

∂F

∂u− 2z

x3∂F

∂v,

∂F

∂z=∂F

∂u

∂u

∂z+∂F

∂v

∂v

∂z=∂F

∂u.0 +

∂F

∂v

(1

x2

)=

1

x2∂F

∂v,

∂F

∂y=∂F

∂u

∂u

∂y+∂F

∂v

∂v

∂y=∂F

∂u

(−xy2

)+∂F

∂v.0 =

−xy2

∂F

∂u.

Portanto, substituindo nas derivadas implícitas de z, obtemos

∂z

∂x= −

∂F

∂x∂F

∂z

= −

1

y

∂F

∂u− 2z

x3∂F

∂v1

x2∂F

∂v

= −x2

y

∂F

∂u∂F

∂v

+2z

x

e

∂z

∂y= −

∂F

∂y∂F

∂z

= −

−xy2

∂F

∂u1

x2∂F

∂v

=x3

y2

∂F

∂u∂F

∂v

.

Portanto, substituindo na equação dada, temos

x∂z

∂x+ y

∂z

∂y= x

−x2

y

∂F

∂u∂F

∂v

+2z

x

+ y

x3y2

∂F

∂u∂F

∂v

=−x3

y

∂F

∂u∂F

∂v

+ 2z +x3

y

∂F

∂u∂F

∂v

= 2z.

107

Page 114: Apostila de Integrais 2

2.12 Exercícios Gerais

1. Determine, descreva e represente geometricamente o domínio das funções abaixo:

(a) f(x, y) =xy − 5

2√y − x2

; (b) f(x, y) =

√x+ y + 1

x− 1;

(c) f(x, y) = x ln(y2 − x); (d) f(x, y) =√y − x−

√1− y;

(e) f(x, y) =

√2x2 − 4

4− x2 − y2; (f) f(x, y, z) = ln(16− x2 − y2 − 4z2).

2. Represente geometricamente as superfícies de equações:

(a) x2 + y2 + z2 = 25; (b) x2 + y2 − z2 = 25;

(c) 9x+ 4y + 12z = 36; (d) z2 − x2 − y2 = 0.

3. Dada a função f(x, y) = 1x2+y2

, determine as curvas de nível z = 14, z = 4 e z = 9. A

seguir, faça um esboço do gráco desta função.

4. Descreva e represente geometricamente as superfícies de nível de f(x, y, z) = x2+y2−z2.

5. Usando a denição mostre que:(a) lim

(x,y)→(2,1)(3x+ 2y) = 8 (b) lim

(x,y)→(1,3)(2x− 4y) = −10.

6. Em cada exercício abaixo verique se lim(x,y)→(0,0)

f (x, y) existe. Justique a sua resposta.

(a) f (x, y) =x2

x2 + y2(b) f (x, y) =

x2y2

x2 + y2(c) f (x, y) =

x3 + y3

x2 + y2

(d) f (x, y) =x2 + y

x2 + y2(e) f (x, y) =

x2 + y3

x2 + y2(f) f (x, y) =

x− y

x+ y

7. Calcule, se possível, o valor dos limites abaixo. Justique a sua resposta.

(a) lim(x,y)→(0,2)

2x(y − 2)

3x2 + y2 − 4y + 4(b) lim

(x,y)→(3,0)

(x− 3)5y2 + (x− 3)4y4

(x2 − 6x+ 9 + y6)3

(c) lim(x,y,z)→(2,1,0)

(x+ y + z − 3)5

(x− 2)(y − 1)z3(d) lim

(x,y,z)→(0,0,0)

x2y2z2

x6 + y6 + z6

8. Calcule o valor dos seguintes limites usando as propriedades:

(a) lim(x,y)→(2,2)

ex−y[ln(x2 − y2)− ln(x− y)];

(b) lim(x,y)→(0,0)

sin(x2 + y2)

x2 + y2;

(c) lim(x,y)→(0,0)

cos(x2 + y2)− 1

x2 + y2;

(d) lim(x,y)→(

√2,1)

√x2 − 2

x2y + x2 − 2y − 2;

(e) lim(x,y)→(0,1)

x+ y − 1√x−

√1− y

;

108

Page 115: Apostila de Integrais 2

(f) lim(x,y)→(0,0)

(x2 + y2) ln(x2 + y2);

(g) lim(x,y)→(3,2)

(x2 − 5x+ 6)(y4 − 16)

(x− 3)(y − 2);

(h) lim(x,y)→(0,π)

sin(x− y) + sin(y)

xy.

9. Use as propriedades de limite para determinar o valor de lim(x,y)→(4,4)

g(x, y), sendo

lim(x,y)→(4,4)

[(x− y)g(x, y)

x2 − y2+ cos(x− y)

]=

1

2.

10. Se lim(x,y)→(1,1)

xf(x, y) + ey−x[ln(x2 − y2) − ln(x − y)] = ln 2, determine o valor de

lim(x,y)→(1,1)

f(x, y).

11. Em cada item verique se a função f é contínua, justicando sua resposta.

(a) f(x, y) =

2xy√x2 + y2

, se (x, y) = (0, 0)

0, se (x, y) = (0, 0)

(b) f (x, y, z) =

(x+ y + z + 1)2

(x− 1)2 + y4 + (z + 2)2, se (x, y, z) = (1, 0,−2)

1, se (x, y, z) = (1, 0,−2)

(c) f (x, y) =

x+ y

x2 + y2, se (x, y) = (0, 0)

0, se (x, y) = (0, 0)

(d) f (x, y) =

5xy2 − 3x2y

2x2 + y4, se (x, y) = (0, 0)

0, se (x, y) = (0, 0)

(e) f (x, y) =

x2y2

x2 + y4, se (x, y) = (0, 0)

0, se (x, y) = (0, 0)

(f) f (x, y) =

3xy2 − 6y

x2 − 4x+ 4 + y2, se (x, y) = (2, 0)

1, se (x, y) = (2, 0)

(g) f (x, y) =

3y4(x+ 1)4

(y4 + x2 + 2x+ 1)3, se (x, y) = (−1, 0)

0, se (x, y) = (−1, 0)

12. Determine se a função f(x, y) =

5x2(y − 2)

x2 + y2 − 4y + 4, se (x, y) = (0, 2)

b, se (x, y) = (0, 2)é contínua

em (0, 2) para algum valor de b ∈ R. Justique sua resposta com argumentos consis-tentes, explicitando o valor de b e uma relação entre ε e δ, se for o caso.

109

Page 116: Apostila de Integrais 2

13. Determine se a função f(x, y) =

x2 + 3x2y + y2

2x2 + 2y2, se (x, y) = (0, 0)

b, se (x, y) = (0, 0)é contínua

na origem para algum valor de b ∈ R. Justique sua resposta com argumentos consis-tentes, explicitando o valor de b e uma relação entre ε e δ, se for o caso.

14. Determine se a função f(x, y, z) =

(x− 3)(y + 2)(z − 1)2

(2x+ y − 3z − 1)4, se (x, y, z) = (3,−2, 1)

b, se (x, y, z) = (3,−2, 1)é contínua em (3,−2, 1) para algum valor de b. Justique sua resposta com argumentosconsistentes.

15. Utilize argumentos consistentes para calcular, se existir, o valor de f(0, 0), onde f :R2 → R é uma função contínua dada por

f(x, y) = 1 + xyx2 − y2

x2 + y2se (x, y) = (0, 0).

16. Escreva as funções abaixo na forma de funções composta e encontre as derivadas par-ciais em relação a x e y.

(a) z = ln√x2e2y + x2e−2y (b) z = ln

((ex+y2)2 + x2 + y

)(c) z = x2 cos2 y + 2x2 sin y cos y + x2 sin2 y (d) z =

√x+ y2 + (x2e−2y)3

17. Usando a regra da cadeia, encontre as derivadas parciais de

(a) f (x, y) =x+ y

x2 + y2 + 1(b) f (x, y) = ln 3

√(x2 + y2) + (2x+ y2x2)

18. Mostre que z = sin

(x

y

)+ ln

(yx

)é solução da equação diferencial y

∂z

∂y+ x

∂z

∂x= 0.

19. Verique se a função f(x, y, z) = x2 sin(yz

)+ y2 ln

(zx

)+ z2ex/y é uma solução da

equação diferencial parcial x∂f

∂x+ y

∂f

∂y+ z

∂f

∂z= 2f.

20. Se z = ln (x2 + y2) mostre que∂2z

∂x2+∂2z

∂y2= 0.

21. Verique se a função f(x, y) = exy + ln

(2y2

x2

)é uma solução da equação diferencial

parcialx

y

∂2f

∂x2+y

x

∂2f

∂y2= 2xyexy.

22. Se u =1√

x2 + y2 + z2mostre que

∂2u

∂x2+∂2u

∂y2+∂2u

∂z2= 0.

23. Sejam f (x, y, z) = x3y4z5 + x sin yz e g (x, y) = ex ln y. Encontre todas as derivadasparciais de f e g até a terceira ordem.

24. Determine uma equação para o plano que é tangente à superfície −2x2 + y2 =−z2, no

ponto P (−1, 1, 2).

110

Page 117: Apostila de Integrais 2

25. Encontre a equação do plano tangente à superfície −12x2 + 3y2 − z = 0, no pontoP (1, 4, 36).

26. Encontre um ponto da superfície z = 3x2 − y2 onde seu plano tangente é paralelo aoplano 6x+ 4y − z = 5.

27. Determine a equação do plano que é tangente a superfície denida implicitamente porz3 − (x2 + y2)z + 2 = 0 no ponto P (1, 2, 2).

28. Sabe-se que a equação x2 + z3 − z − xy sin z = 1 dene implicitamente uma funçãoz = f(x, y) cujo gráco passa pelo ponto P (1, 1, 0). Determine a equação do planotangente ao gráco de f no ponto P.

29. Sabendo que o plano 2x + y + 3z − 6 = 0 é paralelo ao plano tangente ao gráco de

z = f(x, y), no ponto P (1, 1, 1), calcule os valores de∂f

∂x(1, 1) e

∂f

∂y(1, 1).

30. Mostre que todos os planos tangentes ao gráco de f(x, y) =x3

x2 + y2passam pela

origem.

31. Determine a equação do plano π que passa pelos pontos (1, 1, 2) e (−1, 1, 1) e que sejatangente ao gráco de f(x, y) = xy.

32. Considere as funções f(x, y) = 2 + x2 + y2 e g(x, y) = −x2 − y2. Determine:

(a) a equação do plano tangente ao gráco de f(x, y) no ponto (1, 2, 7);

(b) o ponto onde o plano obtido no item (a) tangencia o gráco de g(x, y).

33. Considere a função de duas variáveis f(x, y) =√100 + 4y2 − 25x2.

(a) Determine o domínio de f(x, y).

(b) Determine o ponto sobre o gráco de z = f(x, y) tal que o plano tangente az = f(x, y) neste ponto seja ortogonal ao vetor v = (0, 1, 2) .

34. Considere a função de duas variáveis f(x, y) =√

36− 9x2 − 4y2. E seja C a curva deinterseção do gráco de z = f(x, y) com o plano y = 2.

(a) Determine o domínio de f(x, y).

(b) Determine a equação da reta tangente à curva C no ponto (1, 2,√11).

35. Seja w = (x2+y2+z2)k. Determine para quais valores de k a igualdade∂2w

∂x2+∂2w

∂y2+

∂2w

∂z2= 0 é satisfeita.

36. Seja z = f(u), com u = x+ ay2. Prove que∂z

∂y− 2ay

∂z

∂x= 0.

37. Seja f(x− y, y − z, z − x) uma função diferenciável. Calcule∂f

∂x+∂f

∂y+∂f

∂z.

38. Dada uma função f

(y − x

xy,z − y

yz

), calcule x2

∂f

∂x+ y2

∂f

∂y+ z2

∂f

∂z.

111

Page 118: Apostila de Integrais 2

39. Seja w = xf(yx

)− g

(y

x,x

y

), onde f e g são funções diferenciáveis. Mostre que

∂w

∂x+y

x

∂w

∂y= f

(yx

).

40. Seja f uma função diferenciável qualquer e considere w = x3f(yx,x

z,z

x

).Mostre que

w satisfaz a equação diferencial parcial x∂w

∂x+ y

∂w

∂y+ z

∂w

∂z= 3w.

41. Seja w = f(x2−at)+g(x+at2), onde f e g são funções diferenciáveis e a ∈ R. Calcule∂2w

∂t2e∂2w

∂x2.

42. Seja w = f (u)+g(v) uma função diferenciável, onde u(x, t) = x2+t2 e v(x, t) = x2−t2.Mostre que

∂2w

∂x2+∂2w

∂t2= 4

df

du+ 4(x2 + t2)

(d2f

du2+d2g

dv2

).

43. Seja w = f (x, y) uma função diferenciável, onde x(r, θ) = r cos θ e y(r, θ) = r sin θ.Mostre que (

∂w

∂r

)2

+1

r2

(∂w

∂θ

)2

=

(∂w

∂x

)2

+

(∂w

∂y

)2

.

44. Considere a função g(t) = t · ∂f∂y

(2t, t3), em que f(x, y) é uma função de duas variáveis

com derivadas parciais de primeira e segunda ordem contínuas. Determine g′(t).

45. Sejam f(u, v) uma função de duas variáveis diferenciável e F (x, y) uma função de duasvariáveis denida por

F (x, y) = f(sin x, cos y).

Sabendo que∂f

∂u(0, 1) =

∂f

∂v(0, 1) = 2, calcule

∂F

∂x(0, 0) e

∂F

∂y(0, 0).

46. Seja y = y(x) uma função denida implicitamente por x = F (u, v), onde F é dife-

renciável, u = x2 + y e v = y2. Determinedy

dxem função de x, y e das derivadas de

F.

47. Seja z = z(x, y) uma função denida implicitamente por F (xy, z) = 0, onde F é uma

função diferenciável. Mostre que x∂z

∂x− y

∂z

∂y= 0.

48. A areia é derramada num monte cônico na velocidade de 4 m3 por minuto. Num dadoinstante, o monte tem 6 m de diâmetro e 5 m de altura. Qual a taxa de aumentoda altura nesse instante, se o diâmetro aumenta na velocidade de 2 centımetros porminuto?

49. A resistência R, em ohms, de um circuíto é dada por R = EI, onde I é a corrente

em amperes e E é a força eletromoriz em volts. Num instante, quando E = 120V eI = 15A, E aumenta numa de velocidade 0, 1V/s e I diminui à velocidade de 0, 05A/s.Encontre a taxa de variação instantânea de R.

112

Page 119: Apostila de Integrais 2

50. Num determinado circuito elétrico, a corrente I é dada, em função da voltagem V,

da resistência R e da indutância L por I =V√

R2 + 10L2. No instante em que V é

210 volts, R é igual a 3 ohms e está decaindo a uma taxa de 0, 1 ohms por segundo,enquanto que L é igual a 2 henrys e está crescendo a uma razão de 0, 05 henrys porsegundo. Qual deve ser a variação de V, neste instante, para que a corrente permaneçaconstante?

51. Dois carros, um dirigindo-se para leste com velocidade de 80 km/h, o outro dirigindo-separa sul com velocidade de 50 km/h, estão viajando em direção ao encontro das duasrodovias. A que velocidade os carros se aproximam um do outro, no momento emque o primeiro carro está a 400 m e o segundo carro está a 300 m da interseção dasrodovias?

52. Um reservatório de areia tem o formato de uma pirâmide invertida de base quadrada.A taxa de vazão da areia deste reservatório diminui a uma velocidade de 40π cm3/min.Esta areia forma no chão um monte cônico. O volume total de areia no reservatórioera 243π cm3. Determine a velocidade com que aumenta a altura do cone quando umterço da areia já caiu do reservatório. Sabendo que neste instante a altura do monte é3 cm e o raio aumenta uma taxa de 0, 3 cm/min.

53. Use a lei do gás comprimido PV = kT, com k = 10, para encontrar a taxa de variaçãoinstantânea da temperatura no instante em que o volume do gás é 120cm3 e está sobuma pressão de 8din/cm2, a taxa de crescimento é 2 cm3/s, a pressão decresce a taxade 0,1 din/cm2 · s. Sugestão: escreva P, V e T em função do tempo.

54. A energia consumida num resistor elétrico, em função da voltagem V e da resistência

R é dada por P =V 2

R. Deseja-se que um determinado resistor tenha uma voltagem

de 200 volts e uma resistência de 20 ohms.

(a)Qual deverá ser a variação na resistência para que a energia consumida nesse resistorque praticamente inalterada quando a voltagem sofrer um decréscimo de 0, 2 volts?

(b) Se esse resistor consumir 3 % a mais que a energia desejada quando sua resistênciafor 1 % menor que a desejada, qual será a variação percentual da sua voltagem?

55. Considere o triângulo da gura abaixo.

Num dado instante temos que x = 40cm, y = 50cm e θ =π

6rad.

(a) Se o comprimento x e o ângulo θ aumentam a uma taxa de 3cm/s e 0.05rad/s,respectivamente, e o comprimento y diminui a uma taxa de 2cm/s, determine ataxa de variação da área deste triângulo em relação ao tempo.

(b) Suponha que ao realizar a medida dos comprimentos dos lados, x e y, e do ângulo,θ, foi cometido um erro. Em relação a qual destas variáveis o valor da área é maissensível? Justique sua resposta usando diferenciais.

113

Page 120: Apostila de Integrais 2

56. O ângulo central de um setor circular é 80 e o raio desse setor é 20 cm.Qual deverá ser oacréscimo a ser dado no raio para que a área deste setor circular que aproximadamenteinalterada quando o ângulo central sofrer um decréscimo de 1?

57. A pressão P (em quilopascals), o volume V (em litros) e a temperatura T (em kelvins)de um mol de um gás ideal estão relacionados por meio da fórmula PV = 8, 31T. Deter-mine a taxa de variação da pressão quando a temperatura é 300K e está aumentandoa uma taxa de 0,1K/s e o volume é 100L e está aumentando com a taxa de 0,2L/s.

58. A fórmula do tamanho do lote de Wilson em economia diz que a quantidade mais

econômica Q de produtos para uma loja pedir é dada pela fórmula Q =√

2KMh, onde

K é o custo do pedido, M é o número de itens vendidos por semana e h é o custosemanal de manutenção de cada item. Se K = 2, M = 20 e h = 0, 05, determine:

(a) para qual das variáveis K, M e h a sensibilidade de Q é maior? Justique suaresposta usando diferenciais.

(b) a variação do número de itens vendidos por semana se Q e K aumentam 10% eo custo semanal de manutenção de cada item permanece constante.

59. Uma lata de metal fechada, na forma de um cilindro circular reto, possui altura internaigual a 6cm, raio interno 2cm e espessura 0,1cm. Usando diferencial total faça umaestimativa da quantidade de material necessário para fabricação dessa lata em cm3.

60. Um pintor cobra R$12, 00 por m2 para pintar as 4 paredes e o teto de uma sala. Se asmedidas do teto são 12m e 15m e altura 3m, com um erro de até 0, 05m em todas asdimensões. Aproxime o erro, usando a diferencial, na estimativa do custo do trabalho,a partir dessas medidas.

61. A energia consumida num resistor elétrico é dada por P = V 2

Rwatts. Se V = 120 volts

e R = 12 ohms, calcular através da diferencial um valor aproximado para a variaçãode energia quando V decresce de 0, 001V e R aumenta de 0, 02 ohms.

62. Um material está sendo escoado de um recipiente, formando uma pilha cônica. Numdado instante, o raio da base é de 12 cm e a altura é 8 cm . Obtenha uma aproximaçãoda variação do volume, se o raio varia para 12, 5 cm e a altura para 7, 8 cm. Compareo resultado da variação obtida com a variação exata do volume.

63. Um funil cônico (sem tampa) de dimensões h = 4 m e r = 3 m será construído paraauxiliar o armazenamento de grãos. Sabendo que o material utilizado na construçãodesse funil custa R$ 150, 00 por m2. Usando diferencial, responda qual será o acréscimode custo na construção desse funil se aumentarmos seu raio em 5% e sua altura 3%.

64. Uma caixa em forma de paralelepípedo tem dimensões internas iguais a 7cm, 8cm e13cm. Sendo a espessura das paredes 0,2cm, do fundo 0,3cm e da tampa 0,1cm, fazeruma estimativa aproximada em cm3 da quantidade de material necessário a ser usadona confecção da caixa.

65. A altura e o diâmetro de um cilindro circular reto são 10 e 6 centímetros, respectiva-mente. Se um pequeno acréscimo no diâmetro produzir um cilindro quatro por centomais largo, qual será, aproximadamente, a porcentagem permitida na variação da al-tura para que não ocorra uma variação no cálculo do volume deste cilindro? Justiquesua resposta.

114

Page 121: Apostila de Integrais 2

66. Uma empresa de cosméticos necessita de latas cilíndricas fechadas com raio de 4 cm ealtura de 20 cm para embalar seus produtos. Porém, devido as variações na fabricação,estas embalagens apresentam pequenas oscilações em suas medidas. Diante disso:

(a) Se um engenheiro de controle de qualidade precisa assegurar que essas embalagenstenham o volume correto, ele deverá se preocupar mais com variações no raio ouna altura? Justique sua resposta com argumentos usando diferenciais.

(b) Se o custo de fabricação destas embalagens for de 20 centavos por cm2, obtenhauma estimativa para o acréscimo (ou decréscimo) no custo ao fabricar-se emba-lagens com altura 2% maior e raio 3% menor em relação ao original.

67. Sabe-se que a resistência R produzida por dois resistores de R1 e R2 ohms em paralelo

é dada por1

R=

1

R1

+1

R2

. Um estudante de engenharia projetou um circuito com

dois resistores em paralelo com resistências de R1 = 100 ohms e R2 = 400 ohms.Porém, como existe uma variação na fabricação, os resistores adquiridos pelo estudanteprovavelmente não terão os valores exatos. Diante do exposto:

(a) Determine se o valor deR será mais sensível a variações emR1 ou emR2. Justiquesua resposta, utilizando argumentos diferenciais.

(b) Obtenha uma estimativa para a variação de R, se o estudante utilizar resistênciasde 100, 2 ohms e 399, 7 ohms respectivamente.

68. Usando diferencieis encontre uma aproximação para:

(a) (1, 1)3,02;

(b)cos(e0,2 − 1)√

9, 4;

(c)√

(3, 02)2 + (1, 97)2 + (5, 99)2.

69. Considere a função de duas variáveis dada por f(x, y) = 2

√x2 +

y2

9− 1.

(a) Determine e represente geometricamente o domínio de f(x, y).

(b) Usando diferenciais encontre uma aproximação para f(1.98, 3.3).

70. Considere a função de duas variáveis dada por f(x, y) =x+ y − 1√x−

√1− y

.

(a) Determine e represente geometricamente o domínio de f(x, y).

(b) Usando as propriedades de limite calcule lim(x,y)→(4,−3)

f(x, y).

(c) Usando diferenciais encontre uma aproximação para f(9.06, −3.04).

(d) Usando diferenciais encontre uma aproximação para f(4.04, −3.04).

71. Dada a superfície z = −x2 − y2 + 6x− 4y − 4, determine:

(a) a equação do plano tangente a esta superfície no ponto P (3,−2, 9);

(b) a classicação do ponto P (3,−2, 9), se possível, como extremo da superfície.

115

Page 122: Apostila de Integrais 2

72. Determine os pontos críticos da função f(x, y) = 2 ln(x2y) +1

4x4 − 5

2x2 − y + 5 e

classique-os, se possível, como pontos de máximo, mínimo ou de sela.

73. Precisa-se construir um tanque com a forma de um paralelepípedo para estocar 270m3 decombustível, gastando a menor quantidade de material em sua construção. Supondoque todas as paredes serão feitas com o mesmo material e terão a mesma espessura,determinar as dimensões do tanque.

74. Uma caixa retangular tem volume 20 m3. O material usado nas laterais custa R$ 1,00por metro quadrado, o material usado o fundo custa R$ 2,00 por metro quadrado e omaterial usado na tampa custa R$ 3,00 por metro quadrado. Quais as dimensões dacaixa para que o custo de confeção seja mínimo?

75. Sejam A(0, 0), B(4, 0) e C(3, 3) os vértices de um triângulo. Encontre o ponto P (x, y)tal que a soma dos quadrados das distâncias do ponto P aos vértices seja a menorpossível.

76. Determine as dimensões relativas de uma caixa retangular sem tampa que possua umaárea total de 300 cm2 e que comporte o máximo possível de volume.

77. Uma empresa de embalagem necessita fabricar caixas retangulares de 128 cm3 de vo-lume. Se o material da parte lateral custa a metade do material a ser usado para atampa e para o fundo da caixa, determinar as dimensões da caixa que minimizam oseu custo de produção.

78. Uma caixa retangular é colocada no primeiro octante, com um dos seus vértices naorigem e três de suas faces coincidindo com os três planos coordenados. O vérticeoposto à origem está situado no plano de equação 3x + 2y + z = 6. Qual é o volumemáximo possível de tal caixa? Quais serão as suas dimensões?

79. Um pequeno fabricante produz dois tipos de lâmpadas: uorescentes e incandescentes.O fabricante sabe que, se produzir x lâmpadas uorescentes e y lâmpadas incandes-centes, terá um custo total de 12x+ 11y + 4xy e poderá vender cada uorescente por100− 2x reais e cada incandescente por 125− 3y reais. Quantas lâmpadas devem serproduzidas para que o fabricante tenha lucro máximo? Qual é o lucro máximo?

80. Uma certa indústria produz dois tipos de ligas metálicas. O custo total da produçãodessas ligas é expresso pela função C(x, y) = x2 + 100x + y2 − xy e a receita totalobtida com a vendas dessas ligas é dada pela função R(x, y) = 100x−x2+2000y+xy,onde x e y representam a quantidade de toneladas de cada uma das ligas. Determineo nível de produção que maximiza o lucro dessa indústria.

81. Determinada empresa produz 2 produtos cujas quantidades são indicadas por x ey. Tais produtos são oferecidos ao mercado consumidor a preços unitários p1 e p2,respectivamente, que dependem de x e y conforme equações p1 = 120 − 2x e p2 =200−y. O custo total da empresa para produzir e vender quantidades x e y dos produtosé dado por C = x2 + 2y2 + 2xy. Admitindo que toda a produção seja absorvida pelomercado, determine a produção que maximiza o lucro.

82. Uma loja vende dois tipos de casacos A e B. O casaco A custa R$ 40,00 e o casaco Bcusta R$ 50,00. Seja x o preço de venda do casaco A e y o preço de venda do casacoB. O total de vendas feito pela loja foi de (3200− 50x+ 25y) unidades do casaco A

116

Page 123: Apostila de Integrais 2

e (25x− 25y) unidades do casaco B. Encontre os valores de x e y para que o lucroobtido pela loja seja o maior possível.

83. Encontre as coordenadas do ponto que pertence ao plano x + y − z + 5 = 0 e cujoquadrado da distância ao ponto P (3,−2, 1) seja mínimo.

84. Alguns correios exigem que o perímetro da face superior de um pacote mais o com-primento da altura não exceda 84 cm, para que possa ser enviado. Determinar asdimensões do pacote retangular de maior volume que pode ser enviado.

85. Suponha que a temperatura em um ponto qualquer da esfera x2 + y2 + z2 = 4 sejadada, em graus, por T (x, y, z) = xyz2. Em quais pontos desta esfera a temperatura émáxima? Em quais pontos da esfera a temperatura é mímima?

86. Determine o valor máximo para a soma dos cossenos dos ângulos internos de umtriângulo.

117

Page 124: Apostila de Integrais 2

2.13 Respostas

1. (a) Todos os pontos do plano xy acima (ou no interior) do gráco de y = x2.

(b) Todos os pontos do plano xy à direita (ou acima) e sobre a reta y = −1 − xexcluindo a reta x = 1.

(c) Todos os pontos do plano xy à esquerda (ou no exterior) do gráco de x = y2.

(d) Todos os pontos do plano xy que estão abaixo da reta y = 1 e à esquerda (ouacima) da reta y = x.

(e) Todos os pontos do plano xy que estão no interior da circunferência x2 + y2 = 4e abaixo (ou no exterior) do gráco de y = 2x2.

(f) Todos os pontos (x, y, z) que estão no interior do elipsóidex2

16+y2

16+z2

4= 1.

2. .(a) esfera de raio 5 (b) hiperboloide de uma folha(c) plano (d) cone circular

3. As curvas de nível são circunferências de raio 2, 12e 1

3, respectivamente.

4. As superfícies de nível são ou cones, ou hiperbolóides de uma folha ou hiperbolóidesde duas folhas, dependendo se o nível for k = 0, k > 0 ou k < 0, respectivamente.

5. (a) δ =ε

5(b) δ =

ε

6

6. .(a) nao existe (b) L = 0, com δ =

√ε (c) L = 0, com δ = ε

2

(d) nao existe (e) nao existe (f) nao existe

7. Todos os limites dados não existem.

8. .(a) ln 4 (b) 1 (c) 0

(d)√22

(e) 0 (f) 0

(g) 32 (h) − 1π

9. lim(x,y)→(4,4)

g(x, y) = −4

10. lim(x,y)→(1,1)

f(x, y) = 0

11. .(a) contınua, com δ = ε

2(b) descontınua

(c) descontınua (d) descontınua

(e) contınua, com δ =√ε (f) descontınua (g) descontınua

12. f é contínua para b = 0 e, neste caso, δ =ε

5.

13. f é contínua para b = 12e, neste caso, δ =

3

118

Page 125: Apostila de Integrais 2

14. f é sempre descontínua, independente do valor de b.

15. f(0, 0) = 1. Justica-se pela denição, com δ =√ε.

16. .

(a)∂z

∂x=

1

xe

∂z

∂y=e2y − e−2y

e2y + e−2y

(b)∂z

∂x=

2(e2(x+y2) + x)

e2(x+y2) + x2 + ye

∂z

∂y=

4ye2(x+y2) + 1

e2(x+y2) + x2 + y

(c)∂z

∂x= 2x(1 + sin(2y)) e

∂z

∂y= 2x2 cos(2y)

(d)∂z

∂x=

1 + 6x5e−6y

2√x+ y2 + (x2e−2y)3

e∂z

∂y=

2y − 6x6e−6y

2√x+ y2 + (x2e−2y)3

17. .

(a)∂f

∂x=

−x2 + y2 − 2xy + 1

(x2 + y2 + 1)2∂f

∂y=x2 − y2 − 2xy + 1

(x2 + y2 + 1)2

(b)∂f

∂x=

2x+ 2 + 2xy2

3(x2 + y2 + 2x+ x2y2)

∂f

∂y=

2y + 2x2y

3(x2 + y2 + 2x+ x2y2)

18. Basta derivar e substituir na equação diferencial dada.

19. Sim, f é solução da equação diferencial dada.

20. Basta tomar as derivadas parciais de segunda ordem de z e substituir na equação dada.

21. Sim, f é solução da equação diferencial dada.

22. Basta tomar as segundas derivadas parciais de u e substituir na equação dada.

23. .∂3f

∂x3= 6y4z5

∂3f

∂y3= 24x2yz5 − xz3 cos yz

∂3f

∂z3= 60x3y4z2 − xy3 cos yz

∂3g

∂x3= ex ln y

∂3g

∂y3=

2ex

y3

24. 8x+ 4y + z + 2 = 0.

25. −24x+ 24y − z = 36

26. P (1,−2,−1)

27. −4x− 8y + 7z + 6 = 0

28. z = x− 1

29.∂f

∂x(1, 1) =

−2

3,

∂f

∂y(1, 1) =

−1

3

30. Basta obter a equação do plano tangente num ponto P (a, b, f(a, b)) qualquer e mostrarque a origem satisfaz sua equação.

119

Page 126: Apostila de Integrais 2

31. x+ 6y − 2z − 3 = 0

32. (a) 2x+ 4y − z − 3 = 0 (b) (−1,−2,−5)

33. (a) (x, y) ∈ R2/ − 2 ≤ x ou x ≥ 2, y2 ≥ 25x2

4− 25 ∪ (x, y) ∈ R2/ − 2 ≤ x ≤

2, y qualquer; (b) P(0,−

√53, 8√

53

).

34. (a) Os pontos do plano xy que estão no interior ou sobre a elipsex2

4+y2

9= 1;

(b)

y = 2

z −√11 = − 9√

11(x− 1)

35. k = 0 e k = −12

36. Utilize a regra da cadeia.

37. Chame u = x− y, v = y− z e w = z−x,utilize a regra da cadeia e mostre que a somadesejada é zero.

38. Chame u =y − x

xy, v =

z − y

yze utilize a regra da cadeia para mostrar que a soma

desejada é zero.

39. Basta utilizar a regra da cadeia e a regra do produto.

40. Utilize a regra do produto juntamente com a regra da cadeia, com u =y

x, v =

x

ze

w =z

x.

41. Se u = x2 − at e v = x+ at2 obtém-se, pela regra da cadeia e do produto:

∂2w

∂x2= 4x2

d2f

du2+ 2

df

du+d2g

dv2∂2w

∂t2= 4a2t2

d2g

dv2+ 2a

dg

dv+ a2

d2f

du2.

42. Utilize regra da cadeia e regra do produto para obter as derivas segundas.

43. Basta utilizar a regra da cadeia.

44. g′(t) =∂f

∂y(2t, t3) + 2t · ∂2f

∂x∂y(2t, t3) + 3t3

∂2f

∂y2(2t, t3).

45.∂F

∂x(0, 0) = 2 e

∂F

∂y(0, 0) = 0.

46.dy

dx=

1− 2x∂F

∂u∂F

∂u+ 2y

∂F

∂v

47. Utilize derivação implícita e regra da cadeia.

48.dh

dt≃ 0, 39m/min

49.dR

dt=

1

30ohms por segundo

120

Page 127: Apostila de Integrais 2

50.dV

dt= 3 volts por segundo

51. 94km/h

52. 1, 28cm/min

53. 0, 4

54. (a) dR = −0, 04 (b) 1 %

55. (a) dAdt

≈ 60, 8cm2/s (b) Em relação a θ.

56. 0, 125cm

57. −0, 042kPa/s

58. (a) Q é mais sensível em relação à variação de h;(b) dM = 4 que corresponde a uma variação de 10%

59. 3, 2πcm2

60. dC = 55, 8

61. dP = −2, 02

62. dV = 70, 371 cm3 ∆V = 69, 9 cm3

63. dC = 616, 38

64. dV = 100, 4cm3

65. a altura deve decrescer em 8%, aproximadamente.

66. (a) O engenheiro deve dar maior atenção à variações no raio, pois o volume é 10 vezesmais sensível à variaões no raio do que à variações na altura.

(b) dC = −221, 16 centavos

67. (a) R é dezesseis vezes mais sensível a variações em R1 do que a varições em R2.

(b) dR = 0, 116 Ω

68. (a) 1,3

(b)4

135

(c)242

35

69. (a) Df = (x, y) ∈ R2/ x2 +y2

9≥ 1, ou seja, os pontos no exterior e sobre a elipse

de equação x2 +y2

9= 1

(b) 4,06

70. (a) Df = (x, y) ∈ R2/ x ≥ 0, y ≤ 1 e x+ y = 1, ou seja, os pontos abaixo e sobrea reta y = 1, à esquerda e sobre o eixo y (reta x = 0) e não pertencentes a retay = 1− x.

121

Page 128: Apostila de Integrais 2

(b) lim(x,y)→(4,−3)

f(x, y) = 4

(c) 5,02

(d) 4,02

71. (a) z − 9 = 0

(b) P é ponto de máximo

72. P1(−2, 2) e P2(2, 2) são pontos de sela e P3(−1, 2) e P4(1, 2) são pontos de máximo.

73. x = y = z = 3√270

74. x = 2, y = 2, z = 5

75. x = 73e y = 1

76. x = y = 10, z = 5

77. x = y = 4, z = 8

78. x = 23, y = 1, z = 2, V = 4

3

79. x = 9, y = 13

80. x = 1000, y = 2000

81. x = 10, y = 30

82. x = 84, y = 89

83. x = 43, y = −11

3, z = 22

3

84. x = y = 14, z = 28

85. A temperatura é máxima em (1, 1,±√2) e (−1,−1,±

√2). E mínima em (−1, 1,±

√2)

e (1,−1,±√2). Note, no entanto, que existem ainda outros 5 pontos de sela.

86.3

2

122

Page 129: Apostila de Integrais 2

Capítulo 3

INTEGRAIS DUPLAS

Objetivos (ao nal do capítulo espera-se que o aluno seja capaz de):

1. Encontrar o valor de uma integral dupla;

2. Interpretar geometricamente uma integral dupla;

3. Encontrar os limitantes que permitem calcular o valor de uma integral dupla;

4. Inverter a ordem de integração numa integral dupla;

5. Calcular integrais duplas em coordenadas polares;

6. Transformar uma integral dupla de coordenadas cartesianas para coordenadas polares;

7. Transformar uma integral dupla de coordenadas polares para coordenadas cartesianas;

8. Resolver exercícios usando uma ferramenta tecnológica.

A prova será composta por questões que possibilitam vericar se os objetivos foramatingidos. Portanto, esse é o roteiro para orientações de seus estudos. O modelo de formu-lação das questões é o modelo adotado na formulação dos exercícios e no desenvolvimentoteórico desse capítulo, nessa apostila.

123

Page 130: Apostila de Integrais 2

3.1 Introdução

No estudo das funções de várias variáveis, ao calcularmos derivadas parciais escolhíamosuma das variáveis independentes para derivar f em relação a ela e admitíamos que as demaiseram constantes. O mesmo procedimento será adotado para integração múltipla. Antes deestudarmos a integração múltipla propriamente dita vamos ver alguns exemplos.

EXEMPLO 3.1.1 Encontre a primitiva da função f (x, y) = 12x2y3 em relação x.

Solução: Como foi dito, vamos admitir y como constante e integrar em relação a x. Por-tanto, ∫

12x2y3dx = 4x3y3 + C.

Porém, nesse caso, a constante C é uma função de y. Pode ser por exemplo, C (y) =ay3 + by2 + cy + 3 e uma das primitivas de f será

F (x, y) = 4x3y3 + ay3 + by2 + cy + 3.

Note que∂F (x, y)

∂x= 12x2y3.

EXEMPLO 3.1.2 Encontre a primitiva da função f (x, y) = 12x2y3 em relação a y.

Solução: Agora vamos admitir x como constante e integrar em relação a y. Portanto,∫12x2y3dy = 3x2y4 +K.

Nesse caso, a constante K é uma função de x. Pode ser por exemplo, K (x) = ax3+bx2+cx+3 e uma outra primitiva de f (x, y) = 12x2y3 será F (x, y) = 3x2y4 + ax3 + bx2 + cx+3.Note que

∂F (x, y)

∂y= 12x2y3.

EXEMPLO 3.1.3 Encontre o valor da expressão∫ x+1

x

24xydy.

Solução: Aplicando o Teorema Fundamental do Cálculo temos∫ x+1

x

24xydy = 12xy2

∣∣∣∣∣x+1

x

= 12x (x+ 1)2 − 12x (x)2

= 12x3 + 24x2 + 12x− 12x3 = 24x2 + 12x.

Como podemos observar∫ x+1

x24xydy é uma função de x, ou seja, F (x) =

∫ x+1

x

24xydy =

24x2 + 12x.

EXEMPLO 3.1.4 Encontre o valor numérico de∫ 2

1

F (x) dx onde F (x) =

∫ x+1

x

24xydy.

124

Page 131: Apostila de Integrais 2

Solução: No exemplo anterior vimos que

F (x) =

∫ x+1

x

24xydy = 24x2 + 12x.

Portanto, aplicando o Teorema Fundamental do Cálculo temos que∫ 2

1

F (x) dx =

∫ 2

1

(24x2 + 12x

)dx =

(8x3 + 6x2

) ∣∣∣∣∣2

1

= 8(2)3 + 6 (2)2 −(8 (1)3 + 6 (1)2

)= 74.

Os Exemplos 3.1.3 e 3.1.4 podem ser reescritos como∫ 2

1

F (x) dx =

∫ 2

1

(∫ x+1

x

24xydy

)dx

ou simplesmente ∫ 2

1

F (x) dx =

∫ 2

1

∫ x+1

x

24xydydx.

Dessa forma, obtemos um exemplo de integral dupla. Note que a variável dependente éa primeira a ser integrada e a variável independente a última. O processo de solução é dadoabaixo. ∫ 2

1

∫ x+1

x

24xydydx =

∫ 2

1

(∫ y=x+1

y=x

24xydy

)dx

=

∫ 2

1

12xy2

∣∣∣∣∣y=x+1

y=x

dx

=

∫ 2

1

(24x2 + 12x

)dx

=(8x3 + 6x2

) ∣∣∣∣∣2

1

= 74.

EXEMPLO 3.1.5 Encontre o valor da integral I =

∫ 4

0

∫ 3x

x

3√16− x2dydx.

Solução: Aplicando o Teorema Fundamental do Cálculo primeiro integrando em relação ay e depois em relação a x.∫ 4

0

∫ 3x

x

3√16− x2dydx =

∫ 4

0

3√16− x2y

∣∣∣∣∣3x

x

dx

=

∫ 4

0

(3√16− x2

)(3x− x) dx

=

∫ 4

0

6x√16− x2dx = −2

√(16− x2)3

∣∣∣∣∣4

0

= −2

√(16− 42)3 + 2

√(16− 02)3 = 128.

125

Page 132: Apostila de Integrais 2

3.2 Interpretação Geométrica da Integral Dupla

A denição de integral dupla comporta uma interpretação geométrica semelhante à deniçãode integral denida simples, associando-a ao problema de cálculo de um volume (ver Figura3.1) da mesma forma que a integral denida é associada ao cálculo de área. Assim, a deniçãoformal da integral dupla envolve a soma de muitos volumes elementares, isto é, diferenciaisde volume, com a nalidade de obter-se o volume total após estas somas.

Figura 3.1: Interpretação Geométrica da Integral Dupla

Consideremos uma função z = f (x, y) ≥ 0, denida numa região R do plano xy. Nossaintenção é estimar o volume aproximado do sólido delimitado superiormente por z = f (x, y) ,inferiormente pelo plano z = 0 e lateralmente pelo cilindro denido pela curva fechada quedelimita a região R. Para tanto, subdividimos R em n−subregiões traçando planos paralelosaos planos coordenados xz e yz, conforme as Figuras 3.2 e 3.3. Assim, a integral será ovolume obtido pela soma de uma innidade de volumes de colunas innitesimais inscritasem forma de paralelepípedos, como mostra a Figura 3.3.

Figura 3.2: Volume elementar

Considere R1, R2, · · · , Ri, · · · , Rn é uma partição de R formada por n retângulos. Seja|P | o comprimento da maior de todas as diagonais dos Ri subretângulos. Seja Ai a área da

126

Page 133: Apostila de Integrais 2

Figura 3.3: Volume aproximado

subregião Ri. Para cada i escolhemos um ponto (xi, yi) ∈ Ri. O produto Vi = f(xi, yi)Ai éo volume do i−ésimo paralelepípedo de base Ai e altura f (xi, yi) . Como há n subdivisões,haverá n paralelepípedos. Assim, o volume aproximado do sólido delimitado superiormentepor f (x, y) e inferiormente pela região R é dado por

V ≈n∑

i=1

f (xi, yi)Ai.

Assim, a integral dupla de uma função f denida numa região R é dada por∫∫R

f (x, y) dxdy = lim|P |→0

n∑i=1

f (xi, yi)Ai,

desde que este limite exista (note que a soma acima é uma soma de Riemann).

OBSERVAÇÃO 3.2.1 Se f (x, y) = 1, então o sólido em questão é na verdade um cilindro cujabase é a região plana R e cuja altura é dada por z = f(x, y) = 1. Como o volume de umcilindro é dado pelo produto de sua base pela altura, temos neste caso, que V = AR, ou seja,a área da região R é dada por

AR =

∫∫R

dxdy.

3.3 Cálculo da Integral Dupla

Saber reconhecer o domínio de integração (ou região de integração) é fundamental parao cálculo das integrais duplas. Outro ponto importante é o reconhecimento das curvas quedelimitam a região de integração. Muitas vezes é conveniente ter essas curvas escritas emfunção de x, isto é, y = f (x) e, outras vezes, é conveniente escrever x em função de y, istoé x = f (y). Essa conveniência é devido ao maior ou menor trabalho exigido no processo docálculo do valor numérico. Vejamos alguns exemplos.

EXEMPLO 3.3.1 Calcule o valor da integral∫∫R

24xydxdy sendo R a região delimitada pelas

curvas y = x2 e y =√x.

127

Page 134: Apostila de Integrais 2

Figura 3.4: Região de Integração do Exemplo 3.3.1

Solução: A região de integração está esboçada na Figura 3.3.1.A seguir, construímos a tabela de limitantes de integração:

Limitantes de IntegraçãoCurvas Funções

curva à esquerda x = 0curva à direita x = 1curva inferior y = x2

curva superior y =√x

As curvas à esquerda e à direita são os limitantes que compõe o primeiro símbolo deintegração e as curvas inferior e superior o segundo. Assim,

∫∫R

24xydxdy =

∫ 1

0

∫ √x

x2

24xydydx =

∫ 1

0

12xy

∣∣∣∣∣2y=

√x

y=x2

dx

=

∫ 1

0

12x(x− x4)dx =

∫ 1

0

(12x2 − 12x5

)dx

=(4x3 − 2x6

) ∣∣∣∣∣1

0

= 2.

O cálculo da integral no Exemplo 3.3.1 foi desenvolvido tomando x como variável inde-pendente. Vamos recalcular esta integral tomando agora y como variável independente.

Primeiramente obteremos a tabela de limitantes da região da Figura 3.4, tomando y comovariável independente.

Curvas Funçõescurva à esquerda y = 0curva à direita y = 1curva inferior x = y2

curva superior x =√y

128

Page 135: Apostila de Integrais 2

A curvas à esquerda e à direita são os limitantes do primeiro símbolo de integração e ascurvas inferior e superior do segundo. Assim,

∫∫R

24xydxdy =

∫ 1

0

∫ √y

y224xydxdy =

∫ 1

0

12yx2

∣∣∣∣∣x=

√y

x=y2

dy

=

∫ 1

0

12y(y − y4)dy =

∫ 1

0

(12y2 − 12y5

)dy

=(4y3 − 2y6

) ∣∣∣∣∣1

0

= 2.

Como podemos observar, o valor numérico é o mesmo nos dois casos.

Muitas vezes a região de integração não é delimitada apenas por quatro curvas. Nessecaso, a escolha da variável independente adequada pode diminuir o trabalho durante o pro-cesso de integração. Vejamos um exemplo.

EXEMPLO 3.3.2 Encontrar o valor da integral∫∫R

dxdy, onde R é a região situada no interior

da parábola y = x2 e delimitada por y = 6− x e y = 1, tomando:(a) x como variável independente;(b) ycomo variável independente.

Solução: A região R está sombreada na Figura 3.5

Figura 3.5: Região de Integração do Exemplo 3.3.2

Obteremos os pontos de interseção das curvas resolvendo os sistemas:y = x2

y = 6− x⇒ x = −3, y = 9

x = 2, y = 4e

y = x2

y = 1⇒ x = −1, y = 1

x = 1, y = 1.

(a) Tomando x como variável independente, vemos que a região de integração deve sersubdividida em três regiões para que o cálculo possa ser efetivado. Portanto, temos a seguintetabela:

Tabela de limitantes referente à região RCurvas R1 R2 R3

curva à esquerda x = −3 x = −1 x = 1curva à direita x = −1 x = 1 x = 2curva inferior y = x2 y = 1 y = x2

curva superior y = 6− x y = 6− x y = 6− x

129

Page 136: Apostila de Integrais 2

e a integral dupla será dada por∫∫R

dxdy =

∫∫R1

dxdy +

∫∫R2

dxdy +

∫∫R3

dxdy

=

∫ −1

−3

∫ 6−x

x2

dydx+

∫ 1

−1

∫ 6−x

1

dydx+ dint21

∫ 6−x

x2

dydx

=

∫ −1

−3

y

∣∣∣∣∣6−x

x2

dx+

∫ 1

−1

y

∣∣∣∣∣6−x

1

dx+

∫ 2

1

y

∣∣∣∣∣6−x

x2

dx

=

∫ −1

−3

(6− x− x2)dx+

∫ 1

−1

(6− x− 1) dx+

∫ 2

1

(6− x− x2

)dx

=22

3+ 10 +

13

6=

39

2.

(b) Tomando y como variável independente, vemos que agora a região de integração podeser subdividida em apenas duas sub-regiões para que o cálculo possa ser efetivado. Portanto,a tabela de limitantes é dada por

Tabela de limitantes referente à região RLimitantes R1 R2

curva à esquerda y = 1 y = 4curva à direita y = 4 y = 9curva inferior x = −√

y x = −√y

curva superior x =√y x = 6− y

Assim, a integral dupla será dada por∫∫R

dxdy =

∫∫R1

dxdy +

∫∫R2

dxdy

=

∫ 4

1

∫ √y

−√y

dxdy +

∫ 9

4

∫ 6−y

−√y

dxdy

=

∫ 4

1

x

∣∣∣∣∣√y

−√y

dy +

∫ 9

4

x

∣∣∣∣∣6−y

−√y

dy

=

∫ 4

1

(2√y)dy +

∫ 9

4

(6− y +√y)dy =

61

6+

28

3=

39

2.

Note que a mudança da variável independente diminuiu o trabalho dispensado ao cálculoda integral.

EXEMPLO 3.3.3 Escreva a integral que representa a área da região delimitada pelas curvasx = y2, y − x = 1, y = 1 e y = −1, tomando:

(a) x como variável independente; (b) y como variável independente.

Solução: A área delimitada pelas curvas pode ser vista na Figura 3.6.Inicialmente, vamos encontrar os pontos de interseçãox = y2

y = 1⇒ P (1, 1),

x = y2

y = −1⇒ Q(1,−1),

y = 1 + xy = −1

⇒ R(−2,−1).

(a) Tomando x como variável independente, devemos dividir a região em duas:

130

Page 137: Apostila de Integrais 2

Figura 3.6: Região de Integração do Exemplo 3.3.3

Tabela de limitantes referente à região RLimitantes R1 R2

curva à esquerda x = −2 x = 0curva à direita x = 0 x = 1curva inferior y = −1 y =

√x

curva superior y = 1 + x y = 1

Usando a simetria da região R2, obtemos

A =

∫ 0

−2

∫ 1+x

−1

dydx+ 2

∫ 1

0

∫ 1

√x

dydx =8

3.

(b) Tomando y como variável independente, basta considerar uma única região:

Tabela de limitantes referente à região RLimitantes R

curva à esquerda y = −1curva à direita y = 1curva inferior x = y − 1curva superior x = y2

Logo, a área é dada por

A =

∫ 1

−1

∫ y2

y−1

dxdy =8

3.

OBSERVAÇÃO 3.3.4 É preciso tomar cuidado com o uso de simetrias, não é suciente quea região seja simétrica, é preciso que a função do integrando, tenha a mesma simetria daregião.

EXEMPLO 3.3.5 Calcule o valor de I =∫∫

R(x + 2y)dA, sendo R a região delimitada pelas

curvas y = 2x2 e y = x2 + 1.

Solução: Exercício. Observe que se for fazer o uso de simetria o resultado será diferente.Isso ocorre devido a observação acima.

Resposta: I =32

15.

131

Page 138: Apostila de Integrais 2

Figura 3.7: Partição em coordenadas polares

3.4 Integrais Duplas em Coordenada Polares

Frequentemente, a região R sobre a qual será calculada a integral dupla é mais facilmentedescrita em coordenadas polares do que em coordenadas retangulares. Vamos descrever oprocesso para o cálculo de integrais duplas em coordenadas polares. Veja a Figura 3.7.

Seja X = α = θ0, α + ∆θ, α + 2∆θ, α + 3∆θ, · · · , θn = β uma partição do arcoβ − α. Consideremos as curvas de raio ri−1 e ri e a sub-região Ri de R delimitada pelascurvas de raio ri−1, ri, θi−1 e θi. A forma de Ri é aproximadamente um retângulo de lados∆ri, li−1 = ri−1∆θi e li = ri∆θi. Podemos admitir que uma aproximação da área de Ri édada por Ai = ∆riri∆θi. Tomando um ponto (rki , θki) no interior de Ri podemos formar umsólido cuja área da base é Ai e altura f (rki , θki) , de modo que o volume desse sólido serádada por

Vi = f (rki , θki)∆riri∆θi.

Assim, o volume sob a superfície f (r, θ) será aproximada pela soma

V ≈n∑

i=1

f (rki , θki)∆riri∆θi.

Seja |P | a diagonal da maior região Ri da partição de R. Então, se |P | → 0 segue que∆ri → 0, ∆θi → 0, rki → r, θki → θ e ri → r. Portanto, podemos escrever

V = lim|P |→0

n∑i=1

f (rki , θki)∆riri∆θi

ou seja,

V =

∫ β

α

∫ r2

r

f (r, θ) rdrdθ.

OBSERVAÇÃO 3.4.1 Vimos anteriormente que a partição de uma região R por retas paralelasaos eixos x e y geram sub-regiões retangulares cujos lados são ∆xi e ∆yi e área Ai = ∆xi∆yi.Então, é natural nos perguntarmos se as áreas Ai = ∆xi∆yi e Ai = ∆riri∆θi são iguais.

É claro que não são, porém pode-se mostrar quelim

∆x∆y→0∆xi∆yi

lim∆r∆θ→0

∆riri∆θi= 1 e isso implica que

dxdy = rdrdθ. Assim, a equivalência entre a integral dupla em coordenadas retangulares e a

132

Page 139: Apostila de Integrais 2

integral dupla em coordenadas polares é dada por∫ x2

x1

∫ y2

y1

f (x, y) dxdy =

∫ β

α

∫ r2

r1

f (r cos θ, r sin θ) rdrdθ.

EXEMPLO 3.4.2 Escreva a integral, em coordenadas polares, que calcula a área sombreada naFigura 3.8.

Figura 3.8: Região de Integração do Exemplo 3.4.2

Solução: Temos as seguintes equações para as circunferênciasx2 + y2 = 4 e (x− 2)2 + y2 = 4 (em cartesianas)

r = 2 e r = 4 cos θ (em polares)Na interseção das circunferências, temos cos θ = 1

2, que no primeiro quadrante nos dá

θ = π3. Portanto, a área em coordenadas polares é dada por

A =

∫ π3

0

∫ 4 cos θ

2

rdrdθ.

EXEMPLO 3.4.3 Encontre a área da região que é simultaneamente exterior a r = 2 e interiora r = 4 sin θ.

Solução: A representação geométrica da região desejada está ilustrada na Figura 3.9. Opróximo passo é encontrar os pontos de interseção das curvas.

Figura 3.9: Região de Integração do Exemplo 3.4.3

Igualando as equações, obtemos

4 sin θ = 2 ⇒ sin θ =1

2⇒ θ =

π

6ou θ =

6.

A tabela de limitantes é dada por

133

Page 140: Apostila de Integrais 2

Limitantes Equaçõesarco inferior α = π

6

arco superior β = 5π6

raio inferior r = 2raio superior r = 4 sin θ

Assim, a área da região é dada por

A =

∫ 5π6

π6

∫ 4 sin θ

2

rdrdθ =

∫ 5π6

π6

r2

2

∣∣∣∣∣4 sin θ

2

=

∫ 5π6

π6

(8 sin2 θ − 2

)dθ =

∫ 5π6

π6

(2− 4 cos(2θ))dθ

= (2θ − 2 sin(2θ))

∣∣∣∣∣5π6

π6

=10π

6− 2 sin

10π

6−(2π

6− 2 sin

6

)=

4

3π + 2

√3.

EXEMPLO 3.4.4 Transforme a integral dupla I =

∫ π2

0

∫ 2

2cos θ+2 sin θ

5er2

drdθ de coordenadas po-

lares para coordenadas cartesianas, utilizando:(a) x como variável independente; (b) y como variável independente.

Solução: Dos limitantes de integração, temos que θ ∈ [0, π2], o que nos indica que a região

de integração está situada no primeiro quadrante do plano xy. Temos também que r ∈[ 2cos θ+2 sin θ

, 2] o que nos diz que o raio polar varia desde a reta x+2y = 2 até a circunferênciax2 + y2 = 4. Assim, obtemos a região de integração mostrada na Figura 3.10.

Figura 3.10: Região de Integração do Exemplo 3.4.4

Para transformar o integrando, note que

5er2

drdθ =5er

2

rrdrdθ =

5ex2+y2√

x2 + y2dydx.

Portanto,(a) Tomando x como variável independente temos

I =

∫ 2

0

∫ √4−x2

2−x2

5ex2+y2√

x2 + y2dydx.

134

Page 141: Apostila de Integrais 2

(b) Tomando y como variável independente, é necessário uma soma de integrais, já queocorre uma troca de limitação para x, isto é

I =

∫ 1

0

∫ √4−y2

2−2y

5ex2+y2√

x2 + y2dxdy +

∫ 2

1

∫ √4−y2

0

5ex2+y2√

x2 + y2dxdy.

EXEMPLO 3.4.5 Considere a expressão I =

∫ 9

0

∫ 3

√y

y2 cos(x7)dxdy.

(a) Inverta a ordem de integração de I, ou seja, reescreva esta expressão tomando x comovariável independente.

(b) Reescreva esta expressão usando coordenadas polares.(c) Calcule o valor numérico de I, utilizando uma das expressões anteriores.

Solução: Inicialmente, devemos esboçar a região de integração de I. Como y ∈ [0, 9] ex ∈ [

√y, 3] obtemos a região representada na Figura 3.11.

Figura 3.11: Região de Integração do Exemplo 3.4.5

(a) Para inverter a ordem de integração, é necessário tomar x como variável independente.A partir da Figura 3.10 podemos facilmente notar que x ∈ [0, 3] e y ∈ [0, x2]. Assim

I =

∫ 3

0

∫ x2

0

y2 cos(x7)dydx.

(b) Para transformar I para coordenadas polares, começamos transformando as curvas quedelimitam a região de integração

y = x2 ⇒ r sin θ = r2 cos2 θ ⇒ r =sin θ

cos2 θ= tan θ sec θ

x = 3 ⇒ r cos θ = 3 ⇒ r =3

cos θ= 3 sec θ.

Na interseção destas curvas (x = 3 e y = 9), temos que

tan θ = 3 ⇒ θ = arctan 3.

Como a região de integração está situada no primeiro quadrante do plano xy, temosque θ ∈ [0, arctan 3]. E como o raio polar varia desde a parábola até a reta, temos quer ∈ [tan θ sec θ, sec θ]. Lembrando que, em coordenadas polares, temos x = r cos θ, y = r sin θe dxdy = rdrdθ, obtemos que

I =

∫ arctan 3

0

∫ 3 sec θ

tan θ sec θ

r3 sin θ cos(r7 cos7 θ)drdθ.

135

Page 142: Apostila de Integrais 2

(c) Para calcular o valor numérico de I, devemos optar por sua melhor expressão. Analisandoas três expressões disponíveis, percebemos que a integral do item (a) é a mais simples de serresolvida. Portanto, temos que

I =

∫ 3

0

∫ x2

0

y2 cos(x7)dydx =

∫ 3

0

y3

3cos(x7)

∣∣∣∣∣x2

0

dx

=

∫ 3

0

x6

3cos(x7)dx =

1

21sin(x7)

∣∣∣∣∣3

0

=1

21sin(2187).

136

Page 143: Apostila de Integrais 2

3.5 Exercícios Gerais

1. Calcule as integrais duplas dadas abaixo:

(a)

∫ 1

0

∫ 3x+1

x

xydydx (b)

∫ 1

0

∫ 3y+1

y

xy2dxdy (c)

∫ 4

0

∫ 1

0

xexydydx

(d)

∫ π2

π6

∫ 4 cos θ

0

cos θ sin θ rer2

drdθ (e)

∫ π

0

∫ y2

0

cosx

ydxdy (f)

∫ ln 2

0

∫ y

0

xy5ex2y2dxdy

2. Escreva as integrais duplas que permitem calcular a área da região R delimitada si-multaneamente pelas curvas dadas abaixo, tomando inicialmente x como variável in-dependente e após tomando y como variável independente.

(a) y = x2 − 1, y = 1− x, y = 4x3+ 12 e y = 12− 9x

2.

(b) y = 4x3+ 8

3, y = −2− x, y = x

2− 2 e y = 16

3− 4x

3.

3. Esboce a região de integração e calcule as integrais duplas dadas abaixo, trocando aordem de integração, se necessário.

(a)∫ 2

0

∫ 4

x2

x sin(y2)dydx.

(b)∫ 1

0

∫ π2

arcsin y

cos x√1 + cos2 xdxdy.

4. Nos problemas a seguir, esboce geometricamente a região de integração e utilize coor-denadas polares para calcular as integrais.

(a)∫∫R

√14− x2 − y2dxdy onde R é a região dada por 4 ≤ x2 + y2 ≤ 9.

(b)∫∫R

√14− x2 − y2dxdy onde R é a região dada por x2 + y2 ≤ 4 com x ≥ 0 e

y ≥ 0.

(c)∫ 3

−3

∫ √9−x2

−√9−x2

e−x2−y2dydx.

(d)∫ 2

0

∫ 0

−√4−x2

1

4 +√x2 + y2

dydx.

(e)∫ 0

−2

∫ 2+√4−x2

2−√4−x2

xy√x2 + y2

dydx.

(f)∫∫R

1

(x2 + y2)3dxdy onde R é a região dada por 4 ≤ x2 + y2 ≤ 9.

5. Escreva, em coordenadas cartesianas, a(s) integral(is) dupla(s) que permite(m) calculara área da menor região delimitada pelas curvas x2 + y2 = 9 e y2 + 1 = 3x, tomando:

(a) x como variável independente; (b) y como variável independente.

137

Page 144: Apostila de Integrais 2

6. Escreva a(s) integral(is) dupla(s) que permite(m) calcular a área da menor regiãodelimitada pelas curvas x2 + y2 = 20 e y = x2, usando:

(a) x como variável independente; (b) y como variável independente; (c) coordenadaspolares.

7. Considere a expressão I =

∫ 2

1

∫ √2x−x2

0

√x2 + y2

x+ ydydx.

(a) Reescreva a expressão dada, invertendo sua ordem de integração.

(b) Transforme a expressão dada para coordenadas polares.

8. Transforme para coordenadas cartesianas a seguinte integral

I =

∫ π2

−π2

∫ 3

3 cos θ

sin θdrdθ.

9. Considere a expressão I =

∫ √2

2

0

∫ √1−y2

y

2x+ 4y√x2 + y2

dxdy.

(a) Reescreva a expressão dada, invertendo sua ordem de integração.

(b) Transforme a expressão dada para coordenadas polares.

(c) Utilize uma das expressões encontradas nos itens anteriores para calcular o valornumérico de I.

10. Transforme a integral I =

∫ π2

π4

∫ 1

0

r3drdθ de coordenadas polares para coordenadas

cartesianas, tomando:

(a) x como variável independente; (b) y como variável independente.

11. Considere a seguinte expressão:

I =

∫ 1

0

∫ x2

0

x cos((1− y)2)dydx+

∫ √2

1

∫ 2−x2

0

x cos((1− y)2)dydx.

(a) Represente geometricamente a região de integração da expressão acima.

(b) Calcule o valor numérico de I, adotando a melhor expressão para isso.

12. Utilize coordenadas polares para reescrever a soma

I =

∫ 1

1√2

∫ x

√1−x2

xydydx+

∫ √2

1

∫ x

0

xydydx+

∫ 2

√2

∫ √4−x2

0

xydydx

em uma única integral dupla.

13. Considere a seguinte expressão:

I =

∫ 1

0

∫ 1−√

1−y2

0

√x2 + y2

x2 + y2dxdy +

∫ 2

1

∫ √2y−y2

0

√x2 + y2

x2 + y2dxdy.

(a) Reescreva esta expressão, invertendo a sua ordem de integração.

(b) Transforme esta expressão para coordenadas polares.

(c) Calcule o valor numérico de I, utilizando umas das expressões anteriores.

138

Page 145: Apostila de Integrais 2

14. Calcule∫∫D

(x+ 3y)dA, onde D é a região triangular de vértices (0, 0), (1, 1) e (2, 0).

15. Calcule∫∫D

1√x2+y2

dA, sendo D a região do semiplano x > 0 interna à cardióide r =

1 + cos θ e externa à circunferência r = 1.

139

Page 146: Apostila de Integrais 2

3.6 Respostas

1. (a)9

4(b)

103

60(c) e4 − 5 (d)

e12 + 23

64(e) π (f) 1

8(eln

4 2 − ln4 2− 1)

2. .

(a) A =

∫ −2

−3

∫ 4x3+12

x2−1

dydx+

∫ 0

−2

∫ 4x3+12

1−x

dydx+

∫ 1

0

∫ 12− 9x2

1−x

dydx+

∫ 2

1

dint12− 9x

2

x2−1 dydx

A =

∫ 3

0

∫ √y+1

1−y

dxdy +

∫ 8

3

∫ 24−2y9

−√y+1

dxdy +

∫ 12

8

∫ 24−2y9

3y4−9

dxdy

(b) A =

∫ 0

−2

∫ 4x+83

−2−x

dydx+

∫ 1

0

∫ 4x+83

x2−2

dydx+

∫ 4

1

∫ 163− 4x

3

x2−2

dydx

A =

∫ 0

−2

∫ 2y+4

−2−y

dxdy +

∫ 4

0

∫ 4− 3y4

3y−84

dxdy

3. (a)1− cos 16

4(b)

2√2− 1

3

4. .(a) 10π

3(2√10−

√5) (b) π

3(7√14− 5

√10) (c)π(1− e−9)

(d) π + 4π ln 2− 2π ln 6 (e)−64

15(f)

65π

2592

5. (a) A =

∫ 2

13

∫ √3x−1

−√3x−1

dydx+

∫ 3

2

∫ √9−x2

−√9−x2

dydx

(b) A =

∫ √5

−√5

∫ √9−y2

y2+13

dxdy

6. (a) A =

∫ 2

−2

∫ √20−x2

x2

dydx

(b) A =

∫ 4

0

∫ √y

−√y

dxdy +

∫ √20

4

∫ √20−y2

−√

20−y2dxdy

(c) A = 2

∫ arctan 2

0

∫ tan θ sec θ

0

rdrdθ + 2

∫ π2

arctan 2

∫ √20

0

rdrdθ

7. (a) I =

∫ 1

0

∫ 1+√

1−y2

1

√x2 + y2

x+ ydxdy

(b) I =

∫ π4

0

∫ 2 cos θ

sec θ

r

cos θ + sin θdrdθ

8. I =

∫ 3

0

∫ √9−x2

√3x−x2

y

x2 + y2dydx+

∫ 3

0

∫ −√3x−x2

−√9−x2

y

x2 + y2dydx

140

Page 147: Apostila de Integrais 2

9. (a) I =

∫ √22

0

∫ x

0

2x+ 4y√x2 + y2

dydx+

∫ 1

√2

2

∫ √1−x2

0

2x+ 4y√x2 + y2

dydx

(b) I =

∫ π4

0

∫ 1

0

(2r cos θ + 4r sin θ)drdθ

(c) 2− 12

√2

10. (a) I =

∫ √22

0

∫ √1−x2

x

(x2 + y2)dydx

(b) I =

∫ √22

0

∫ y

0

(x2 + y2)dxdy +

∫ 1

√2

2

∫ √1−y2

0

(x2 + y2)dxdy

11. (a)

(b) I =1

2sin 1

12. I =

∫ π4

0

∫ 2

1

r3 cos θ sin θdrdθ

13. (a) I =

∫ 1

0

∫ 1+√1−x2

√2x−x2

√x2 + y2

x2 + y2dydx

(b) I =

∫ π2

π4

∫ 2 sin θ

2 cos θ

drdθ

(c) I = 2√2− 2

14. I = 2

15. I = 2

141

Page 148: Apostila de Integrais 2

Capítulo 4

INTEGRAIS TRIPLAS

Objetivos (ao nal do capítulo espera-se que o aluno seja capaz de):

1. Encontrar o valor de uma integral tripla;

2. Interpretar geométrica e sicamente uma integral tripla;

3. Calcular integrais triplas em coordenadas retangulares;

4. Calcular integrais triplas em coordenadas cilíndricas;

5. Calcular integrais triplas em coordenadas esféricas;

6. Transformar uma integral tripla de coordenadas retangulares para cilíndricas e decilíndricas para retangulares;

7. Transformar uma integral tripla de coordenadas retangulares para esféricas e de esféri-cas para retangulares;

8. Transformar uma integral tripla de coordenadas cilíndricas para esféricas e de esféricaspara cilíndricas;

9. Montar uma integral tripla nos três sistemas de coordenadas e decidir qual o sistemamais adequado para resolvê-la;

10. Fazer a maquete de uma gura delimitada por superfícies e encontrar seu volume.

11. Resolver exercícios usando uma ferramenta tecnológica.

A prova será composta por questões que possibilitam vericar se os objetivos foramatingidos. Portanto, esse é o roteiro para orientações de seus estudos. O modelo de formu-lação das questões é o modelo adotado na formulação dos exercícios e no desenvolvimentoteórico desse capítulo, nessa apostila.

142

Page 149: Apostila de Integrais 2

4.1 Introdução

As integrais triplas, aplicadas sobre sólidos no espaço xyz, são denidas de forma análogaàs integrais duplas aplicadas sobre uma região do plano xy. Não é nosso objetivo discutiros pormenores da denição, pois estes fazem parte do conteúdo de um texto de cálculoavançado. Vamos esboçar apenas as ideias principais.

NOTAÇÃO: 4.1.1 Seja S um sólido no espaço tridimensional e f : S → R uma função detrês variáveis denida sobre cada ponto (x, y, z) ∈ S. Denotaremos a integral tripla de fsobre S como ∫∫∫

S

f (x, y, z) dxdydz.

4.2 Interpretação Geométrica da Integral Tripla

Para xar as ideias vamos supor que o sólido S é um paralelepípedo. Uma partiçãodesse paralelepípedo é obtida seccionando-o com n planos paralelos aos eixos coordenados,conforme ilustra a Figura 4.1.

Figura 4.1: Partição de um sólido

O fracionamento de S obtido pela partição é um conjunto de sub-parelelepípedos chama-dos células da partição. Suponhamos que uma i−célula tenha dimensões ∆xi,∆yi e ∆zi.Então, o volume dessa i−célula é Vi = ∆xi∆yi∆zi. Seja (x∗i , y

∗i , z

∗i ) um ponto qualquer da

i−célula e seja f : S → R a função densidade em cada ponto de S, então uma estimativa damassa da i−célula é mi = f (x∗i , y

∗i , z

∗i )∆xi∆yi∆zi e, desse modo uma estimativa da massa

do sólido S será

m ≈n∑

i=1

f (x∗i , y∗i , z

∗i )∆xi∆yi∆zi.

Se |N | é o comprimento da diagonal da maior célula da partição de S, então a massa mdo sólido S será dada por

m = lim|N |→0

n∑i=1

f (x∗i , y∗i , z

∗i )∆xi∆yi∆zi

ou

m =

∫∫∫S

f (x, y, z) dxdydz.

143

Page 150: Apostila de Integrais 2

OBSERVAÇÃO 4.2.1 Se f (x, y, z) = 1 então a massa m e o volume V do sólido tem o mesmovalor numérico. Portanto, o volume de um sólido, em termos de integrais triplas, é dado por

V =

∫∫∫S

dxdydz.

4.3 Cálculo da Integral Tripla em Coordenadas Retan-gulares

Seja S um sólido delimitado pelas curvas x = a, x = b, y = y1(x) e y = y2(x) e pelassuperfícies z = f(x, y) e z = g(x, y), com f(x, y) ≤ g(x, y) para todo (x, y) , de acordo coma tabela abaixo:

Tabela de limitantesLimitante Equações

Curva à esquerda x = aCurva à direita x = bCurva inferior y = y1(x)Curva superior y = y2(x)Superfície inferior z = f(x, y)Superfície superior z = g(x, y)

A integral tripa de uma função contínua f(x, y, z) sobre o sólido S é dada por∫∫∫S

f (x, y, z) dxdydz =

∫ b

a

∫ y2(x)

y1(x)

∫ g(x,y)

f(x,y)

f (x, y, z) dzdydx.

EXEMPLO 4.3.1 Determine o volume do sólido delimitado pelos planos z = 0, y = 0, x = 0e 2x+ 4y + z = 8.

Solução: Iniciamos representando geometricamente o sólido (Figura 4.2).

Figura 4.2: Sólido do Exemplo 4.3.1.

Em seguida, devemos projetar o sólido sobre um dos planos coordenados. A projeçãosobre o plano xy pode ser vista na Figura 4.3. Note que poderíamos ter optado por projetarsobre outro plano coordenado.

A tabela de limitantes do sólido, tomando x como variável independente, é dada por

144

Page 151: Apostila de Integrais 2

Figura 4.3: Projeção no plano xy.

Limitantes EquaçõesCurva à esquerda x = 0Curva à direita x = 4Curva inferior y = 0Curva superior y = 2− x

2

Superfície inferior z = 0Superfície superior z = 8− 2x− 4y

Assim, o volume desejado é dado por

V =

∫ 4

0

∫ 2−x2

0

∫ 8−2x−4y

0

dzdydx =

∫ 4

0

∫ 2−x2

0

z

∣∣∣∣∣8−2x−4y

0

dydx

=

∫ 4

0

∫ 2−x2

0

(8− 2x− 4y)dydx =

∫ 4

0

(8y − 2xy − 2y2)

∣∣∣∣∣2−x

2

0

dx

=

∫ 4

0

16− 4x− 2x

(2− 1

2x

)− 2

(2− 1

2x

)2

dx =

∫ 4

0

(8− 4x+1

2x2)dx =

32

3u.v.

EXEMPLO 4.3.2 Calcule o volume do sólido delimitado pelos cilindros z2+x2 = 9 e y2+x2 = 9situado no primeiro octante.

Solução: A representação geometricamente do sólido pode ser vista na Figura 4.4.

Figura 4.4: Sólido do Exemplo 4.3.2.

Como o sólido está situado no primeiro octante, os planos x = 0, y = 0 e z = 0delimitam este sólido e a projeção sobre o plano xy é a parte da circunferência x2 + y2 = 9que está no primeiro quadrante.

Vejamos a tabela de limitantes:

145

Page 152: Apostila de Integrais 2

Limitantes EquaçõesCurva à esquerda x = 0Curva à direita x = 3Curva inferior y = 0

Curva superior y =√9− x2

Superfície inferior z = 0

Superfície superior z =√9− x2

O volume é dado por

V =

∫ 3

0

∫ √9−x2

0

∫ √9−x2

0

dzdydx =

∫ 3

0

∫ √9−x2

0

√9− x2dydx

=

∫ 3

0

y√9− x2

∣∣∣∣∣√9−x2

0

dx =

∫ 3

0

(9− x2)dx = 9x− x3

3

∣∣∣∣∣3

0

= 18 u.v.

EXEMPLO 4.3.3 Escreva o volume do sólido do Exemplo 4.3.2 de 6 formas distintas.

Solução:1 - Projetando no plano xy usamos z como variável espacial (ou variável totalmente de-pendente) e x ou y como variável independente. A projeção sobre o plano xy é a parte dacircunferência x2 + y2 = 9 que está no primeiro quadrante, logo temos as limitações e asintegrais:

(i) x como variável independente:

z ∈ [0,

√9− x2]

y ∈ [0,√9− x2]

x ∈ [0, 3]

⇒ V =

∫ 3

0

∫ √9−x2

0

∫ √9−x2

0

dzdydx

(ii) y como variável independente:

z ∈ [0,

√9− x2]

x ∈ [0,√

9− y2]y ∈ [0, 3]

⇒ V =

∫ 3

0

∫ √9−y2

0

∫ √9−x2

0

dzdxdy

2 - Projetando no plano xz usamos y como variável espacial (ou variável totalmente de-pendente) e x ou z como variável independente. A projeção sobre o plano xz é a parte dacircunferência x2 + z2 = 9 que está no primeiro quadrante, logo temos as limitações e asintegrais:

(i) x como variável independente:

y ∈ [0,

√9− x2]

z ∈ [0,√9− x2]

x ∈ [0, 3]

⇒ V =

∫ 3

0

∫ √9−x2

0

∫ √9−x2

0

dydzdx

(ii) z como variável independente:

y ∈ [0,

√9− x2]

x ∈ [0,√9− z2]

z ∈ [0, 3]

⇒ V =

∫ 3

0

∫ √9−z2

0

∫ √9−x2

0

dydxdz

3 - Projetando no plano yz usamos x como variável espacial (ou variável totalmente depen-dente) e y ou z como variável independente. A projeção sobre o plano yz é o quadradolimitado por y = 0, z = 0, y = 3 e z = 3, porém com esta projeção não podemos usarapenas uma integral, pois há troca de limitação na variável x e esta troca ocorre no planoy = z obtido pela interseção dos cilindros x2+y2 = 9 e x2+z2 = 9, logo temos as limitaçõese as integrais:

146

Page 153: Apostila de Integrais 2

(i) y como variável independente:

x ∈ [0,√

9− y2]z ∈ [y, 3]y ∈ [0, 3]

∪ x ∈ [0,√9− z2]

z ∈ [0, y]y ∈ [0, 3]

⇒ V =

∫ 3

0

∫ 3

y

∫ √9−y2

0

dxdzdy +

∫ 3

0

∫ y

0

∫ √9−z2

0

dxdzdy

(ii) z como variável independente:

x ∈ [0,√9− y2]

y ∈ [0, z]z ∈ [0, 3]

∪ x ∈ [0,√9− z2]

y ∈ [z, 3]z ∈ [0, 3]

⇒ V =

∫ 3

0

∫ z

0

∫ √9−y2

0

dxdydz +

∫ 3

0

∫ 3

z

∫ √9−z2

0

dxdydz

EXEMPLO 4.3.4 Encontre o volume do sólido delimitado pelas superfícies z = 9−x2, z = 5−y,y = 0 e y = 5.

Solução: Iniciamos com a construção do sólido de acordo com a Figura 4.5.

Figura 4.5: Sólido do Exemplo 4.3.4.

O próximo passo é determinar as curvas que limitam a região de integração sobre o plano

xy. Para isso resolvemos o sistema de equações

z = 9− x2

z = 5− yIgualando as duas equações

obtemos a parábola y = x2−4. Desse modo, no plano xy, a região de integração é delimitadapelas curvas y = x2 − 4, y = 0 e y = 5 (Figura 4.6).

Figura 4.6: Projeção no plano xy.

Para diminuir o trabalho no processo de integração é conveniente tomar y como variávelindependente. Desse modo a tabela de limitantes é dada por

147

Page 154: Apostila de Integrais 2

Limitantes EquaçõesCurva inferior y = 0Curva superior y = 5Curva à esquerda x = −

√y + 4

Curva à direita x =√y + 4

Superfície inferior z = 5− ySuperfície superior z = 9− x2

Assim, o volume desejado é dado por

V =

∫ 5

0

∫ √y+4

−√y+4

∫ 9−x2

5−y

dzdxdy =

∫ 5

0

∫ √y+4

−√y+4

z

∣∣∣∣∣9−x2

5−y

dxdy =

∫ 5

0

∫ √y+4

−√y+4

(4− x2 + y

)dxdy,

como o sólido é simétrico em relação ao eixo y, podemos escrever

V = 2

∫ 5

0

∫ √y+4

0

(4− x2 + y

)dxdy = 2

∫ 5

0

(4x− x3

3+ yx

) ∣∣∣∣∣√y+4

0

dy

= 2

∫ 5

0

4√y + 4−

√(y + 4)3

3+ y√y + 4

dy = 2

∫ 5

0

(8

3

√y + 4 +

2

3y√y + 4

)dy

=32

9

√(y + 4)3 +

8

15

√(y + 4)5 − 32

9

√(y + 4)3

∣∣∣∣∣5

0

=8

15

√(y + 4)5

∣∣∣∣∣5

0

=8

15(√95 −

√45) =

8

15(35 − 25) =

8

15(243− 32) =

1688

15u.v.

EXEMPLO 4.3.5 Calcule o valor numérico de I =

∫∫∫S

x dV, sendo S o sólido do Exemplo

4.3.4.

Solução: Na resolução do exemplo acima temos a tabela de limitantes então basta escrever-mos as integrais iteradas.

I =

∫ 5

0

∫ √y+4

−√y+4

∫ 9−x2

5−y

xdzdxdy =

∫ 5

0

∫ √y+4

−√y+4

(9x− x3 − 5x+ xy)dxdy =

∫ 5

0

0dy = 0.

Observe que o resultado é zero, o que não faria sentido se estivéssemos calculando a massado sólido, porém observe que a função de integração f(x, y, z) = x assume valores negativosno domínio de integração (o sólido S), portanto ela não pode representar a densidade destesólido. Então, neste caso apenas resolvemos uma integral tripla de uma função sobre umdomínio. Além disso, observe que

I =

∫ 5

0

∫ √y+4

−√y+4

∫ 9−x2

5−y

xdzdxdy = 2

∫ 5

0

∫ √y+4

0

∫ 9−x2

5−y

xdzdxdy,

(a primeira dá zero e a segunda é diferente de zero), neste caso não podemos usar simetria,pois apesar do domínio de integração, o sólido S, ser simétrico em relação ao eixo y a funçãono integrando não é simétrica. Portanto, cuidado com o uso de simetrias.

148

Page 155: Apostila de Integrais 2

EXEMPLO 4.3.6 Faça a tabela de limitantes e escreva a integral que permite calcular a massado sólido delimitado pelas superfícies x2 + y − 16 = 0, x + y − 4 = 0, y = 2x + 13, z = 0e z = 10, sendo a densidade dada por d (x, y, z) = x2yz.

Solução: O sólido desejado situa-se entre os planos z = 0 e z = 10. A base do sólido, queestá situada no plano xy, está representada na Figura 4.7.

Figura 4.7: Projeção no plano xy.

Como ocorre troca na limitação superior, devemos dividir esta região em duas sub-regiões,R1 e R2. Assim, procedendo, obtemos a tabela

Limitantes R1 R2

Curva à esquerda x = −3 x = 1Curva à direita x = 1 x = 4Curva inferior y = 4− x y = 4− xCurva superior y = 2x+ 13 y = 16− x2

Superfície inferior z = 0 z = 0Superfície superior z = 10 z = 10

Logo, a massa desejada é dada por

M =

∫ 1

−3

∫ 2x+13

4−x

∫ 10

0

x2yz dzdydx +

∫ 4

1

∫ 16−x2

4−x

∫ 10

0

x2yz dzdydx.

EXEMPLO 4.3.7 Reescreva a expressão

I =

∫ 4

0

∫ 3− 34

√16−y2

0

∫ √16−y2

2

0

dzdxdy +

∫ 4

0

∫ 3

3− 34

√16−y2

∫ 6−2x3

0

dzdxdy

como uma única integral tripla em coordenadas cartesianas de 4 formas distintas.

Solução: Projetando no plano xy há uma troca de limitantes, conforme a expressão dadapor I. Interpretando a integral dada temos no plano xy a seguinte região representada naFigura 4.8, sendo R1 a região do plano xy da primeira integral e R2 a região do plano xyda segunda integral.

A limitação espacial é dada pelas superfícies z =

√16− y2

2que é um ramo de um cilindro

elíptico que se prolonga no eixo x e z =6− 2x

3que é um plano paralelo ao eixo y, assim I

representa o volume do sólido representado na Figura 4.9

149

Page 156: Apostila de Integrais 2

R1

R2

Figura 4.8: Projeção no plano xy.

Figura 4.9: Sólido cujo volume é dado por I.

Projetando no plano xz, temos a região representada na Figura 4.10.

Figura 4.10: Projeção no plano xz.

Assim, a montagem das integrais é dada por

(1)

0 ≤ y ≤√16− 4z2

0 ≤ x ≤ 6−3z2

0 ≤ z ≤ 2⇒ I =

∫ 2

0

∫ 6−3z2

0

∫ √16−4z2

0

dydxdz

(2)

0 ≤ y ≤√16− 4z2

0 ≤ z ≤ 6−2x3

0 ≤ x ≤ 3⇒ I =

∫ 3

0

∫ 6−2x3

0

∫ √16−4z2

0

dydzdx

Projetando no plano yz, temos a região representada na Figura 4.11.

Figura 4.11: Projeção no plano yz.

Assim, a montagem das integrais é dada por

150

Page 157: Apostila de Integrais 2

(3)

0 ≤ x ≤ 6−3z

2

0 ≤ z ≤√

16−y2

2

0 ≤ y ≤ 4

⇒ I =

∫ 4

0

∫ √16−y2

2

0

∫ 6−3z2

0

dxdzdy

(4)

0 ≤ x ≤ 6−3z

2

0 ≤ y ≤√16− 4z2

0 ≤ z ≤ 2⇒ I =

∫ 2

0

∫ √16−4z2

0

∫ 6−3z2

0

dxdydz

4.4 Integrais Triplas em Coordenadas Cilíndricas

Em alguns exemplos uma integral tripla pode ser resolvida de uma forma mais simplesconvertendo-a para coordenadas cilíndricas. Vejamos este processo de conversão.

Figura 4.12: Coordenadas Cilíndricas

Sejam θ0 e θ1 dois arcos tais que 0 < θ1 − θ0 ≤ 2π e suponhamos que os raios r1 e r2são funções contínuas de θ tais que 0 ≤ r1 (θ) ≤ r2 (θ) seja válido para todo θ ∈ [θ1, θ2] .Sejam f (r, θ) e g (r, θ) funções contínuas tais que f (r, θ) ≤ g (r, θ) seja verdadeiro paratodo θ ∈ [θ1, θ2] e todo r1 (θ) ≤ r2 (θ) . Seja S o sólido constituído por todos os pontos cujascoordenadas cilíndricas satisfaçam as condições θ0 ≤ θ1, r1 (θ) ≤ r2 (θ) e f (r, θ) ≤ g (r, θ) .Então temos a tabela de limitantes

Tabela de limitantesCurvas Equações

Arco inferior θ = θ1Arco superior θ = θ2Raio interno r = r1 (θ)Raio externo r = r2 (θ)Superfície inferior z = f (r, θ)Superfície superior z = g (r, θ) .

Uma integral tripla, que em coordenadas cartesianas se escreve como

I =

∫ b

a

∫ y2(x)

y1(x)

∫ g(x,y)

f(x,y)

f (x, y, z) dzdydx

é transformada, em coordenadas cilíndricas, para

I =

∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ g(r,θ)

f(r,θ)

f (r cos θ, r sin θ, z) rdzdrdθ.

151

Page 158: Apostila de Integrais 2

EXEMPLO 4.4.1 Determinar o volume do sólido delimitado superiormente pelo parabolóidey2+x2+1−z = 0, inferiormente pelo plano z = 0 e lateralmente pelo cilindro x2+y2−2y = 0.

Solução: Geometricamente, temos o seguinte sólido representado na Figura 4.13.

Figura 4.13: Sólido do Exemplo 4.4.1.

A projeção no plano xy é a circunferência x2+y2−2y = 0 que, após completar quadrados,se torna x2 + (y − 1)2 = 1 (Figura 4.14).

Figura 4.14: Projeção no plano xy.

O sólido está delimitado inferiormente pelo plano z = 0 e superiormente pelo parabolóidez = y2 + x2 + 1. Fazendo as tabelas, podemos observar que é muito mais fácil resolver esseproblema usando coordenadas cilíndricas.

Limitantes em coord. retangulares Limitantes em coord. cilíndricasCurvas Equações

Curva à esquerda x = −1Curva à direita x = 1

Curva inferior y = 1−√1− x2

Curva superior y = 1 +√1− x2

Superfície inferior z = 0Superfície superior z = y2 + x2 + 1

Curvas EquaçõesArco inferior θ1 = 0Arco superior θ2 = πRaio interno r1 = 0Raio externo r2 = 2 sin θSuperfície inferior z = 0Superfície superior z = r2 + 1

152

Page 159: Apostila de Integrais 2

Em coordenadas cilíndricas, o volume é dado por:

V =

∫ π

0

∫ 2 sin θ

0

∫ 1+r2

0

rdzdrdθ =

∫ π

0

∫ 2 sin θ

0

r(1 + r2)drdθ

=

∫ π

0

∫ 2 sin θ

0

(r + r3)drdθ =

∫ π

0

r2

2+r4

4

∣∣∣∣∣2 sin θ

0

=

∫ π

0

(2 sin2 θ + 4 sin4 θ)dθ =

∫ π

0

2 sin2 θ(1 + 2 sin2 θ)dθ

=

∫ π

0

2 sin2 θ(1 + 2 sin2 θ)dθ =

∫ π

0

(1− cos(2θ))(2− cos(2θ))dθ

=

∫ π

0

(2− 3 cos(2θ) + cos2(2θ))dθ

= 2θ − 3

2sin(2θ)

∣∣∣∣∣π

0

+

∫ π

0

1 + cos(4θ)

2dθ = 2π +

1

2θ +

1

8sin(4θ)

∣∣∣∣∣π

0

= 2π +π

2=

2u.v.

EXEMPLO 4.4.2 Represente gracamente o sólido cujo volume é dado pela integral

V =

∫ 2π

0

∫ 2

0

∫ 4−r2 cos2 θ

0

rdzdrdθ.

Solução: A partir dos limitantes da integral podemos construir a tabela

Limitantes em coordenadas cilíndricasCurvas Equações

Arco inferior θ1 = 0Arco superior θ2 = 2πRaio interno r1 = 0Raio externo r2 = 2Superfície inferior z = 0Superfície superior z = 4− r2 cos2 θ

Considerando os arcos inferior e superior, concluímos que a base do sólido está projetadasobre todos os quadrantes, pois temos 0 ≤ θ ≤ 2π. Como 0 ≤ r ≤ 2, temos que o raio cilín-drico varia desde a origem do plano xy até a circunferência de raio 2. Portanto, lateralmentetemos um cilindro centrado na origem, de equação x2 + y2 = 4. Inferiormente temos o planoz = 0 e superiormente temos o cilindro parabólico z = 4 − x2 (observe que r2 cos2 θ = x2).Assim, encontramos o sólido ilustrado na Figura 4.15.

Figura 4.15: Sólido do Exemplo 4.4.2.

153

Page 160: Apostila de Integrais 2

EXEMPLO 4.4.3 Escreva em coordenadas retangulares a integral

I =

∫ π2

0

∫ 2 cos θ

0

∫ 9−r2

0

r2dzdrdθ.

Solução: Inicialmente, devemos interpretar geometricamente o sólido de integração. Vamosconstruir a tabela de limitantes.

Limitantes em coordenadas cilíndricasCurvas Equações

Arco inferior θ1 = 0Arco superior θ2 =

π2

Raio interno r1 = 0Raio externo r2 = 2 cos θSuperfície inferior z = 0Superfície superior z = 9− r2

Considerando os arcos inferior e superior concluímos que a base do sólido está projetadasobre o primeiro quadrante do plano xy, pois temos 0 ≤ θ ≤ π

2. Agora vamos escrever

a curva r = 2 cos θ em coordenadas retangulares. Sabemos que x = r cos θ, de modo quecos θ = x

r, e que r2 = x2 + y2. Assim,

r = 2 cos θ =2x

r⇒ r2 = 2x ⇒

x2 + y2 = 2 ⇒ (x− 1)2 + y2 = 1.

Vemos que em coordenadas retangulares, a projeção do sólido sobre o plano xy é deli-mitada pela circunferência de equação (x− 1)2+y2 = 1. Desse modo, a tabela de limitantes,em coordenadas retangulares, é dada por:

Limitantes em coordenadas retangularesCurvas Equações

Curva à esquerda x = 0Curva à direita x = 2Curva inferior y = 0

Curva superior y =√2x− x2

Superfície inferior z = 0Superfície superior z = 9− (x2 + y2)

Também devemos escrever de forma adequada a expressão r2dzdrdθ. Como dxdydz =rdzdrdθ temos que

r2dzdrdθ = r (rdzdrdθ) =√x2 + y2dxdydz.

Assim, a integral dada será escrita em coordenadas cartesianas por

I =

∫ 2

0

∫ √2x−x2

0

∫ 9−x2−y2

0

√x2 + y2dzdydx.

154

Page 161: Apostila de Integrais 2

EXEMPLO 4.4.4 Construa e calcule o volume do menor sólido delimitado simultaneamentepor y = 0, y = 4, x2 + z2 = x e x2 + z2 =

√3z.

Solução: Esboço do sólido:

Figura 4.16: Sólido Exemplo 4.4.4

Projeção no plano xz :

Figura 4.17: Projeção do no plano xz

Sendo a projeção uma região entre circunferências usaremos o sistema o sistema de co-ordenadas cilíndricas em relação ao plano xz para resolver a integral. Assim temos:

x = r cos θz = r sin θy = y

x2 + z2 = r2

tgθ = zx

⇒x2 + z2 = x

x2 + z2 =√3z

⇒r = cos θ

r =√3 sin θ

Interseção das circunferências é a solução do sistema:r = cos θ

r =√3 sin θ

⇒ θ =π

6.

155

Page 162: Apostila de Integrais 2

Montagem e resolução da integral em coordenadas cilíndricas:

V =

∫ π6

0

∫ √3 sin θ

0

∫ 4

0

rdydrdθ +

∫ π2

π6

∫ cos θ

0

∫ 4

0

rdydrdθ

=

∫ π6

0

6 sin2 θdθ +

∫ π2

π6

2 cos2 θdθ

= 3

∫ π6

0

(1− cos(2θ))dθ +

∫ π2

π6

(1 + cos(2θ))dθ

= 3

(θ − sin(2θ)

2

) ∣∣∣∣∣π6

0

+

(θ +

sin(2θ)

2

) ∣∣∣∣∣π2

π6

=5π

6−

√3

4.5 Integrais Triplas em Coordenadas Esféricas

Na seção anterior vimos que usar coordenadas cilíndricas pode facilitar muito o trabalhousando coordenadas cilíndricas, agora queremos explorar o sistema de coordenadas esféricase em alguns casos é o mais recomendado.

Lembrando que o ponto P (x, y, z) , em coordenadas esféricas é dado por P (ρ, θ, ϕ) , onde

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ, ρ2 = x2 + y2 + z2, tanϕ =

√x2 + y2

ze

tan θ =y

x.

Sejam θ0, θ1, ϕ0, ϕ1, ρ0 e ρ1 tais que 0 ≤ θ0 < θ1 ≤ 2π, 0 ≤ ϕ0 < ϕ1 ≤ π e 0 ≤ ρ0 < ρ1.Suponhamos que o sólido S seja constituído por todos os pontos cujas coordenadas es-

féricas (ρ, θ, ϕ) são tais que

ρ0 ≤ ρ ≤ ρ1 θ0 ≤ θ ≤ θ1 ϕ0 ≤ ϕ ≤ ϕ1.

Seja f (x, y, z) uma função denida em todos os pontos do sólido S e cada ponto P (x, y, z)pode ser escrito em coordenadas esféricas f (ρ, θ, ϕ) . Então podemos escrever∫ x1

x0

∫ y1

y0

∫ z1

z0

f (x, y, z) dV (x, y, z) =

∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2

ρ1

f (ρ, θ, ϕ) dV (ρ, ϕ, θ),

onde dV (x, y, z) = dxdydz e dV (ρ, ϕ, θ) é o elemento de volume de coordenadas esféricasque precisamos determinar. Para determinar dV (ρ, ϕ, θ) considere acréscimos dϕ, dρ e dθatribuídos a cada variável, assim obtemos os pontos

P (ρ, θ, ϕ)Q (ρ, θ, ϕ+ dϕ)R (ρ, θ + dθ, ϕ)

T (ρ+ dρ, θ + dθ, ϕ) .

Na Figura 4.18 podemos observar um paralelepípedo innitesimal curvilíneo com dimensões∣∣PT ∣∣ , ∣∣QR∣∣ e∣∣PQ∣∣ , cujo volume aproximado é

dV =∣∣PT ∣∣ ∣∣QR∣∣ ∣∣PQ∣∣ .

Este paralelepípedo curvilíneo é o elemento de volume de coordenadas esféricas.

156

Page 163: Apostila de Integrais 2

Figura 4.18: Coordenadas Esféricas

É fácil ver que∣∣PT ∣∣ é a variação do raio ρ entre os pontos P e T e, portanto,

∣∣PT ∣∣ = dρ.

Como P e Q pertencem ao círculo de raio∣∣OP ∣∣ = ∣∣OQ∣∣ = ρ e o arco PQ subentende um

ângulo correspondente a variação de ϕ, segue que∣∣PQ∣∣ ∼= ρdϕ.

Como Q e R pertencem ao círculo de raio∣∣OU ∣∣ em que

∣∣OU ∣∣ é lado oposto do triângulo

OQU e Q = ϕ obtemos ∣∣OU ∣∣ = ∣∣OQ∣∣ sinϕ = ρ sinϕ

e, desse modo, obtemos ∣∣QR∣∣ ∼= ρ sinϕdθ.

Portanto,

dV =∣∣PT ∣∣ ∣∣QR∣∣ ∣∣PQ∣∣ = dρ (ρdϕ) (ρ sinϕdθ) = ρ2 sinϕdρdϕdθ.

Lembrando que em coordenadas retangulares temos dV = dxdydz, a equivalência entreos diferenciais em coordenadas cartesianas e esféricas é

dxdydz = ρ2 sinϕdρdϕdθ.

Portanto,∫ x1

x0

∫ y1

y0

∫ z1

z0

f (x, y, z) dzdydx =

∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2

ρ1

f (ρ, θ, ϕ) ρ2 sinϕdρdϕdθ.

EXEMPLO 4.5.1 Mostre, usando coordenadas esféricas, que o volume de uma esfera de raio r

é V =4πr3

3.

Solução: Vamos utilizar uma esfera centrada na origem, de equação x2 + y2 + z2 = r2. Suaprojeção no plano xy é a circunferência x2 + y2 = r2 e portanto temos que 0 ≤ θ ≤ 2π e0 ≤ ϕ ≤ π. Assim, o volume da esfera é calculado por

V =

∫ 2π

0

∫ π

0

∫ r

0

ρ2 sinϕdρdϕdθ =4

3πr3.

157

Page 164: Apostila de Integrais 2

EXEMPLO 4.5.2 Escreva, em coordenadas retangulares e em coordenadas esféricas a(s) inte-gral(is) que permite(m) calcular o volume do sólido delimitado pelas superfícies z2 = x2+y2,z2 = 3x2 + 3y2 e x2 + y2 + z2 = 4 nos pontos em que z é positivo. A seguir, utilize uma dasexpressões obtidas para calcular o volume deste sólido.

Solução: Primeiro vamos interpretar cada superfície. Na Figura 4.19 a equação z2 = x2+y2

representa o cone inferior, a equação z2 = 3x2 + 3y2 representa o cone superior e a equaçãox2 + y2 + z2 = 4 representa a esfera. O problema pede para determinar o volume do sólidosituado no interior da esfera e entre os dois cones.

Figura 4.19: Sólido do Exemplo 4.5.2.

Vamos determinar as curvas de interseção e as projeções sobre o plano xy. Resolvendoos sistemas de equações

z2 = x2 + y2

x2 + y2 + z2 = 4e

z2 = 3x2 + 3y2

x2 + y2 + z2 = 4,

em ambos os casos substituindo z2 da primeira equação na segunda equação, obtemos

x2 + y2 + x2 + y2 = 4 e x2 + y2 + 3x2 + 3y2 = 42x2 + 2y2 = 4 4x2 + 4y2 = 4x2 + y2 = 2 x2 + y2 = 1.

O volume do sólido será dado pela diferença entre o volume do sólido delimitado pelaesfera x2 + y2 + z2 = 4 e o cone z2 = x2 + y2 e o volume do sólido delimitado pela esferax2 + y2 + z2 = 4 e o cone z2 = 3x2 + 3y2. As tabelas de limitantes são:

Limitantes Sólido 1 Sólido 2Curva a esquerda x = −

√2 x = −1

Curva a direita x =√2 x = 1

Curva a inferior y = −√2− x2 y = −

√1− x2

Curva a superior y =√2− x2 y =

√1− x2

Superfície inferior z =√x2 + y2 z =

√3x2 + 3y2

Superfície superior z =√4− x2 − y2 z =

√4− x2 − y2

Portanto, o volume será dado por

V =

∫ √2

−√2

∫ √2−x2

−√2−x2

∫ √4−x2−y2

√x2+y2

dzdydx−∫ 1

−1

∫ √1−x2

−√1−x2

∫ √4−x2−y2

√3x2+3y2

dzdydx

158

Page 165: Apostila de Integrais 2

Como podemos perceber, a resolução desta integral é trabalhosa. Vamos escrevê-la emcoordenadas esféricas.

A variação do raio esférico vai da origem até a esfera de raio 2, isto é, ρ = 2. Como asprojeções no plano xy são circunferências com centro na origem temos que o arco θ varia dezero a 2π. O ângulo ϕ varia entre os dois cones. O cone de equação z2 = x2 + y2 equivale aϕ = π

4. Já o cone de equação z2 = 3x2 +3y2 equivale ao ângulo ϕ = π

6. Portanto, a tabela de

limitantes do sólido em coordenadas esféricas é dada por

Limitantes em coordenadas esféricasCurvas Equações

Arco θ inferior θ1 = 0Arco θ superior θ2 = 2πArco ϕ inferior ϕ1 =

π6

Arco ϕ superior ϕ2 =π4

Superfície inferior ρ1 = 0Superfície superior ρ2 = 2

Assim, o volume será dado por

V =

∫ 2π

0

∫ π4

π6

∫ 2

0

ρ2 sinϕdρdϕdθ =

∫ 2π

0

∫ π4

π6

ρ3

3

∣∣∣∣∣2

0

sinϕdϕdθ

=

∫ 2π

0

∫ π4

π6

8

3sinϕdϕdθ =

∫ 2π

0

−8

3cosϕ

∣∣∣∣∣π4

π6

=

∫ 2π

0

−8

3

(√2

2−

√3

2

)dθ =

4

3(−

√2 +

√3)θ

∣∣∣∣∣2π

0

=8π

3

(√3−

√2)

u.v.

EXEMPLO 4.5.3 Considere a expressão I = 2

∫ 2π

0

∫ π2

arctg( 34)

∫ 5

3senϕ

dρdϕdθ dada em coordenadas

esféricas.

1. Descreva e represente gracamente o domínio de integração de I.

2. Reescreva I usando coordenadas cilíndricas.

Solução: (a) Identicação do domínio de integração (o sólido S): como a expressão I estámultiplicada por "2"existe simetria.

Limitantes em coordenadas esféricas:

0 ≤ θ ≤ 2π

arctg(34) ≤ ϕ ≤ π

2

3senϕ

≤ ρ ≤ 5Convertendo para coordenadas cartesianas, temos:

ρ = 5 ⇒ x2 + y2 + z2 = 25 ⇒ esfera

ρ = 3senϕ

⇒ x2 + y2 = 9 ⇒ cilindro

ϕ = arctg (34) ⇒ z = 4

3

√x2 + y2 ⇒ semi-cone

159

Page 166: Apostila de Integrais 2

Observando que o cone só dá a variação do ângulo ϕ que começa no cone e vai até o planoxy. Na Figura 4.20 temos representado o cilindro e a esfera descritos acima, pela limitaçãodo raio esférico e pela simetria temos que o sólido S é interior à esfera x2 + y2 + z4 = 25 eexterior ao cilindro x2 + y2 = 9.

Figura 4.20: Sólido S.

(b) Para escrever I em coordenadas cilíndricas devemos descrever o sólido S com limi-tações cilíndricas, identicar a função de integração e converter-lá para coordenadas cilín-dricas.

A projeção no plano xy está representada na Figura 4.21

x

y

Figura 4.21: Projeção do sólido S no plano xy.

Limitantes de S usando simetria:

0 ≤ θ ≤ 2π3 ≤ ρ ≤ 5

0 ≤ z ≤√

25− ρ2

Função de integração em coordenadas esféricas: f(ρ, θ, ϕ) =1

ρ2senϕ

Função de integração em coordenadas cartesianas: f(x, y, z) =1√

x2 + y2 + z2 ·√x2 + y2

Função de integração em coordenadas cilíndricas: f(ρ, θ, z) =1

ρ√ρ2 + z2

Logo, I = 2

∫ 2π

0

∫ 5

3

∫ √25−r2

0

1√ρ2 + z2

dzdρdθ.

EXEMPLO 4.5.4 Escreva, nos sistemas de coordenadas cartesianas, cilíndricas e esféricas,as expressões que permitem calcular o volume do sólido delimitado simultaneamente pelassuperfícies x2 + y2 = 2y, z =

√x2 + y2 e z =

√3x2 + 3y2.

Resolução: O cilindro x2 + y2 = 2y delimitada lateralmente o sólido desejado, enquanto ocone z =

√x2 + y2 delimita-o inferiormente e o cone z =

√3x2 + 3y2 superiormente. Veja

o esboço do sólido na Figura 4.22.

160

Page 167: Apostila de Integrais 2

Figura 4.22: Sólido do Exemplo 4.5.4.

Para obter a integral em coordenadas cartesianas, basta observar que a altura do sólidovaria entre os dois cones, isto é, z ∈ [

√x2 + y2,

√3x2 + 3y2], e a projeção do sólido no plano

xy é dada pela Figura 4.23.

Figura 4.23: Projeção no plano xy.

Assim, tomando y como variável independente, temos que y ∈ [0, 2] e que x ∈ [−√

2y − y2,√

2y − y2].Encontramos então a seguinte integral em coordenadas cartesianas

V =

∫ 2

0

∫ √2y−y2

−√

2y−y2

∫ √3x2+3y2

√x2+y2

dzdxdy.

Agora, reescrevendo as equações dos cones em coordenadas cilíndricas, obtemos quez ∈ [r,

√3r]. Como a projeção no plano xy ocorre apenas no primeiro e segundo quadrantes,

temos que θ ∈ [0, π], enquanto o raio cilíndrico varia da origem (r = 0) até a circunferênciax2 + y2 = 2y, que em cilíndricas se escreve como r2 = 2r sin θ, ou seja, r = 2 sin θ. Assim,encontramos a seguinte integral em coordenadas cilíndricas

V =

∫ π

0

∫ 2 sin θ

0

∫ √3r

r

rdzdrdθ.

Em coordenadas esféricas, temos que θ ∈ [0, π] e que o ângulo vertical varia entre oscones. Transformando para esféricas, obtemos

z =√3x2 + 3y2 ⇒ ρ cosϕ =

√3ρ sinϕ ⇒ tanϕ =

√33

⇒ ϕ = π6

z =√x2 + y2 ⇒ ρ cosϕ = ρ sinϕ ⇒ tanϕ = 1 ⇒ ϕ = π

4

161

Page 168: Apostila de Integrais 2

portanto, encontramos que ϕ ∈ [π6, π4]. Resta então obter a limitação para o raio esférico, que

varia desde a origem (ρ = 0) até o cilindro circular, que devemos transformar para esféricas,como segue:

x2 + y2 = 2y ⇒ ρ2 sin2 ϕ = 2ρ sinϕ sin θ ⇒ ρ sinϕ = 2 sin θ ⇒ ρ = 2 sin θsinϕ

.

Então, temos que ρ ∈ [0, 2 sin θsinϕ

] e o volume, em coordenadas esféricas, é calculado pelointegral

V =

∫ π

0

∫ π4

π6

∫ 2 sin θsinϕ

0

ρ2 sinϕdρdϕdθ.

Note que, se desejássemos obter o valor numérico deste volume, devemos optar por re-solver a integral escrita em coordenadas cilíndricas, devido a sua simplicidade em comparaçãoàs demais integrais.

162

Page 169: Apostila de Integrais 2

4.6 Exercícios Gerais

1. Determinar o volume do sólido interior as superfícies b2(x2 + y2) + a2z2 = a2b2 ex2 + y2 = ax.

2. Determinar o volume do sólido interior as superfícies x2 + y2 + z2 = 8 e x2 + y2 = 2z.

3. Calcular I =∫∫∫T

(x− 1)dV, sendo T a região do espaço delimitada pelos planos y = 0,

z = 0, y + z = 5 e pelo cilindro parabólico z = 4− x2.

4. Determinar o volume do sólido delimitado pelas superfícies z = 0, z2 = x2 + y2 ex2 + y2 = 2ax.

5. Determinar o volume do sólido delimitado pelas superfícies xa+ y

b+ z

c= 1, x = 0,

y = 0 e z = 0.

6. Determinar o volume do sólido delimitado pelas superfícies x2 + y2 + 2y = 0, z = 0 ez = 4 + y.

7. Determinar o volume do sólido delimitado pelas superfícies x2+y2 = a2 e x2+z2 = a2.

8. Determinar o volume do sólido delimitado pelas superfícies r = 4 cos θ, z = 0 er2 = 16− z2.

9. Nos itens abaixo escreva em coordenadas retangulares as integrais dadas em coorde-nadas esféricas.

(a) I = 2

∫ π

0

∫ π2

0

∫ 3

0

√9− ρ2 sinϕdρdϕdθ.

(b) I =

∫ π2

0

∫ π3

π6

∫ 4

0

√4− ρ2ρ sinϕdρdϕdθ.

10. Considere o sólido delimitado inferiormente por y + 2z = 6, superiormente por z = 6e lateralmente pelo cilindro que contorna a região delimitada por y = x2 e y = 4.Calcule a massa deste sólido, sabendo que sua densidade é dada por f(x, y, z) = 2y+z.

11. Determine a massa do sólido delimitado no primeiro octante simultaneamente pelassuperfícies x2 + z2 = 4, x+ y = 2 e x+2y = 6, sabendo que f(x, y, z) = 12z é a suafunção densidade.

12. A gura abaixo mostra o sólido cujo volume pode ser calculado pela expressão

V =

∫ 1

0

∫ 2−2x

0

∫ 4−z2

0

dydzdx.

163

Page 170: Apostila de Integrais 2

Reescreva esta expressão como uma integral tripla equivalente, usando coordenadascartesianas de cinco formas distintas.

13. Represente geometricamente o sólido cujo volume pode ser calculado pela expressão

V =

∫ 4

0

∫ √4−z

0

∫ 8−2z

0

dydxdz.

A seguir, reescreva esta expressão, como uma integral tripla equivalente, usando coor-denadas cartesianas de cinco formas distintas.

14. Seja S o sólido delimitado pelas superfícies z = 0, x2 + y2 = a2 e z = x2 + y2.Determine o valor de a ∈ R para que a massa de S seja igual a π

(√82− 1

), sabendo

que a densidade em cada ponto de S é dada por f(x, y, z) =1√

1 + (x2 + y2)2.

15. Represente geometricamente o sólido cuja massa é descrita, em coordenadas cilíndri-

cas, pela expressão M =

∫ 2π

0

∫ √2

0

∫ 4−r2

r2

√4 + r2 − zdzdrdθ. A seguir, reescreva esta

expressão utilizando um outro sistema de coordenadas.

16. Represente geometricamente o sólido cujo volume pode ser calculado pela expressão

V =

∫ 2

0

∫ 2+x2

0

∫ 4−x2

0

dzdydx+

∫ 2

0

∫ 6

2+x2

∫ 6−y

0

dzdydx

e a seguir reescreva esta expressão utilizando uma única integral tripla em coordenadascartesianas.

17. Reescreva a expressão

I =

∫ 0

−1

∫ x+1

0

∫ 8−x2−y2

0

ydzdydx+

∫ 1

0

∫ 1−x

0

∫ 8−x2−y2

0

ydzdydx

como uma única integral tripla, em coordenadas cartesianas.

164

Page 171: Apostila de Integrais 2

18. Reescreva a expressão

I =

∫ 1

−1

∫ x2+4

0

∫ 1−x2

0

dzdydx+

∫ 1

−1

∫ 5

x2+4

∫ 5−y

0

dzdydx

como uma única integral tripla em coordenadas cartesianas, de três formas distintas.

19. Represente geometricamente o sólido cujo volume pode ser calculado pela expressão

V =

∫ 2π

0

∫ π3

0

∫ 2

1

ρ2 sinϕdρdϕdθ.

A seguir, reescreva esta expressão em coordenadas cilíndricas.

20. Utilize coordenadas esféricas para calcular a massa do sólido situado acima do conez2 = x2 + y2 e interior à esfera x2 + y2 + z2 = 4z, sabendo que sua densidade de massaé dada por d(x, y, z) =

√x2 + y2 + z2.

21. Utilize coordenadas esféricas para resolver a seguinte integral tripla

I =

∫ √3

−√3

∫ √3−x2

−√3−x2

∫ √4−x2−y2

1

z√x2 + y2(x2 + y2 + z2)2

dzdydx.

22. Represente geometricamente o sólido cuja massa é calculada, em coordenadas esféricas,pela expressão

M =

∫ 2π

0

∫ π6

0

∫ √5

cos2 ϕ+2 sin2 ϕ

√3

cosϕ

ρdρdϕdθ.

A seguir, reescreva esta expressão em coordenadas cilíndricas.

23. Represente geometricamente o sólido cuja massa pode ser calculada, em coordenadascilíndricas, pela expressão

M =

∫ 2π

0

∫ √3

0

∫ √10−3r2

r2

3

(r + z)dzdrdθ.

A seguir, reescreva esta expressão em coordenadas esféricas.

24. Escreva, em coordenadas cartesianas e em coordenadas esféricas, a integral que permitecalcular o volume do menor sólido delimitado simultaneamente pelas superfícies x2 +y2 + z2 = 16 e x2 + y2 + z2 = 8z.

25. Calcule o volume do sólido que está situado acima de z = 0 e que é simultaneamenteinterior à esfera x2 + y2 + z2 = 9 e ao hiperbolóide de uma folha x2 + y2 − z2 = 1.

26. Considere o sólido delimitado inferiormente por z = 2x2 + 2y2 e superiormente porx2 + y2 + z2 = 3. Escreva a integral que permite calcular o volume deste sólido emcoordenadas cartesianas, cilíndricas e esféricas.

27. Considere o sólido delimitado inferiormente por 2z =√x2 + y2 e superiormente por

z = 6 −√x2 + y2. Escreva a integral que permite calcular o volume deste sólido em

coordenadas cartesianas, cilíndricas e esféricas.

165

Page 172: Apostila de Integrais 2

28. Escreva, em coordenadas cartesianas, cilíndricas e esféricas, as integrais que permitemcalcular a massa do sólido situado simultaneamente no interior das superfícies x2 +

y2 + z2 = 4z e z = 1 +1

2

√x2 + y2, sabendo que sua função densidade é f(x, y, z) =

(x2 + y2)z2

cos(x2 + y2 + z2).

29. Escreva I =

∫∫∫S

f(x, y, z)dV, em três sistemas de coordenadas distintas, sendo S

sólido situado simultaneamente no interior de x2+y2+z2 = 2z e de z = 2−√x2 + y2

e f(x, y, z) =ex

2+y2+z2

x+ y + z.

30. O volume de um sólido S é dado pela expressão

V =

∫ 2a

0

∫ √4a2

−x2

−√

4a2

−x2

∫ 6−a2x2−a2y2

a√

x2+y2dzdydx,

sendo a um número real positivo.

(a) Escreva o volume do sólido usando coordenadas cilíndricas.

(b) Determine o valor de a para que o volume do sólido S seja igual a 16π3.

166

Page 173: Apostila de Integrais 2

4.7 Respostas

1. V = 2a2b(3π−4)9

2. V = 4π(8√2−7)

3

3. I = −54415

4. V = 32a3

9

5. V = abc6

6. V = 3π

7. V = 16a3

3

8. V = 3π2

9. (a) I =

∫ 3

−3

∫ √9−x2

−√9−x2

∫ √9−x2−y2

0

√9− x2 − y2 − z2

x2 + y2 + z2dzdydx

(b) I =

∫ √12

0

∫ √12−x2

0

∫ √16−x2−y2√

x2+y2

3

√4− x2 − y2 − z2√x2 + y2 + z2

dzdydx−

∫ 2

0

∫ √4−x2

0

∫ √16−x2−y2

√3x2+3y2

√4− x2 − y2 − z2√x2 + y2 + z2

dzdydx

10. M = 400

11. M = 44

12. V =

∫ 2

0

∫ 2−z2

0

∫ 4−z2

0

dydxdz

V =

∫ 4

0

∫ √4−y

0

∫ 2−z2

0

dxdzdy

V =

∫ 2

0

∫ 4−z2

0

∫ 2−z2

0

dxdydz

V =

∫ 1

0

∫ −4x2+8x

0

∫ 2−2x

0

dzdydx+

∫ 1

0

∫ 4

−4x2+8x

∫ √4−y

0

dzdydx

V =

∫ 4

0

∫ 1− 12

√4−y

0

∫ √4−y

0

dzdxdy +

∫ 4

0

∫ 1

1− 12

√4−y

∫ 2−2x

0

dzdxdy

13. V =

∫ 2

0

∫ 4−x2

0

∫ 8−2z

0

dydzdx

V =

∫ 4

0

∫ 8−2z

0

∫ √4−z

0

dxdydz

V =

∫ 8

0

∫ 8− y

2

0

∫ √4−z

0

dxdzdy

167

Page 174: Apostila de Integrais 2

V =

∫ 2

0

∫ 2x2

0

∫ 4−x2

0

dzdydx+

∫ 2

0

∫ 8

2x2

∫ 8− y

2

0

dzdydx

V =

∫ 8

0

∫ √y2

0

∫ 8− y

2

0

dzdxdy +

∫ 8

0

∫ 2

√y2

∫ 4−x2

0

dzdxdy

14. a = 3

15. M =

∫ √2

−√2

∫ √2−x2

−√2−x2

∫ 4−x2−y2

x2+y2

√4 + x2 + y2 − z√

x2 + y2dzdydx

16. V =

∫ 2

0

∫ 4−x2

0

∫ 6−z

0

dydzdx

17. I =

∫ 1

0

∫ 1−y

y−1

∫ 8−x2−y2

0

ydzdxdy

18. I =

∫ 1

−1

∫ 1−x2

0

∫ 5−z

0

dydzdx =

∫ 1

0

∫ √1−z

−√1−z

∫ 5−z

0

dydxdz =

∫ 1

0

∫ 5−z

0

∫ √1−z

−√1−z

dxdydz

19. V =

∫ 2π

0

∫ √3

0

∫ √4−r2

√33r

rdzdrdθ −∫ 2π

0

∫ √3

2

0

∫ √1−r2

√3

3r

rdzddθ

ou V =

∫ 2π

0

∫ √3

2

0

∫ √4−r2

√1−r2

rdzdrdθ +

∫ 2π

0

∫ √3

√3

2

∫ √4−r2

√3

3r

rdzdrdθ.

20. M = 165π(8−

√2)

21. I = 13π2 − 1

4

√3π

22. M =

∫ 2π

0

∫ 1

0

∫ √5−2r2

√3

dzdrdθ

23.∫ 2π

0

∫ π3

0

∫ √10

cos2 ϕ+3 sin2 ϕ

0

(sinϕ+cosϕ)ρ2dρdϕdθ+

∫ 2π

0

∫ π2

π3

∫ 3 cosϕ

sin2 ϕ

0

(sinϕ+cosϕ)ρ2dρdϕdθ

24. Cartesianas V =

∫ √12

−√12

∫ √12−x2

−√12−x2

∫ √16−x2−y2

4−√

16−x2−y2dzdydx

Esféricas: V =

∫ 2π

0

∫ π3

0

∫ 4

0

ρ2 sinϕdρdϕdθ +

∫ 2π

0

∫ π2

π3

∫ 8 cosϕ

0

ρ2 sinϕdρdϕdθ.

25. V = 18π − 323π

26. Cartesianas V =

∫ √3

2

−√3

2

∫ √34−y2

−√

34−y2

∫ √3−x2−y2

2x2+2y2dzdydx

Cilíndricas V =

∫ 2π

0

∫ √3

2

0

∫ √3−r2

r2rdzdrdθ

168

Page 175: Apostila de Integrais 2

Esféricas: V =

∫ 2π

0

∫ π6

0

∫ 3

0

ρ2 sinϕdzdϕdθ +

∫ 2π

0

∫ π2

π6

∫ 12cotϕ cscϕ

0

ρ2 sinϕdzdϕdθ

27. Cartesianas V =

∫ 4

−4

∫ √16−x2

−√16−x2

∫ 6−√

x2+y2

√x2+y2

2

dzdydx

Cilíndricas V =

∫ 2π

0

∫ 4

0

∫ 6−r

r2

rdzdrdθ

Esféricas V =

∫ 2π

0

∫ arctan 2

0

∫ 6

cosϕ+ sinϕ

0

ρ2 sinϕdρdϕdθ

28. Cartesianas M =

∫ 2

−2

∫ √4−x2

−√4−x2

∫ 2+√

4−x2−y2

1+ 12

√x2+y2

(x2 + y2)z2

cos(x2 + y2 + z2)dzdydx

Cilíndricas M =

∫ 2π

0

∫ 2

0

∫ 2+√4−r2

1+ 12r

r3z2

cos(r2 + z2)dzdrdθ

Esféricas M =

∫ 2π

0

∫ π4

0

∫ 4 cosϕ

2

2 cosϕ− sinϕ

ρ6 sin3 ϕ cos2 ϕ

cos(ρ2)dρdϕdθ

29. Cartesianas I =

∫ 1

−1

∫ √1−x2

−√1−x2

∫ 2−√

x2−y2

1−√

1−x2−y2

ex2+y2+z2

x+ y + zdzdydx

Cilíndricas I =

∫ 2π

0

∫ 1

0

∫ 2−r

1−√1−r2

er2+z2

r cos θ + r sin θ + zrdzdrdθ

Esféricas I =

∫ 2π

0

∫ π4

0

∫ 2

cosϕ+ sinϕ

0

eρ2

sinϕ cos θ + sinϕ sin θ + cosϕρ sinϕdρdϕdθ

+

∫ 2π

0

∫ π2

π4

∫ 2 cosϕ

0

eρ2

sinϕ cos θ + sinϕ sin θ + cosϕρ sinϕdρdϕdθ

30. (a)∫ π

2

−π2

∫ a2

0

∫ 6−a2r2

ar

rdzdrdθ (b) a = 1

169

Page 176: Apostila de Integrais 2

Capítulo 5

SEQUÊNCIAS E SÉRIES

Objetivos (ao nal do capítulo espera-se que o aluno seja capaz de):

1. Reconhecer uma sequência e vericar:

(a) se é convergente ou divergente;

(b) se é crescente ou decrescente;

(c) propriedades de uma sequência.

2. Denir séries numéricas de termos positivos;

3. Encontrar a soma de séries;

4. Identicar as séries especiais: geométrica, harmônica, série-p;

5. Vericar se a série é convergente ou divergente, aplicando os critérios de convergência;

6. Analisar a convergência de séries alternadas e de sinais quaisquer;

7. Reconhecer séries absolutamente e condicionalmente convergentes;

8. Reconhecer séries de funções;

9. Encontrar o raio e o intervalo de convergência das séries de potências;

10. Desenvolver funções em séries de Taylor e Maclaurin;

11. Utilizar séries de funções na resolução de limites e integrais;

12. Resolver exercícios usando uma ferramenta tecnológica.

A prova será composta por questões que possibilitam vericar se os objetivos foramatingidos. Portanto, esse é o roteiro para orientações de seus estudos. O modelo de formu-lação das questões é o modelo adotado na formulação dos exercícios e no desenvolvimentoteórico desse capítulo, nessa apostila.

170

Page 177: Apostila de Integrais 2

5.1 Introdução

Neste capítulo estudaremos séries innitas, as quais são somas que envolvem um númeroinnito de termos. As séries innitas desempenham um papel fundamental tanto na matemáticaquanto na ciência. Elas são usadas, por exemplo, para aproximar funções trigonométricase logarítmicas, para resolver equações diferenciais, para efetuar integrais complicadas, paracriar novas funções e para construir modelos matemáticos de leis físicas (Anton, 1999).

5.2 Sequências

Na linguagem cotidiana, o termo sequência signica uma sucessão de coisas em uma ordemdeterminada ordem cronológica, de tamanho, ou lógica, por exemplo. Em matemática otermo sequência é usado comumente para denotar uma sucessão de números cuja ordem édeterminada por uma lei ou função.

Estudaremos um tipo especial de função denida nos números naturaisN∗ = 1, 2, 3, 4, · · · com imagem em R. Isto é, estudaremos a função f : N∗ → R quanto ao limite e suas pro-priedades quando n→ ∞. A função f : N∗ → R denida por f(n) = n

2n+1é um exemplo de

sequência. O conjunto composto pelos pares ordenados (n, f(n)), dado por

I = (1, f(1)), (2, f(2)), (3, f(3)), · · · , (n, f(n)), · · ·

ou

I =

(1,

1

3), (2,

2

5), (3,

3

7), · · · , (n, n

2n+ 1), · · ·

é denominado conjunto dos termos da sequência f(n). Geralmente, o conjunto I é escritode forma simplicada. Isto é, I é representado pelas imagens de n ∈ N∗ de forma que aposição que determinada imagem de f ocupa no conjunto dos termos da sequência f(n) édeterminada pelo elemento n ∈ N∗, ou seja,

I = f(1), f(2), f(3), · · · , f(n), · · · =

1

3,2

5,3

7,4

9,5

11, · · · , n

2n+ 1, · · ·

.

Podemos observar que o termo 511

é imagem de n = 5, pois ocupa a quinta posição noconjunto dos termos. O termo f(n) = n

2n+1é denominado termo geral da sequência. A

forma usual de representar o termo geral de uma sequência é un = n2n+1

ou xn = n2n+1

ouyn = n

2n+1etc. Passaremos agora à denição formal de sequência. Nesse caso, temos o

conjunto I = u1, u2, u3, · · · , un, · · · .

DEFINIÇÃO 5.2.1 Sejam N∗ = 1, 2, 3, 4, · · · o conjunto dos naturais, R a reta real. De-nominamos a aplicação un : N∗ → R de uma sequência numérica.

EXEMPLO 5.2.2 Para melhor compreensão, vamos supor que o crescimento diário de umalinhagem de suínos é dada em função do crescimento total pela sequência un = n

n+13onde

n corresponde ao número de dias de vida do suíno e limn→∞

un o tamanho de um suíno adulto.

Assim, o conjunto

114, 215, 316, 417, 518, · · · , n

n+13, · · ·

representa o tamanho diário do suíno em

relação ao tamanho nal.

Gracamente podemos observar a curva de crescimento, cujo limite é representado pelaassíntota y = 1 (Figura 5.1).

171

Page 178: Apostila de Integrais 2

Figura 5.1: Crescimento da linhagem de suínos

Como podemos observar a assíntota y = 1 representa o limite de crescimento do suíno.Isso signica que podemos levantar questões como por exemplo, qual o número mínimo dedias que o suíno deve car em tratamento para atingir, pelo menos, 80% de seu tamanhonal?

No Figura 5.2 podemos observar uma estimativa em torno de 50 dias.

Figura 5.2: Estimativa para obter 80 por cento do tamanho nal

A questão agora é: como fazer uma estimativa em termos matemáticos? A resposta serádada pela denição de limite de uma sequência.

5.2.3 Limite de uma Sequência

DEFINIÇÃO 5.2.4 Seja un uma sequência, dizemos que o número a é limite de un quandon tende para o innito se, dado ε > 0 podemos encontrar K > 0 tal que para todo n > Kvale a desigualdade |un − a| < ε.

EXEMPLO 5.2.5 Dada a sequência un : N∗ → R denida no Exemplo 5.2.2 por un = nn+13

,vamos mostrar que lim un = 1.

Solução: Devemos mostrar que, dado ε > 0 podemos encontrar K > 0 tal que para todon > K vale a desigualdade |un − a| < ε. Agora,

|un − 1| =∣∣∣∣ n

n+ 13− 1

∣∣∣∣ = ∣∣∣∣n− n− 13

n+ 13

∣∣∣∣ = ∣∣∣∣ 13

n+ 13

∣∣∣∣ < ε.

172

Page 179: Apostila de Integrais 2

De modo que podemos escrever

13

n+ 13< ε ⇒ 13 < nε+ 13ε ⇒ 13− 13ε

ε< n.

Consequentemente, podemos tomar K = 13−13εε

e a Denição 5.2.4 estará satisfeita.Comparando os dados do Exemplo 5.2.2 com a Denição 5.2.4 concluímos que ε = 0, 2

representa a diferença entre o crescimento almejado e o crescimento total dos suínos. Poroutro lado, K é o número mínimo de dias que os suínos devem permanecer em tratamentopara atingir, pelo menos, 80% de seu crescimento total.

EXEMPLO 5.2.6 Determine o número mínimo de dias que um lote de suínos, cujo crescimentoé dado pela sequência un = n

n+13deve permanecer em tratamento para atingir, respectiva-

mente, 80%, 90% e 95% do seu tamanho nal.

Solução: No Exemplo 5.2.5 concluímos que dado ε > 0 podemos tomar K = 13−13εε

. Comopara 80%, 90% e 95% do tamanho nal os valores de ε são respectivamente 0.2, 0.1 e0.05 temos, respectivamente, o número mínimo de dias é dado por

(a) K =13− 13ε

ε=

13− 13 · 0, 20, 2

= 52 dias

(b) K =13− 13ε

ε=

13− 13 · 0, 10, 1

= 117 dias

(c) K =13− 13ε

ε=

13− 13 · 0, 050, 05

= 247 dias

Outra conclusão que podemos tirar é que, a partir de um determinado tempo, a variaçãodo crescimento é muito pequena em relação à quantidade de ração que o suíno consome.Portanto, o produtor deve estimar o tempo mínimo de tratamento em dias para obter omáximo de lucro.

5.2.7 Sequências Convergentes

DEFINIÇÃO 5.2.8 Seja un uma sequência. Dizemos que un é convergente se, e somente se,limn→∞

un = L para algum L ∈ R.

Se un não for convergente, diremos que un é divergente.

EXEMPLO 5.2.9 A sequência un = 2n+33n+5

é convergente, pois limn→∞

un = limn→∞

2n+33n+5

= 23.

EXEMPLO 5.2.10 Determine se a sequência un = 14n2 − 1 converge ou diverge.

Solução: A sequência dada é tal que limn→∞

un = limn→∞

14n2 − 1 = ∞.

Como o limite de un não existe, a sequência diverge.

TEOREMA 5.2.11 Seja un : N∗ → R uma sequência em R tal que limn→∞

un existe, então

este limite é único.

DEMONSTRAÇÃO: Suponhamos que un : N∗ → R é uma sequência em R tal que limn→∞

un

existe e suponhamos que a e b, com a = b, são limites dessa sequência. Então dado ε > 0podemos encontrar K1 > 0 e K2 > 0 tal que para todo n > K1 tenhamos |un − a| < ε

2e

para todo n > K2 tenhamos |un − b| < ε2. Agora seja K = maxK1, K2. Então podemos

escrever, para todo n > K

173

Page 180: Apostila de Integrais 2

|a− b| = |a− un + un − b| = |−(un − a)− (un − b)|≤ |un − a|+ |un − b| < ε

2+ ε

2= ε.

Como a e b são constantes, teremos |a− b| < ε para todo ε > 0 se, e somente se|a− b| = 0, isto é, se a = b. Logo, o limite de un, se existe, é único.

5.3 Subsequências

DEFINIÇÃO 5.3.1 Seja un : N∗ → R uma sequência. Seja N ′ = n1 < n2 < n3 < · · · <nk < · · · um subconjunto innito de N∗, então unk

= un∣∣N ′ : N∗ → R é dita uma subse-

quência de un.

EXEMPLO 5.3.2 Seja un : N∗ → R uma sequência dada por un = 1n2 . Seja N ′ = 1, 3, 5, 7, · · · ⊂

N∗. Então a sequência unk: N ′ → R é uma subsequência de un. Os termos da sequência são

1, 14, 19, 116, 125, 136, 149, · · · e os termos da subsequência são 1, 1

9, 125, 149, · · · .

TEOREMA 5.3.3 Se uma sequência converge para L, então todas suas subsequências tam-bém convergem para L.

DEMONSTRAÇÃO: Suponhamos que un : N∗ → R é uma sequência tal que limn→∞

un = L. Assim,

dado ε > 0, existe K > 0 tal que para todo n > K é válida a desigualdade |un − L| < ε.Agora, se unk

: N ′ → R é uma subsequência de un, onde N ′ = n1 < n2 < · · · < nk < · · · é um conjunto innito, temos que, para cada ε > 0, existe um k0 ∈ N∗ tal que nk0 > K eentão, para k > k0 temos que nk > nk0 > K e assim |unk

− L| < ε, o que prova que unk

também converge para L, como queríamos demonstrar.

EXEMPLO 5.3.4 A sequência un = (−1)n é divergente, pois admite subsequências que con-vergem para valores diferentes, contrariando o teorema anterior. De fato, a subsequência deíndices pares, dada por u2n = (−1)2n = 1 converge para L1 = 1, enquanto que sua subse-quência de índices ímpares, dada por un = (−1)2n+1 = −1 converge para L2 = −1. Como oslimites das subsequências são diferentes, a sequência diverge.

5.4 Sequência Limitada

DEFINIÇÃO 5.4.1 Seja un : N∗ → R uma sequência em R. Dizemos que un é limitada seo conjunto u1, u2, u3, · · · , un · · · for limitado, ou seja, se existirem k1 e k2 ∈ R tais quek1 ≤ un ≤ k2 para todo n ∈ N∗.

TEOREMA 5.4.2 Seja un : N∗ → R uma sequência convergente em R, então un é limitada.

DEMONSTRAÇÃO: Suponhamos que un : N∗ → R é uma sequência convergente em R esuponhamos que a é limite dessa sequência. Então, dado ε = 1, podemos encontrar K > 0,tal que para todo n > K tenhamos |un − a| < 1. Assim, para todo n > K, temos un ∈B(a, 1). Como o conjunto u1, u2, u3, · · · , uK é nito, logo admite um valor máximo, sejaM = maxu1, u2, · · · , uK , segue que u1, u2, u3, · · · , un−1, un, · · · ⊂ B(a, 1)∪B(0,M). Logo,un é limitada.

OBSERVAÇÃO 5.4.3 A recíproca desse teorema não é verdadeira. Por exemplo, un = (−1)n élimitada, com −1 ≤ un ≤ 1, mas un não é convergente.

174

Page 181: Apostila de Integrais 2

5.5 Sequências Numéricas Monótonas

Neste parágrafo analisaremos algumas propriedades das sequências em R.

DEFINIÇÃO 5.5.1 Seja un uma sequência de valores reais. Dizemos que un é

• não-decrescente se un+1 ≥ un para todo n ∈ N∗;

• crescente se un+1 > un para todo n ∈ N∗;

• não-crescente se un ≥ un+1 para todo n ∈ N∗;

• decrescente se un > un+1 para todo n ∈ N∗.

DEFINIÇÃO 5.5.2 Seja un uma sequência de valores reais. Então un é denominada monó-tona se pertencer a um dos tipos descritos na Denição 5.5.1.

EXEMPLO 5.5.3 Mostre que a sequência un = n+1n2+2

é monótona.

Solução: Devemos mostrar que un pertence a um dos tipos descritos na Denição 5.5.1.Temos que un = n+1

n2+2e un+1 =

(n+1)+1(n+1)2+2

= n+2n2+2n+3

. Vericaremos se un+1 ≤ un

n+ 2

n2 + 2n+ 3≤ n+ 1

n2 + 2

⇔ (n2 + 2)(n+ 2) ≤ (n+ 1)(n2 + 2n+ 3)

⇔ n3 + 2n2 + 2n+ 4 ≤ n3 + 3n2 + 5n+ 3

⇔ 1 ≤ n2 + 3n.

A última desigualdade é verdadeira para todo n. Logo, un = n+1n2+2

é decrescente e, assim,monótona.

DEFINIÇÃO 5.5.4 Sejam un uma sequência numérica, C e K dois números reais. Dizemosque C é limitante inferior de un se C ≤ un para todo n e que K é limitante superior de unse K ≥ un para todo n.

EXEMPLO 5.5.5 Consideremos a sequência monótona decrescente un = n+1n2+2

cujos termos são23, 36, 411, 518, · · · e cujo limite é L = 0. Então, todo número real C ≤ 0 é limitante inferior de

un e todo K ≥ 23é limitante superior de un, pois un < u1 =

23.

DEFINIÇÃO 5.5.6 Seja un uma sequência numérica que possui limitantes inferiores e supe-riores, então un é dita sequência limitada.

OBSERVAÇÃO 5.5.7 Note que uma sequência, para ser limitada, não precisa ter limite. Porexemplo, un = (−1)n não tem limite, mas é limitada.

TEOREMA 5.5.8 Toda sequência monótona limitada em R é convergente.

TEOREMA 5.5.9 Sejam un e yn sequências numéricas em R tais que limn→∞

un = a e

limn→∞

yn = b. Então são válidas as armações:

(i) limn→∞

c = c;

175

Page 182: Apostila de Integrais 2

(ii) limn→∞

cun = ca;

(iii) limn→∞

(un ± yn) = a± b;

(iv) limn→∞

unyn = ab;

(v) Se b = 0 e yn = 0 então limn→∞

un

yn= a

b;

(vi) limn→∞

cnk = 0, se k é uma constante positiva.

5.6 Séries Numéricas

DEFINIÇÃO 5.6.1 Seja un : N∗ → R uma sequência numérica. Denominamos série innitaà soma de todos os innitos termos dessa sequência, ou seja, uma série é uma expressão daforma

∞∑n=1

un = u1 + u2 + u3 + · · ·+ uk + · · · .

A sequência un, cujos innitos termos são somados, é chamada de termo geral ou n−ésimotermo da série.

Questões pertinentes no estudo de séries são: Como se determina o resultado de umasoma innita? Toda série possui uma soma nita?

Passaremos a responder tais questões no desenvolvimento do restante deste capítulo. Noentanto, estaremos muito mais preocupados com o fato de determinar se uma série innitapossui ou não uma soma nita do que propriamente encontrar o valor desta soma.

Começaremos com o conceito de somas parciais de uma série.

DEFINIÇÃO 5.6.2 Seja∞∑n=1

un uma série. A soma dos primeiros k termos desta série, dada

por

Sk =k∑

n=1

un = u1 + u2 + u3 + · · ·+ uk

é denominada soma parcial da série dada.

Note que as somas

S1 = u1

S2 = u1 + u2 = S1 + u2

S3 = u1 + u2 + u3 = S2 + u3

· · ·Sk = Sk−1 + uk

formam uma sequência, chamada de sequência de somas parciais. Se esta sequênciaconvergir, ou seja, se existir S tal que lim

k→∞Sk = S, dizemos que a série dada converge para

S e denotaremos∞∑n=1

un = S.

Se não existir tal S, diremos que a série diverge, signicando que não podemos obterum valor nito para a soma das innitas parcelas da série.

Para melhor entendimento, vamos considerar e analisar um exemplo.

176

Page 183: Apostila de Integrais 2

EXEMPLO 5.6.3 Durante o tempo que permanecer na universidade, um estudante da Udescdeverá receber uma mesada de seu pai, em unidades monetárias, que obdedece à sequência

un =20000

n(n+ 1), onde n corresponde ao número da parcela a ser recebida. Pergunta-se

(i) Qual o montante que o estudante deverá receber até o nal da faculdade, supondo que eleconclua o curso em 60 meses?(ii) No caso do estudante permanecer na universidade indenidamente, como cará o mon-tante recebido?

Solução: As parcelas mensais recebidas pelo estudante são dadas pela sequência que des-creve o valor da mesada, que são

10000,10000

3,

5000

3, 1000,

2000

3,

10000

21,

2500

7, · · ·

Para responder a primeira pergunta, vamos escrever o problema no formato de uma sérieinnita, isto é,

∞∑n=1

20000

n(n+ 1)= 10000 +

10000

3+

5000

3+ 1000 +

2000

3+

10000

21+

2500

7+ · · ·

Os primeiros termos das somas parciais desta série são dadas por

S1 = u1 = 10000,

S2 = S1 + u2 =40000

3,

S3 = S2 + u3 = 15000,

S4 = S3 + u4 = 16000

Agora, precisamos determinar uma expressão para o termo geral desta soma. Para isso,reescrevemos o termo geral da série usando decomposição em frações parciais, tomando

20000

n(n+ 1)=A

n+

B

n+ 1=A (n+ 1) +Bn

n(n+ 1)=A+ (A+B)n

n(n+ 1)

e obtendo que A = 20000A+B = 0

⇒ A = 20000 e B = −20000.

Desse modo a série dada pode ser reescrita como

∞∑n=1

20000

n(n+ 1)=

∞∑n=1

(20000

n− 20000

n+ 1

)e a soma dos seus k−primeiros termos é dada por

Sk =

(20000− 20000

2

)+

(20000

2− 20000

3

)+ · · ·+

(20000

k− 20000

k + 1

)e como podemos simplicar alguns termos intermediários, obtemos que

Sk = 20000− 20000

k + 1,

177

Page 184: Apostila de Integrais 2

ou seja,

Sk =20000k

k + 1.

O leitor poderá vericar que as somas parciais determinadas anteriormente correspondemàs fornecidas por esta expressão.

Como a solução para a questão (i) do exemplo corresponde à sexagésima soma, temosque

S60 =20000 · 60

61= 19672.

Desse modo, após 60 meses, o estudante terá recebido um montante de 19672 unidadesmonetárias.

Passaremos agora a responder a segunda questão. Na Figura 5.3 podemos ver o compor-tamento para o crescimento da soma da série.

Sk

k

Figura 5.3: Estimativa para o crescimento da série

Portanto, se o estudante car indenidamente na universidade, observando o gráco,podemos armar que não receberia mais do que 20000 unidades monetárias. Isso signicaque a soma da série tem limite 20000 quando a quantidade de parcelas tende para innito,ou seja,

limk→∞

Sk = limk→∞

20000k

k + 1= 20000.

Em outras palavras, a série converge para 20000 e podemos escrever

∞∑n=1

20000

n(n+ 1)= 20000.

Como vimos acima, a soma de uma série innita é obtida pelo limite da sua sequência desomas parciais. Assim, denimos o limite de uma série do mesmo modo com que foi denidoo limite de uma sequência.

5.6.4 Soma de uma Série

DEFINIÇÃO 5.6.5 Seja∞∑n=1

un uma série cuja sequência de somas parciais é Sk. Dizemos

que o número S é a soma da série, denotando S =∞∑n=1

un, se S for o limite de Sk quando k

tender para o innito, ou seja, se dado ε > 0 pudermos encontrar N0 > 0 tal que, para todok > N0 vale a desigualdade |Sk − S| < ε.

178

Page 185: Apostila de Integrais 2

EXEMPLO 5.6.6 Considere a série obtida no Exemplo 5.6.3, dada por∞∑n=1

20000

n(n+ 1). Mostre

que∞∑n=1

20000

n(n+ 1)= 20000.

Solução: Como vimos acima, a sequência de somas parciais da série dada é Sk = 20000kk+1

.

Devemos então mostrar que limk→∞

20000kk+1

= 20000, ou seja, que dado ε > 0 podemos encontrar

N0 > 0 tal que para, se k > N0 então |Sk − 20000| < ε. Como

|Sk − 20000| =∣∣∣∣20000kk + 1

− 20000

∣∣∣∣ = ∣∣∣∣20000k − 20000k − 20000

k + 1

∣∣∣∣ = ∣∣∣∣−20000

k + 1

∣∣∣∣temos que a desigualdade desejada será válida se

20000

k + 1< ε ⇒ 20000 < kε+ ε ⇒ 20000− ε

ε< k.

Consequentemente, podemos tomar N0 =20000− ε

εe a Denição 5.6.1 estará satisfeita.

Suponhamos que se deseja saber a partir de qual parcela a diferença entre o montantee o total a receber será menor do que 300 u.m.. Para obter a resposta tomamos ε = 300 e

obteremos N0 =20000− 300

300= 65, 667. Isso signica que em todas as parcelas, a partir da

sexagésima sexta, a diferença entre o montante e o limite é menor do que 300 u.m..Suponhamos que se deseja saber a partir de qual parcela a diferença entre o montante

e o limite é menor do que 200 u.m.. Para obter a resposta tomamos ε = 200 e obteremos

N0 =20000− 200

200= 99. Isso signica que em todas as parcelas, a partir da parcela de

número 99, a diferença entre o montante e o limite é menor do que 100 u.m..

5.6.7 Séries Convergentes

DEFINIÇÃO 5.6.8 Seja∞∑n=1

un uma série e seja Sk a soma parcial dos termos dessa série.

Dizemos que∞∑n=1

un é convergente se limk→∞

Sk existe. Caso contrário, dizemos que a série é

divergente.

EXEMPLO 5.6.9 A série∞∑n=1

20000n(n+1)

do Exemplo 5.6.3 é convergente pois

limk→∞

Sk = limn→∞

20000k

k + 1= 20000.

EXEMPLO 5.6.10 Determine se a série∞∑n=1

2n

5n−1é convergente ou divergente.

Solução: Devemos vericar se a sequência de somas parciais desta série tem limite. Todasas séries que apresentam esse modelo (séries geométricas) podem ser resolvidas conforme omodelo que segue.

(i) Escrevemos a soma dos k primeiros termos:

Sk = 2 +22

5+

23

52+

24

53+ · · ·+ 2k

5k−1

179

Page 186: Apostila de Integrais 2

(ii) Multiplicamos Sk por 25

2

5Sk =

22

5+

23

52+

24

53+ · · ·+ 2k

5k−1+

2k+1

5k

(iii) Tomamos a diferença entre os resultados de (i) e (ii), obtendo

Sk −2

5Sk =

(2 +

22

5+

23

52+ · · ·+ 2k

5k−1

)−(22

5+

23

52+ · · ·+ 2k

5k−1+

2k+1

5k

)ou seja,

3

5Sk = 2− 2k+1

5k

ou ainda,

Sk =10

3− 5

3

2k+1

5k=

10

3− 10

3

(2

5

)k

e como2

5< 1, temos que a

S = limk→∞

Sk = limk→∞

10

3− 10

3

(2

5

)k

=10

3.

Consequentemente, a série∞∑n=1

2n

5n−1converge para

10

3.

EXEMPLO 5.6.11 Encontre o termo geral da sequência de somas parciais da série∞∑n=1

−4

(2n+ 3)(2n− 1).

A seguir, determine se a série converge ou diverge, obtendo o valor de sua soma, se possível.

Solução: Note que∞∑n=1

−4

(2n+ 3)(2n− 1)=

1

2n+ 3− 1

2n− 1, assim temos que

∞∑n=1

−4

(2n+ 3)(2n− 1)=

∞∑n=1

(1

2n+ 3− 1

2n− 1

).

Logo, a sequência das somas parciais é:

Sk =k∑

n=1

(1

2n+ 3− 1

2n− 1

)=

(1

5− 1

)+

(1

7− 1

3

)+

(1

9− 1

5

)+

(1

11− 1

7

)+ · · ·+

+ · · ·+(

1

2k − 1− 1

2k − 5

)+

(1

2k + 1− 1

2k − 3

)+

(1

2k + 3− 1

2k − 1

)= −1− 1

3+

1

2k + 1+

1

2k + 3

Portanto, o termo geral da sequência de somas parciais da série dada é Sk = −4

3+

1

2k + 1+

1

2k + 3.

180

Page 187: Apostila de Integrais 2

Por denição a série converge se limk→∞

Sk existe e a soma da série é o valor do limite.

Como

limk→∞

Sk = limk→∞

(−4

3+

1

2k + 1+

1

2k + 3

)= −4

3.

A série dada converge e sua soma é S = −43.

Observações:

1. Uma das propriedades das séries innitas é que a convergência ou divergência nãoé afetada se subtrairmos ou adicionarmos um número nito de termos a elas. Porexemplo, se no Exemplo 5.6.3 o estudante só começasse a receber a primeira parcela

após 5 meses, a série seria escrita com n = 6 no primeiro termo, ou seja,∞∑n=6

20000

n(n+ 1),

e a soma seria S = 20000− S5. Se por outro lado, o seu pai decidisse nos primeiros 10meses dar uma mesada xa de 2000u.m. por mês e iniciar o pagamento com n = 1 no

décimo primeiro mês, a soma seria S = 2000(10) + limk→∞

20000k

k + 1. Em ambos os casos a

série continuará convergente.

2. Se a série∞∑n=1

un é convergente e a série∞∑n=1

yn é divergente, então a série∞∑n=1

(un+ yn) é

divergente. No entanto, se as séries∞∑n=1

un e∞∑n=1

yn são divergentes, a série∞∑n=1

(un+ yn)

pode ser convergente ou divergente.

3. Se∞∑n=1

un é uma série convergente de termos positivos, seus termos podem ser reagru-

pados de qualquer modo e a série resultante também será convergente e terá a mesmasoma que a série dada.

TEOREMA 5.6.12 Seja∞∑n=1

un uma série e α ∈ N∗. Se a série

∞∑n=α

un = uα + uα+1 + uα+2 + · · ·

for convergente, então a série

∞∑n=1

un = u1 + u2 + u3 + · · ·+ uk + · · ·

também será convergente.

DEMONSTRAÇÃO: Supondo que a série∞∑

n=α

un é convergente, temos que ela possui uma soma.

Seja Sk−α o termo geral da sequência de suas somas parciais, tal que S = limk→∞

Sk−α e seja

Sα = u1 + u2 + u3 + · · ·+ uα. Desse modo, o termo geral da soma parcial da série∞∑n=1

un será

Sk = Sα+Sk−α e, portanto, limk→∞

Sk = limk→∞

Sα+ limk→∞

Sk−α, donde segue que limk→∞

Sk = Sα+S.

Consequentemente,∞∑n=1

un é convergente.

181

Page 188: Apostila de Integrais 2

Propriedades

Sejam∞∑n=1

un = u1 + u2 + u3 + · · ·+ uk + · · ·

e∞∑n=1

yn = y1 + y2 + y3 + · · ·+ yk + · · ·

duas séries que convergem para S e S ′, respectivamente, então são válidas as seguintespropriedades.

(i)∞∑n=1

kun = k∞∑n=1

un para todo k ∈ R, ou seja, a série∞∑n=1

kun converge para kS.

(ii)∞∑n=1

(un ± yn) =∞∑n=1

un ±∞∑n=1

yn, ou seja, a série∞∑n=1

(un ± yn) converge para S + S ′.

5.7 Condição necessária para Convergência

Não existe uma regra geral para vericar se uma série é convergente ou não. Como veremosnos próximos itens, há critérios que dão respostas a tipos particulares de séries. Porém,vericando se uma série não possui a condição necessária para convergência, saberemos queela não é convergente. Essa condição, é dada pelo teorema abaixo.

TEOREMA 5.7.1 Se∞∑n=1

un é uma série convergente, então limn→∞

un = 0.

DEMONSTRAÇÃO: Suponhamos que a série∞∑n=1

un converge para S, então podemos armar

que limk→∞

Sk = S, de modo que, pela Denição 5.6.8, dado ε > 0 podemos encontrar N0 > 0

tal que para todo k > N0 vale a desigualdade |Sk − S| < ε2

e |Sk−1 − S| < ε2. Como

Sk = Sk−1 + uk, temos que uk = Sk − Sk−1 e assim,

|uk − 0| = |Sk − Sk−1 − 0|= |Sk − S + S − Sk−1|= |(Sk − S) + (S − Sk−1)|= |Sk − S|+ |S − Sk−1|≤ |Sk − S|+ |Sk−1 − S|<

ε

2+ε

2= ε.

Assim, pela Denição 5.2.4, segue que limk→∞

uk = 0.

Uma consequência muito importante desse teorema é o corolário a seguir.

COROLÁRIO 5.7.2 Seja∞∑n=1

un uma série tal que limn→∞

un = 0, então∞∑n=1

un é divergente.

EXEMPLO 5.7.3 A série∞∑n=1

2n+23n+5

é divergente já que limn→∞

un = limn→∞

2n+23n+5

= 23= 0.

182

Page 189: Apostila de Integrais 2

EXEMPLO 5.7.4 A série∞∑n=1

1n

é tal que limn→∞

un = limn→∞

1n

= 0, isto é, possui a condição

necessária para convergência. No entanto, não podemos, sem aplicar outros testes de con-vergência, armar se ela é convergente ou divergente.

OBSERVAÇÃO 5.7.5 Portanto quem atentos, se o limn→∞

un = 0 prova-se que a série é diver-

gente. Mas, se limn→∞

un = 0 a série pode convergir ou divergir, para isso necessitamos estudar

critérios para fazer tal vericação.

Veremos, na sequência, alguns resultados que permitem vericar se uma série é conver-gente ou divergente

5.8 Séries Especiais

5.8.1 Série harmônica

DEFINIÇÃO 5.8.2 A série∞∑n=1

1

né denominada série harmônica.

A série harmônica é uma das séries mais importantes da matemática. Seu nome surgeem conexão com os sons harmônicos produzidos pela vibração de uma corda musical.

A série harmônica, embora possua a condição necessária para convergência, é uma sériedivergente. A divergência da série harmônica não é trivial. Sua lenta divergência se tornaráevidente quando examinarmos suas somas parciais com maior detalhe. Na verdade, vamosmostrar que a sequência de somas parciais Sn da série harmônica não converge, pois admitesubsequências divergentes. Para isso, vamos considerar as somas S2, S4, S8, S16, S32, · · · cujosíndices são sempre potências de 2, formando a subsequência S2n de Sn. Temos que

S21 = S2 = 1 +1

2>

1

2+

1

2=

2

2

S22 = S4 = S2 +1

3+

1

4> S2 +

(1

4+

1

4

)= S2 +

1

2>

3

2

S23 = S8 = S4 +1

5+

1

6+

1

7+

1

8> S4 +

(1

8+

1

8+

1

8+

1

8

)= S4 +

1

2>

4

2

S24 = S16 = S8 +1

9+

1

10+

1

11+

1

12+

1

13+

1

14+

1

15+

1

16

> S8 +

(1

16+

1

16+

1

16+

1

16+

1

16+

1

16+

1

16+

1

16

)= S8 +

1

2>

5

2

e assim sucessivamente, de forma que podemos intuir que S2n >n+ 1

2para todo n ∈ N∗.

Desta forma, temos que

limn→∞

S2n ≥ limn→∞

n+ 1

2= ∞,

o que nos diz que S2n é uma subsequência divergente de Sn. Com isso, temos que Sn tambémdiverge, pois do contrário iríamos contrariar o Teorema 5.3.3. Como a sequência de somasparciais da série harmônica diverge, concluímos que a própria série harmônica diverge.

Vejamos algumas somas parciais da série harmônica, obtidas com auxílio do MAPLE 6,que nos mostra a forma lenta com a qual a soma da série tende ao innito.

S10 = 2, 9289 S100 = 5, 1873 S1000 = 7, 485Sum milhao = 14, 392 Sum bilhao = 21, 300 Sum trlhao = 28, 208.

183

Page 190: Apostila de Integrais 2

5.8.3 Série geométrica

DEFINIÇÃO 5.8.4 Denominamos série geométrica à toda série da forma∞∑n=1

a1qn−1, onde q

é denominada razão.

EXEMPLO 5.8.5 Encontre a soma da série geométrica e estude sua convergência.

Solução: Consideremos a série geométrica

∞∑n=1

a1qn−1 = a1 + a1q + aq2 + · · ·+ a1q

n−1 + · · ·

e a soma dos seus n−primeiros termos, dada por

Sn = a1 + a1q + aq2 + · · ·+ a1qn−1.

Multiplicando ambos os lados dessa igualdade pela razão q obtemos

qSn = a1q + a1q2 + a1q

3 + · · ·+ a1qn

e tomando a diferença entre as duas últimas expressões, obtemos

qSn − Sn = (a1q + a1q2 + a1q

3 + · · ·+ a1qn)− (a1 + a1q + aq2 + · · ·+ a1q

n−1) ,

(q − 1)Sn = a1qn − a1 = a1(q

n − 1),

Sn =a1(q

n − 1)

(q − 1).

Para estudar a convergência dessa série devemos considerar três casos:

(I) Se q = 1 então limn→∞

Sn = limn→∞

a1(qn − 1)

(q − 1)= ∞ e a série é divergente. Se q = −1 então

Sn tem dois valores para o limite e, portanto, a série é divergente.

(II) Se |q| > 1 então limn→∞

Sn = limn→∞

a1(qn − 1)

(q − 1)= ∞ e a série é divergente.

(III) Se |q| < 1 então limn→∞

Sn = limn→∞

a1(qn − 1)

(q − 1)= lim

n→∞

a1qn

q − 1+ lim

−a1(q − 1)

=−a1

(q − 1)e a

série é convergente.

Conclusão: Uma série geométrica é divergente se |q| ≥ 1 e é convergente se

|q| < 1. Quando |q| < 1 ainda temos que∞∑n=1

a1qn−1 =

a11− q

.

EXEMPLO 5.8.6 A série∞∑n=1

(23

)né convergente, pois sua razão é q = 2

3< 1. Já a série

∞∑n=1

(32

)né divergente pois sua razão é q = 3

2> 1.

184

Page 191: Apostila de Integrais 2

5.9 Critérios de Convergência de Séries

Quando conhecemos o termo geral da soma de uma série, é fácil fazer a vericação daconvergência. Podemos vericar se uma série converge usando critérios para convergênciaque passaremos a estudar a seguir.

5.9.1 Critério da integral

TEOREMA 5.9.2 Seja∞∑n=1

un uma série tal que un+1 ≤ un para todo n ∈ N∗. Seja f (x)

uma função positiva, contínua e decrescente no intervalo [1,∞) tal que f (n) = un para todo

n ∈ N∗. Então, se a integral∫ ∞

1

f (x) dx convergir, a série∞∑n=1

un também será convergente.

Se a integral divergir, a série também será divergente.

A demonstração deste teorema poderá ser estudada em qualquer um dos livros constantesna bibliograa.

EXEMPLO 5.9.3 Verique as hipóteses do teste da integral e utilize-o, se possível, para analisar

a convergência da série∞∑n=1

ne−n.

Solução: Considere a função f(x) = xe−x, obviamente f(x) é contínua e positiva parax ≥ 1. Falta vericar que é decrescente. Usando o teste da primeira derivada temos quef ′(x) = e−x(1 − x) e f ′(x) < 0 para todo x > 1, em x = 1 função apresenta um máximolocal, então f(x) é decrescente para todo x ≥ 1. Como as hipóteses do teste da integral estão

vericadas podemos utilizá-lo para estudar a convergência da série∞∑n=1

ne−n.

O teste da integral arma que a série∞∑n=1

ne−n converge se, a integral I =

∫ ∞

1

xe−xdx

converge e a série diverge se a integral divergir.Assim,

I =

∫ ∞

1

xe−xdx = limb→+∞

∫ b

1

xe−xdx

= limb→+∞

−xe−x

∣∣∣∣∣b

1

+

∫ b

1

e−xdx

= lim

b→+∞

(−be−b + e−1 − e−b + e−1

)=

2

e+ lim

b→+∞

(− b

eb− 1

eb

)=

2

e.

Como a integral imprópria converge, pelo teste da integral a série∞∑n=1

ne−n também converge.

5.9.4 Série p ou Série Hiper-harmônica

DEFINIÇÃO 5.9.5 Denominamos série p todas as séries escritas na forma∞∑n=1

1

np, onde p é

uma constante positiva.

185

Page 192: Apostila de Integrais 2

Vamos utilizar o Teorema 5.9.2 para estudar a convergência da série p.

EXEMPLO 5.9.6 Estude a convergência da série∞∑n=1

1

np= 1+

1

2p+

1

3p+

1

4p+ · · ·+ 1

np+ · · · .

Solução: Considerando f (x) =1

xp, temos que f é positiva, contínua e decrescente, satis-

fazendo todas as condições do Teorema 5.9.2, de modo que podemos tomar a integral∫ ∞

1

1

xpdx = lim

n→∞

∫ n

1

1

xpdx.

Temos três casos a considerar:

(i) Se p = 1 teremos que

∫ ∞

1

1

xdx = lim

n→∞

∫ n

1

1

xdx = lim

n→∞ln x

∣∣∣∣∣n

1

= limn→∞

(lnn− ln 1) = ∞.

Consequentemente, quando p=1, a série∞∑n=1

1

np=

∞∑n=1

1

né divergente. Note que neste

caso, temos a série harmônica.

(ii) Se p < 1 teremos que 1− p > 0 e assim

∫ ∞

1

1

xpdx = lim

n→∞

∫ n

1

1

xpdx = lim

n→∞

x1−p

1− p

∣∣∣∣∣n

1

= limn→∞

(n1−p

1− p− 1

1− p

)= ∞.

Consequentemente, se p<1, a série∞∑n=1

1

npé divergente.

(iii) Se p > 1 teremos que 1− p < 0 e assim

∫ ∞

1

1

xpdx = lim

n→∞

∫ n

1

1

xpdx = lim

n→∞

x1−p

1− p

∣∣∣∣∣n

1

= limn→∞

(n1−p

1− p− 1

1− p

)=

−1

1− p.

Consequentemente, se p>1 a série∞∑n=1

1

npé convergente.

EXEMPLO 5.9.7 As séries abaixo são exemplos de séries p.

(a)∞∑n=1

1

n9convergente, pois é uma série-p com p = 9 > 1.

(b)∞∑n=1

1√n

divergente, pois é uma série-p com p = 12< 1.

186

Page 193: Apostila de Integrais 2

5.9.8 Critério da comparação

TEOREMA 5.9.9 Seja∞∑n=1

un uma série e seja∞∑n=1

yn uma série cuja convergência queremos

estudar, então:

(i) Se∞∑n=1

un for uma série convergente e 0 ≤ yn ≤ un para todo n, então a série∞∑n=1

yn é

convergente.

(ii) Se∞∑n=1

un for uma série divergente e yn ≥ un ≥ 0 para todo n, então a série∞∑n=1

yn é

divergente.

DEMONSTRAÇÃO: (i) Sejam∞∑n=1

un uma série convergente e∞∑n=1

yn uma série tal que 0 ≤ yn ≤

un para todo n. Como∞∑n=1

un é uma série convergente, a sequência de suas somas parciais Sn

tem limite L, de modo que u1 + u2 + u3 + · · ·+ uk + · · · < L. Como 0 ≤ yn ≤ un para todon, segue que

0 ≤ y1 + y2 + y3 + · · ·+ yk + · · · ≤ u1 + u2 + u3 + · · ·+ uk + · · · < L.

Consequentemente, a sequência de somas parciais de∞∑n=1

yn é limitada e, além disso,

monótona. Logo, pelo Teorema 5.5.8 é convergente e, assim, a série∞∑n=1

yn é convergente.

(ii) Sejam∞∑n=1

un uma série divergente e yn ≥ un ≥ 0 para todo n. Como∞∑n=1

un é uma

série divergente a sua sequência de somas parciais Sn não tem limite, de modo que dado umnúmero L > 0, existe K > 0 tal que u1 + u2 + u3 + · · · + uk + · · · > L para todo n > K.Como yn ≥ un para todo n, segue que

y1 + y2 + y3 + · · ·+ yk + · · · ≥ u1 + u2 + u3 + · · ·+ uk + · · · > L.

Consequentemente, a sequência de somas parciais y1 + y2 + y3 + · · · + yk + · · · não é

limitada e, assim, a série∞∑n=1

yn é divergente.

EXEMPLO 5.9.10 Usando o Teorema 5.9.9 estude a convergência da série

∞∑n=1

n

n3 + n2 + n+ 1.

Solução: Conforme o Teorema 5.9.9, devemos encontrar uma série que sabemos ser conver-gente ou divergente e fazer a comparação do termo geral dessa série com a série em estudo.Um procedimento usado para encontrar um termo geral adequado é majorar o termo geralda série proposta. Vamos descrever o processo.

(i) Temos duas formas de majorar um quociente: aumentando o denominador ou dimin-uindo o denominador. No termo geral da série em estudo, vamos diminuir o denomi-nador passo a passo

n

n3 + n2 + n+ 1<

n

n3 + n2 + n<

n

n3 + n2=

1

n(n+ 1).

187

Page 194: Apostila de Integrais 2

No Exemplo 5.6.3, vimos que a série∞∑n=1

20000

n(n+ 1)é convergente. Como podemos escrever

∞∑n=1

20000

n(n+ 1)= 20000

∞∑n=1

1

n(n+ 1), segue (pela propriedade i), que

∞∑n=1

1

n(n+ 1)também é

convergente.

(ii) Vamos vericar que, de fato,n

n3 + n2 + n+ 1≤ 1

n(n+ 1)para todo n ∈ N∗.

n

n3 + n2 + n+ 1≤ 1

n(n+ 1)⇔ n2(n+ 1) ≤ n3 + n2 + n+ 1⇔ n3 + n2 ≤ n3 + n2 + n+ 1⇔ 0 ≤ n+ 1

que é válido para todo n. Logo, pelo Teorema 5.9.9, a série∞∑n=1

n

n3 + n2 + n+ 1é convergente.

5.9.11 Critério de D'Alambert ou Critério da Razão

TEOREMA 5.9.12 Seja∞∑n=1

un uma série tal que un > 0 para todo n e limn→∞

un+1

un= L.

Então

(i) A série∞∑n=1

un converge se L < 1;

(ii) A série∞∑n=1

un diverge se L > 1;

(iii) Nada podemos armar se L = 1.

DEMONSTRAÇÃO: Seja∞∑n=1

un uma série tal que limn→∞

un+1

un= L. Então, dado ε > 0 podemos

encontrar K > 0 tal que, para todo n > K vale a desigualdade

∣∣∣∣un+1

un− L

∣∣∣∣ < ε.

Suponhamos que L < 1. Então existe q tal que L < q < 1 e isso implica que q − L < 1.

Tomando ε = q − L podemos escrever

∣∣∣∣un+1

un− L

∣∣∣∣ < q − L donde vem

− (q − L) <un+1

un− L < q − L ou − (q − L) + L <

un+1

un< q.

Da última relação concluímos que un+1 < unq. Dessa relação temos que

un+1 < unqun+2 < un+1q < unqq < unq

2

un+3 < un+2q < unq2q < unq

3

· · ·un+k < un+(k−1)q < unq

k−1q < unqk

e assim sucessivamente, de forma que

un+1 + un+2 + un+3 + · · · < unq + unq2 + unq

3 + · · · .

188

Page 195: Apostila de Integrais 2

Note que unq+ unq2 + unq

3 + · · · é uma série geométrica, com razão |q| < 1 e, portanto,

convergente. Assim, pelo Teorema 5.9.9, a série∞∑n=1

un converge se L < 1.

Por outro lado, suponhamos que limn→∞

un+1

un= L > 1, então obteremos un+1 > un para todo

n e, desse modo, limn→∞

un = 0. Consequentemente, a série não possui a condição necessária

para convergência. Logo, a série∞∑n=1

un diverge se L > 1.

A parte (iii) do Critério de D'Alambert diz que, se limn→∞

un+1

un= 1, então este critério

é inconclusivo. Observe isso considerando os exemplos:∞∑n=1

1

n2e

∞∑n=1

1

n. Para ambas

limn→∞

un+1

un= 1, porém a primeira é uma série p, com p = 2, convergente e a segunda é

a série harmônica que sabemos ser divergente.

EXEMPLO 5.9.13 Usando o critério de D 'Alambert, estude a convergência da série

∞∑n=1

2n

n.

Solução: Temos que un =2n

ne un+1 =

2n+1

n+ 1. Logo,

un+1

un=

n2n+1

2n (n+ 1)=

n2n2

2n (n+ 1)=

2n

(n+ 1)

e assim, pelo critério de D'Alembert, temos que

L = limn→∞

un+1

un= lim

n→∞

2n

(n+ 1)= 2 > 1.

Consequentemente, a série∞∑n=1

2n

né divergente.

EXEMPLO 5.9.14 Estude a convergência da série∞∑n=1

1

n!.

Solução: Temos que un =1

n!e un+1 =

1

(n+ 1)!e então

L = limn→∞

un+1

un= lim

n→∞

n!

(n+ 1)!= lim

n→∞

1

n+ 1= 0 < 1,

portanto a série∞∑n=1

1

n!converge, pela critério de D'Alembert.

5.9.15 Critério de Cauchy ou Critério da Raíz

TEOREMA 5.9.16 Seja∞∑n=1

un uma série tal que un > 0 para todo n e limn→∞

n√un = L.

Então

189

Page 196: Apostila de Integrais 2

(i) A série∞∑n=1

un converge se L < 1;

(ii) A série∞∑n=1

un diverge se L > 1;

(iii) Nada podemos armar se L = 1.

EXEMPLO 5.9.17 Usando o critério de Cauchy, estude a convergência da série∞∑n=1

(n

2n+ 5

)n

.

Solução: Temos que n√un = n

√(n

2n+5

)n= n

2n+5e aplicando o critério de Cauchy, obtemos

que

L = limn→∞

n√un = lim

n→∞

n

2n+ 5=

1

2< 1,

e concluímos que a série∞∑n=1

(n

2n+ 5

)n

é convergente.

EXEMPLO 5.9.18 Estude a convergência da série∞∑n=1

52n

23n+1.

Solução: Temos que

n√un =

n

√52n

23n+1=

52

23+1n

=25

8.21n

.

Assim,

L = limn→∞

n√un = lim

n→∞

25

8.21n

=25

8> 1

e a série∞∑n=1

52n

23n+1diverge, pelo critério de Cauchy.

5.10 Séries de Termos Positivos e Negativos

DEFINIÇÃO 5.10.1 Seja un > 0 para todo n ∈ N∗. Denominamos série alternada à sérieda forma

∞∑n=1

(−1)n−1 un = u1 − u2 + u3 − u4 + · · ·+ (−1)n−1 un + · · ·

ou∞∑n=1

(−1)n un = −u1 + u2 − u3 + · · ·+ (−1)n un + · · ·

EXEMPLO 5.10.2 A série∞∑n=1

(−1)n−1 1

np= 1− 1

2p+

1

3p− 1

4p+ · · · + (−1)n−1 1

np+ · · · é um

exemplo de série alternada.

190

Page 197: Apostila de Integrais 2

5.10.3 Convergência de uma série alternada

Infelizmente todos os critérios de convegência vistos até o momento não são válidos paraséries alternadas, pois eles exigiam que os termos da série fossem todos positivos. A seguir,passaremos a ver alguns resultados que são válidos para séries de termos positivos e negativos.

TEOREMA 5.10.4 (Teorema de Leibnitz) Considere uma série alternada

∞∑n=1

(−1)n−1 un = u1 − u2 + u3 − u4 + · · ·+ (−1)n−1 un + · · ·

tal que(i) u1 > u2 > u3 > u4 > · · · (ii) lim

n→∞un = 0.

Então são válidas as seguintes conclusões:(a) A série alternada é convergente.(b) A soma parcial Sn da série alternada é tal que 0 < Sn < u1.

DEMONSTRAÇÃO: (a) Consideremos a soma dos 2n primeiros termos da série alternada.Suponhamos que os termos de ordem ímpar da série são positivos e os de ordem par sãonegativos. Se, por acaso o primeiro termo for negativo, iniciaremos a contagem em u2, poisa retirada de um número nito de termos não afeta a convergência da série. Desse modo, otermo u2n−1 é positivo e o termo u2n é negativo. Assim, pela condição (i) temos que

(u1 − u2) > 0, (u3 − u4) > 0, · · · (un − un+1) > 0, · · · (u2n−1 − u2n) > 0

de modo que

S2 = u1 − u2 > 0 S4 = S2 + (u3 − u4) > S2 S6 = S4 + (u5 − u6) > S4

e assim sucessivamente. Portanto, obtemos que

0 < S2 < S4 < .... < S2n.

Ainda, associando os termos de outra forma, obtemos que

S2n = (u1 − u2) + (u3 − u4) + ...+ (u2n−1 − u2n)= u1 − (u2 − u3)− (u4 − u5)− ...− (u2n−2 − u2n−1)− u2n

e, pela condição (i), cada termo entre parênteses é positiva. Portanto, estamos subtraindouma quantidade positiva de u1, obtendo um resultado inferior a u1, de modo que 0 < S2n <u1.

Com isso, segue que S2n é limitada e como 0 < S2 < S4 < · · · < S2n, também é monótona.Assim, concluímos que a sequência de somas S2, S4, · · · , S2n converge, pelo Teorema 5.5.8.

Seja limn→∞

S2n = S. Como S2n < u1, segue que S < u1. Sendo S2n+1 = S2n + u2n+1 e

aplicando a condição (ii), temos que

limn→∞

S2n+1 = limn→∞

S2n + limn→∞

u2n+1 = S + 0 = S.

Consequentemente as somas de ordem ímpar tem a mesma soma dos termos de ordempar. Finalmente, mostraremos que lim

n→∞Sn = S.

Como limn→∞

S2n = S, dado ε > 0 podemos encontrar K1 > 0 tal que |S2n − S| < ε sempre

que 2n > K1.

191

Page 198: Apostila de Integrais 2

Como limn→∞

S2n+1 = S, dado ε > 0 podemos encontrar K2 > 0 tal que |S2n − S| < ε

sempre que 2n+ 1 > K2.Tomando K = max K1, K2 , para todo n > K vale a desigualdade |Sn − S| < ε. Logo,

limn→∞

Sn = S e a série∞∑n=1

(−1)n−1 un é convergente.

EXEMPLO 5.10.5 Usando o teorema de Leibnitz, estude a convergência da série

∞∑n=1

(−1)n−1 n+ 2

n (n+ 1).

Solução: Vamos vericar se un satisfaz todas condições do Teorema 5.10.4. O termo geral

da série é un =n+ 2

n (n+ 1)> 0 para todo n ∈ N∗. Agora, vamos vericar se un > un+1 para

todo n natural. Temos que

n+ 2

n (n+ 1)>

n+ 3

(n+ 1) (n+ 2)⇔ (n+ 2) (n+ 1) (n+ 2) > n (n+ 1) (n+ 3)⇔ n3 + 5n2 + 8n+ 4 > n3 + 4n2 + 3n⇔ 4n2 + 8n > −1,

que é verdadeiro para todo n natural. Assim, a primeira condição do Teorema 5.10.4 estásatisfeita. Ainda,

limn→∞

un = limn→∞

n+ 2

n (n+ 1)= 0.

e então todas as exigências do Teorema 5.10.4 estão satisfeitas. Podemos concluir então quea série

∞∑n=1

(−1)n−1 n+ 2

n (n+ 1)

é convergente.

5.11 Série de Termos de Sinais Quaisquer

DEFINIÇÃO 5.11.1 Denominamos série de termos de sinais quaisquer à toda série formadapor termos positivos e negativos.

As séries alternadas são casos particulares das séries de termos de sinais quaisquer.

EXEMPLO 5.11.2 A série∞∑n=1

sin(nπ6) = 1

2+

√32+1+

√32+ 1

2+0− 1

2−

√32−1−

√32− 1

2+0+ · · ·

é um exemplo de série de termos de sinais quaisquer.

Veremos na sequência um teorema que permite vericar se uma série de termos de sinaisquaisquer é convergente.

TEOREMA 5.11.3 Seja∞∑n=1

un uma série de termos de sinais quaisquer. Se a série∞∑n=1

|un|

for uma série convergente então a série∞∑n=1

un também será convergente.

192

Page 199: Apostila de Integrais 2

No entanto, se a série∞∑n=1

|un| for divergente, nada poderemos armar sobre a convergência

da série de sinais quaisquer∞∑n=1

un.

EXEMPLO 5.11.4 Vimos no Exemplo 5.10.5 que a série∞∑n=1

(−1)n−1 n+ 2

n (n+ 1)é convergente.

Porém, a série∞∑n=1

∣∣∣∣∣(−1)n−1 n+ 2

n (n+ 1)

∣∣∣∣∣ = ∞∑n=1

n+ 2

n (n+ 1)não é convergente. O leitor pode vericar

essa armação usando o critério da comparação.

EXEMPLO 5.11.5 Usando o Teorema 5.11.3, estude a convergência da série∞∑n=1

(−1)n−1

n3.

Solução: Temos que∞∑n=1

∣∣∣ (−1)n−1

n3

∣∣∣ = ∞∑n=1

1n3 . Como podemos observar, esta é uma série p com

p = 3 > 1 e, portanto, convergente. Logo,∞∑n=1

(−1)n−1

n3 é convergente. A convergência desta

série também pode ser estudada pelo teorema de Leibnitz.

EXEMPLO 5.11.6 Usando o Teorema 5.11.3 estude a convergência da série∞∑n=1

sin(nx) + 3 cos2(n)

n2.

Solução: Temos que

∞∑n=1

∣∣∣∣sin(nx) + 3 cos2(n)

n2

∣∣∣∣ = ∞∑n=1

|sin(nx) + 3 cos2(n)|n2

e como |sin(nx)| ≤ 1 e |cos2(n)| ≤ 1, usando propriedades de módulo, segue que∣∣sin(nx) + 3 cos2(n)∣∣ ≤ |sin(nx)|+

∣∣3 cos2(n)∣∣ ≤ 1 + 3∣∣cos2(n)∣∣ ≤ 1 + 3 = 4,

e então podemos concluir que

∞∑n=1

|sin(nx) + 3 cos2(n)|n2

≤∞∑n=1

4

n2

para todo n natural. Como∞∑n=1

4n2 é uma série p convergente (p = 2 > 1), temos que a série

∞∑n=1

∣∣∣∣sin(nx) + 3 cos2(n)

n2

∣∣∣∣converge, pelo critério da comparação.

Assim, a série∞∑n=1

sin(nx) + 3 cos2(n)

n2também converge, pelo Teorema 5.11.3.

193

Page 200: Apostila de Integrais 2

5.12 Séries absolutamente convergente e condicionalmenteconvergentes

Antes de denir séries absolutamente convergente e condicionalmente convergentes vamosconsiderar os exemplos abaixo.

EXEMPLO 5.12.1 Consideremos a série harmônica

∞∑n=1

1

n= 1 +

1

2+

1

3+

1

4+ · · ·+ 1

n+ · · ·

já mostramos que esta série é divergente. Porém, a série harmônica alternada, dada por

∞∑n=1

(−1)n−1 1

n= 1− 1

2+

1

3− 1

4+ · · ·+ (−1)n−1 1

n+ · · ·

é convergente, pelo teorema de Leibnitz. Vamos mostrar que a série∞∑n=1

(−1)n−1 1

nconverge

sob condições, isto é, podemos interferir na sua forma de convergir.

Solução: Para modicar o valor de convergência de∞∑n=1

(−1)n−1 1

nbasta reagrupar os termos

desta série, separando a soma dos termos de ordem ímpar da soma dos termos de ordem par,conforme segue:

Sn =

(1 +

1

3+

1

5+ · · ·+ 1

2n− 1+ · · ·

)−(1

2+

1

4+

1

6+ · · ·+ 1

2n+ · · ·

).

Como o leitor pode observar, podemos escrever

Sn =∞∑n=1

1

2n− 1−

∞∑n=1

1

2n

e, cada uma destas sub-somas é divergente. Logo, temos que Sn = ∞−∞, isto é, a soma éindeterminada, signicando que, se escrevermos

∞∑n=1

(−1)n−1 1

n

na forma

∞∑n=1

(−1)n−1 1

n=

(1 +

1

3+

1

5+ · · ·+ 1

2n− 1+ · · ·

)−(1

2+

1

4+

1

6+ · · ·+ 1

2n+ · · ·

)nada podemos armar sobre a sua convergência. Isso ocorre porque a série

∞∑n=1

∣∣∣∣(−1)n−1 1

n

∣∣∣∣ = ∞∑n=1

1

n

não converge.Com base no exemplo anterior, vamos denir séries absolutamente convergente e condi-

cionalmente convergente.

194

Page 201: Apostila de Integrais 2

DEFINIÇÃO 5.12.2 Seja∞∑n=1

un uma série de termos de sinais quaisquer, então:

(i) Se∞∑n=1

|un| converge, a série é denominada absolutamente convergente.

(ii) Se∞∑n=1

un converge e∞∑n=1

|un| diverge, então a série∞∑n=1

un é denominada condicional-

mente convergente.

EXEMPLO 5.12.3 A série∞∑n=1

(−1)n−1 1

n, estudada no Exemplo 5.12.1, é condicionalmente

convergente enquanto que a série∞∑n=1

sin(nx) + 3 cos2(n)

n2, estudada no Exemplo 5.11.6, é

absolutamente convergente.

EXEMPLO 5.12.4 Classique a série numérica∞∑n=1

(−1)n−1 n2

n3 + 4como absolutamente conver-

gente, condicionalmente convergente ou divergente.

Solução: Temos que∞∑n=1

∣∣∣∣(−1)n−1 n2

n3 + 4

∣∣∣∣ = ∞∑n=1

n2

n3 + 4, e esta é uma série divergente, pois a

função f(x) =x2

x3 + 4é contínua para todo x = 3

√−4, em particular para todo x ≥ 1, é

positiva para todo x ≥ 3√−2, em particular para x ≥ 1, e como f ′(x) =

x(8− x3)

(x3 + 4)2> 0 para

todo x > 2, ou seja, logo a função f(x) é decrescente para todo x ≥ 2, e assim podemosaplicar o critério da integral, e deste segue que∫ +∞

2

x2

x3 + 4dx = lim

b→+∞

∫ b

2

x2

x3 + 4dx = lim

b→+∞

1

3ln(x3 + 4)

∣∣∣∣∣b

2

= +∞,

ou seja, a integral imprópria, e consequentemente a série, diverge.

Porém,∞∑n=1

(−1)n−1 n2

n3 + 4é uma série alternada convergente, pois satisfaz as condições do

teorema de Leibnitz, visto que

limn→+∞

n2

n3 + 4= 0 e un+1 =

(n+ 1)2

(n+ 1)3 + 4≤ n2

n3 + 4= un, para todo n ≥ 2

pois acima vericamos que a função f(x) =x2

x3 + 4é decrescente para todo x ≥ 2.

Portanto a série dada é condicionalmente convergente.

EXEMPLO 5.12.5 Classique as séries numéricas abaixo como absolutamente convergente,condicionalmente convergente ou divergente, justicando sua resposta.

(a)∞∑n=2

(−2)n

(lnn)n + 2√n+ 1

(b)∞∑n=1

(−1)n24√n3 + 2n

Solução: (a) Analisando a convergência absoluta temos∣∣∣∣ (−2)n

(lnn)n + 2√n+ 1

∣∣∣∣ = 2n

(lnn)n + 2√n+ 1

≤ 2n

(lnn)n

195

Page 202: Apostila de Integrais 2

Aplicando o teste da raiz, temos

L = limn→∞

n

√2n

(lnn)n= lim

n→∞

2

lnn= 0.

Como L < 1 a série∞∑n=2

2n

(lnn)nconverge. Logo, pelo teste da comparação, a série dada

converge absolutamente.(b) Analisando a convergência absoluta temos∣∣∣∣ (−1)n2

4√n3 + 2n

∣∣∣∣ = 24√n3 + 2n

≤ 24√n3,

com isso nada podemos concluir, pois a série dada é menor que uma série p divergente.Porém, observe que

24√n3 + 2n

=2

[n3(1 + 2n2 )]

14

=2

n34 (1 + 2

n2 )14

e 1 ≤ (1 +2

n2)14 ≤ 3

14 . Logo,

24√n3 + 2n

≥ 24√3n

34

,

e, por comparação, a série dada não converge absolutamente.Analisando a convergência condicional, usando o Teorema de Leibnitz, pois a série dada

é alternada, temos limn→∞

24√n3 + 2n

= 0 e an =2

4√n3 + 2n

é decrescente.

Portanto, a série dada é condicionalmente convergente.

5.13 Séries de Funções

Considerando as funções fi : R → R denidas por f0 (x) = 1, f1 (x) = x, f2 (x) = x2,f3 (x) = x3, f4 (x) = x4, · · · , fn (x) = xn, · · · , podemos escrever a soma

S (x) = f0 (x) + f1 (x) + f2 (x) + f3 (x) + f4 (x) + · · ·+ fn (x) + · · ·= 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · ·

Essa soma innita é um exemplo de série de funções, pois o seu termo geral depende deuma variável real x. Mais geralmente, denimos série de funções como segue.

DEFINIÇÃO 5.13.1 Denominamos série de funções a toda série na qual o termo geral é umafunção da variável real x e a denotaremos por

∞∑n=0

un (x) = u0 (x) + u1 (x) + u2 (x) + · · ·+ un (x) + · · ·

5.13.2 Convergência de séries de funções

Como no estudo das séries numéricas, estamos interessados na convergência das séries defunções. Uma série de funções, se for convergente, convergirá para uma função. A imagem

196

Page 203: Apostila de Integrais 2

de cada valor de x numa série de funções é uma série numérica que pode ser convergente oudivergente. Por exemplo, para cada valor de x, a série

∞∑n=0

xn = 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · ·

é uma série geométrica e, portanto, converge se |x| < 1 e diverge caso contrário. Já sua soma

será a função S (x) =1

1− x, se |x| < 1. Isso signica que uma série de funções convergente,

converge para um determinado conjunto de valores de x, denominado domínio ou intervalode convergência.

DEFINIÇÃO 5.13.3 Seja∞∑n=0

un (x) uma série de funções. Denominamos domínio ou inter-

valo de convergência da série ao conjunto de todos os valores de x para os quais a série éconvergente e denominamos raio de convergência à distância entre o centro e as extremidadesdo intervalo convergência.

EXEMPLO 5.13.4 O raio de convergência da série∞∑n=0

xn é R = 1 e o seu intervalo de con-

vergência é I = (−1, 1) . Para todo x ∈ (−1, 1) tem-se que∞∑n=0

xn =1

1− x.

EXEMPLO 5.13.5 Determine o intervalo e o raio de convergência da série∞∑n=1

cos(x) + sin(x)

n4 + n.

Solução: Analisando a convergência absoluta da série, temos que∣∣∣∣cos(x) + sin(x)

n4 + n

∣∣∣∣ = |cos(x) + sin(x)|n4 + n

≤ |cos(x)|+ |sin(x)|n4 + n

≤ 2

n4 + n≤ 2

n4

e como∞∑n=1

2

n4é uma p-série convergente, concluímos, por comparação, que a série dada é

absolutamente convergente. Ou seja, a série∞∑n=1

cos(x) + sin(x)

n4 + nconverge para todo valor

real de x. Assim, o intervalo de convergência desta série é R e seu raio de convergência éinnito.

5.14 Séries de Potências

As séries de potências são as séries de funções que aparecem com mais frequência nosproblemas de matemática e engenharia, pois são úteis na integração de funções que nãopossuem antiderivadas elementares, na resolução de equações diferenciais e também paraaproximar funções por polinômios (cientistas fazem isso para simplicar expresões complexas,programadores fazem isso para representar funções em calculadoras e computadores). Emvista disso, vamos dar atenção especial ao estudo das Séries de Potências.

DEFINIÇÃO 5.14.1 Uma série de potências é uma série cujos termos envolvem apenaspotências de x multiplicadas por coecientes constantes cn, ou seja, uma série de potênciasé escrita na forma

∞∑n=0

cnxn = c0 + c1x+ c2x

2 + c3x3 + · · ·+ cnx

n + · · · .

197

Page 204: Apostila de Integrais 2

EXEMPLO 5.14.2 A série∞∑n=0

xn do Exemplo 5.13.4 é uma série de potências onde todos os

coecientes cn são iguais a 1. Já a série∞∑n=1

cos(x) + sin(x)

n4 + ndo Exemplo 5.13.5 não é uma

série de potências, pois seus termos não envolvem apenas potências de x.

OBSERVAÇÃO 5.14.3 Para que os resultados anteriores possam ser usados sem mudanças nasnotações, vamos admitir que un(x) = cnx

n para o caso das séries de potências.

5.14.4 Processo para determinar o intervalo e o raio de convergên-cia de uma série de potências

Utilizam-se os critérios de D 'Alambert ou de Cauchy para a convergência absoluta,

tomando limn→∞

∣∣∣∣un+1

un

∣∣∣∣ ou limn→∞

(n√|un|

)onde un = cnx

n. Caso o limite exista vale a

condição dos critério usado. Em qualquer caso teremos que

limn→∞

∣∣∣∣un+1

un

∣∣∣∣ = limn→∞

∣∣∣∣cn+1xn+1

cnxn

∣∣∣∣ = |x|L

onde

L = limn→∞

∣∣∣∣cn+1

cn

∣∣∣∣ .Desse modo, o raio e o intervalo de convergência serão obtidos resolvendo a inequação

|x|L < 1, que nos dá |x| < 1L, ou seja, o raio de convergência é

R =1

L.

OBSERVAÇÃO 5.14.5 Como o critério de D 'Alambert é inconclusivo quando o limite da razãoé igual a 1, nada podemos armar se |x|L = 1. Assim, devemos vericar se a série con-

verge para x =1

Le x = − 1

L. Feita esta vericação, pode-se estabelecer o intervalo de

convergência.

EXEMPLO 5.14.6 Determine o intervalo e o raio de convergência da série∞∑n=0

3nxn

5n (1 + n2).

Solução: Aplicando o critério de D'Alambert para a convergência absoluta, temos que

limn→∞

∣∣∣∣un+1

un

∣∣∣∣ = limn→∞

∣∣∣∣∣∣∣∣∣3n+1xn+1

5n+1(1 + (n+ 1)2

)3nxn

5n (1 + n2)

∣∣∣∣∣∣∣∣∣ = limn→∞

∣∣∣∣ 5n3n3xnx (1 + n2)

5n5 (n2 + 2n+ 2) 3xn

∣∣∣∣= lim

n→∞

∣∣∣∣ 3x (1 + n2)

5 (n2 + 2n+ 2)

∣∣∣∣ = |x| limn→∞

∣∣∣∣ 3 (1 + n2)

5 (n2 + 2n+ 2)

∣∣∣∣ = 3

5|x|

Assim, a série convergirá se3

5|x| < 1, ou seja, se |x| < 5

3. Portanto, o raio de convergência

é R = 53.

Na sequência devemos vericar se a série converge para x = −5

3e x =

5

3.

198

Page 205: Apostila de Integrais 2

• Se x = −5

3, temos a série

∞∑n=0

3n(−5

3

)n5n (1 + n2)

=∞∑n=0

(−1)n3n5n

5n (1 + n2) 3n=

∞∑n=0

(−1)n1

(1 + n2).

que converge, pelo critério de Leibnitz.

• Se x =5

3temos a série

∞∑n=0

3n(53

)n5n (1 + n2)

=∞∑n=0

3n5n

5n (1 + n2) 3n=

∞∑n=0

1

(1 + n2).

que converge por comparação, pois

∞∑n=0

1

(1 + n2)≤ 1 +

∞∑n=1

1

n2.

Conclusão: O raio de convergência da série∞∑n=0

3nxn

5n (1 + n2)é R =

5

3e o seu intervalo

de convergência é −5

3≤ x ≤ 5

3.

EXEMPLO 5.14.7 Determinar o intervalo e o raio de convergência da série∞∑n=0

n!xn.

Solução: Aplicando novamente o critério de D 'Alambert, temos que

limn→∞

∣∣∣∣un+1

un

∣∣∣∣ = limn→∞

∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣ = limn→∞

(n+ 1) |x| =

0, se x = 0∞, se x = 0

.

Assim, a série dada converge apenas quando x = 0. Portanto, o seu intervalo de con-vergência é I = 0 e R = 0 é o seu raio de convergência.

5.14.8 Série de potências centrada em x = a

DEFINIÇÃO 5.14.9 Denominamos série de potências centrada em x = a à toda série da

forma∞∑n=0

cn (x− a)n .

Para obter o raio e o intervalo de convergência das séries em (x− a) , basta fazer z =

(x− a) e encontrar o intervalo de convergência para a série∞∑n=0

cnzn. Após esta etapa,

substitui-se z por (x− a) na inequação −R < z < R.

EXEMPLO 5.14.10 Determinar o raio e o intervalo de convergência da série∞∑n=0

2 (x− 5)

n2 + 3

n

.

Solução: Seja z = (x− 5). Então podemos escrever

∞∑n=0

2 (x− 5)

n2 + 3

n

=∞∑n=0

2zn

n2 + 3.

Usando o teorema de D'Alambert temos que

199

Page 206: Apostila de Integrais 2

limn→∞

∣∣∣∣un+1

un

∣∣∣∣ = limn→∞

∣∣∣∣∣∣∣∣∣2zn+1

(n+ 1)2 + 32zn

n2 + 3

∣∣∣∣∣∣∣∣∣ = limn→∞

∣∣∣∣∣ (n2 + 3) 2zn+1((n+ 1)2 + 3

)2zn

∣∣∣∣∣= lim

n→∞

(n2 + 3) |z|(n2 + 2n+ 4)

= |z| limn→∞

n2 + 3

n2 + 2n+ 4= |z|

e assim a série converge se |z| < 1. Portanto, o seu raio de convergência é R = 1. Nasequência, devemos vericar se a série converge para z = −1 e z = 1.

• Se z = −1 temos a série

∞∑n=0

2zn

n2 + 3=

∞∑n=0

2 (−1)n

n2 + 3=

∞∑n=0

(−1)n2

(n2 + 3)

que converge, pelo teorema de Leibnitz.

• Se z = 1 temos a série

∞∑n=0

2zn

n2 + 3=

∞∑n=0

2(1)n

n2 + 3=

∞∑n=0

2

(n2 + 3).

que converge por comparação com uma p−série, pois∞∑n=0

2

(n2 + 3)≤ 2

3+

∞∑n=1

2

n2.

Conclusão: O raio de convergência da série∞∑n=0

2zn

n2 + 3é R = 1 e o seu intervalo de

convergência é −1 ≤ z ≤ 1. Substituindo z por x− 5, obtemos

4 ≤ x ≤ 6,

que é o intervalo de convergência da série∞∑n=0

2 (x− 5)

n2 + 3

n

.

5.14.11 Continuidade da soma de uma Série de Funções.

Sabemos do Cálculo 1 que a soma de um número nito de funções contínuas é contínua.Porém, se a soma envolver innitos termos, seu resultado pode não ser contínuo. Vejamosum exemplo onde isso ocorre.

EXEMPLO 5.14.12 Mostre que a série∞∑n=1

(x

12n+1 − x

12n−1

)converge para uma função des-

contínua.

Solução: Escrevendo a soma dos n−primeiros termos desta s'erie

Sn (x) =(x

13 − x

)+(x

15 − x

13

)+(x

17 − x

15

)+ · · ·+

(x

12n+1 − x

12n−1

)e eliminando os parênteses, obtemos que Sn (x) = −x+ x

12n+1 . Assim,

200

Page 207: Apostila de Integrais 2

S(x) = limn→∞

Sn (x) = limn→∞

(−x+ x

12n+1

)=

1− x, se x = 00, se x = 0.

Portanto, limn→∞

Sn (x) existe para todo x ∈ R e a série de funções dada é convergente.

Note que a soma desta série é uma função descontínua em x = 0, enquanto que cada umde seus termos era contínuo. Observe ainda que a série em questão não é uma série depotências.

5.14.13 Derivação de uma série de funções contínuas

No Cálculo 1, vimos que a derivada de uma soma nita de funções é igual à soma dasderivadas. No entanto, se tivermos uma quantidade innita de funções, essa propriedadepode deixar de ser válida. Da mesma forma, a derivada de uma série de funções convergentepode ser divergente. Vejamos um exemplo:

EXEMPLO 5.14.14 Considere a série∞∑n=1

sin(n4x)

n2. Mostre que esta é uma série convergente e

que a série de suas derivadas é divergente.

Solução: Como |sin(n4x)| ≤ 1 para todo n natural e todo x real, segue que∣∣∣∣sin(n4x)

n2

∣∣∣∣ = |sin(n4x)|n2

≤ 1

n2

e por comparação com uma p-série convergente (p = 2), podemos concluir que a série dada éabsolutamente convergente. Ainda, esta série converge para todo valor real de x. Seja S(x)a soma desta série, ou seja,

S(x) =∞∑n=1

sin(n4x)

n2=

sinx

12+

sin(24x)

22+

sin(34x)

32+

sin(44x)

42+ · · ·+ sin(n4x)

n2+ · · ·

derivando termo a termo esta soma, temos que

S ′ (x) =cosx

12+

24 cos(24x)

22+

34 cos(34x)

32+

44 cos(44x)

42+ · · ·+ n4 cos(n4x)

n2+ · · ·

= cos x+ 22 cos(24x) + 32 cos(34x) + 42 cos(44x) + · · ·+ n2 cos(n4x) + · · ·

e aplicando em x = 0, obtemos

S ′ (0) = cos 0 + 22 cos 0 + 32 cos 0 + 42 cos 0 + · · ·+ n2 cos 0 + · · ·= 12 + 22 + 32 + 42 + · · ·+ n2 + · · ·

que é uma sequência de somas divergente. Assim, a série de funções converge para x = 0,enquanto que a derivada desta série diverge em x = 0. Observe que a série em questão nãoé uma série de potências.

Da mesma forma que na derivada, a integração de uma série de funções também exigecuidados. Enquanto que a integral de uma soma nita de funções é igual a soma das integrais,o mesmo pode não ser válido para uma quantidade innita de funções.

No entanto isto não ocorrerá quando se tratar de séries de potências, ou seja, quandouma série de potências for convergente pode-se efetuar a derivação e a integração termo atermo que as novas séries obtidas por estes processos também serão convergentes, com omesmo raio de convegência, conforme veremos a seguir.

201

Page 208: Apostila de Integrais 2

5.15 Diferenciação e Integração de Séries de Potências

A soma de uma série de potências é uma função f(x) =∞∑n=0

cn (x− a)n , cujo domínio é

o intervalo de convergência da série. Dentro deste intervalo, a derivação e a integração de focorre termo a termo, ou seja, pode-se derivar e integrar cada termo individual da série, deacordo com o resultado abaixo.

TEOREMA 5.15.1 Seja∞∑n=0

cn (x− a)n uma série de potências com raio de convergência

R > 0. Então a função f denida por

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =∞∑n=0

cn (x− a)n

é diferenciável (e portanto contínua) no intervalo (a−R, a+R) e

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =∞∑n=1

ncn (x− a)n−1

(ii) f”(x) = 2c2 + 6c3(x− a) + · · · =∞∑n=2

n(n− 1)cn (x− a)n−2

e assim por diante. Além disso, tomando C = K + ac0, tem-se que

(iii)∫f(x)dx = C + c0(x− a) + c1

(x− a)2

2+ c2

(x− a)3

3+ · · · = C +

∞∑n=0

cn(x− a)n+1

n+ 1

Os raios de convergência das séries das equações (i), (ii) e (iii) são todos iguais a R.

OBSERVAÇÃO 5.15.2 Embora o teorema anterior diga que o raio de convergência permaneceo mesmo quando uma série de potências é diferenciada ou integrada, isso não signicaque o intervalo de convergência permaneça o mesmo. Pode ocorrer de a série inicialconvergir em um extremo enquanto que a série diferenciada diverge nesse ponto.

EXEMPLO 5.15.3 Expresse1

(1− x)2como uma série de potências e determine seu raio de

convergência.

Solução: No Exemplo 5.13.4 vimos que, se x ∈ (−1, 1) então

1

1− x= 1 + x+ x2 + x3 + · · · =

∞∑n=0

xn.

Diferenciando cada lado dessa equação, obtemos que

1

(1− x)2= 1 + 2x+ 3x2 + 4x3 + · · · =

∞∑n=1

nxn−1.

Podemos deslocar o índice do contador trocando n por n+1, escrevendo a resposta como

1

(1− x)2=

∞∑n=0

(n+ 1)xn.

De acordo com o Teorema 5.15.1, o raio de convergência da série diferenciada é o mesmoque o raio de convergência da série original, a saber, R = 1. O leitor poderá vericar que ointervalo de convergência da série obtida é aberto nos extremos, ou seja, é o intervalo (−1, 1).

202

Page 209: Apostila de Integrais 2

EXEMPLO 5.15.4 Expressex5

(1− 3x)2como uma série de potências e determine seu intervalo

de convergência.

Solução: No Exemplo 5.15.3 vimos que, para x ∈ (−1, 1) é válido que

1

(1− x)2=

∞∑n=0

(n+ 1)xn.

Trocando x por 3x em ambos os lados dessa igualdade, obtemos

1

(1− 3x)2=

∞∑n=0

(n+ 1)(3x)n =∞∑n=0

3n(n+ 1)xn

e essa série converge se 3x ∈ (−1, 1), ou seja, se x ∈ (−13, 13). Agora, para obter a série

desejada basta multiplicar a série acima por x5, obtendo

x5

(1− 3x)2= x5

∞∑n=0

3n(n+ 1)xn =∞∑n=0

3n(n+ 1)xn+5.

Outra forma de escrever esta série é

x5

(1− 3x)2=

∞∑n=5

3n−5(n− 4)xn

e seu intervalo de convergência é (−13, 13).

EXEMPLO 5.15.5 Encontre a representação em séries de potências para f(x) = ln(1− x).

Solução: Notemos inicialmente que, pelo Exemplo 5.15.3 obtemos que

f ′(x) =−1

1− x=

∞∑n=0

−xn

e integrando ambos os lados dessa equação, com o auxílio do Teorema 5.15.1, obtemos que

f(x) =

∫−1

1− xdx = C +

∞∑n=0

−xn+1

n+ 1= C −

∞∑n=1

xn

n.

Para determinar o valor de C, colocamos x = 0 nessa equação e encontramos C − 0 =f(0) = ln 1 = 0. Assim

ln(1− x) = −∞∑n=1

xn

n= −x− x2

2− x3

3− · · · .

O raio de convergência dessa série é o mesmo que o da série original, R = 1, porém ointervalo de convergência é I = [−1, 1). Verique!

Note o que acontece quando colocamos x = 12no resultado do Exemplo 5.15.5. Como

ln 12= − ln 2, vemos que

ln 2 =1

2+

1

8+

1

24+

1

64+ · · · =

∞∑n=1

1

n2n.

Ou seja, usando esta série de funções obtivemos a soma da série numérica∞∑n=1

1

n2n.

203

Page 210: Apostila de Integrais 2

5.16 Séries de Taylor

Considere uma função f (x) e seja a um real qualquer. Pretende-se encontrar uma série

de potências da forma∞∑n=0

cn (x− a)n que convirja para f, ou seja, tal que

f (x) =∞∑n=0

cn (x− a)n .

Em outras palavras, queremos que

f (x) = c0 + c1 (x− a) + c2 (x− a)2 + c3 (x− a)3 + · · ·+ cn (x− a)n + · · · (5.16.1)

Assim, precisamos determinar os coecientes c0, c1, c2, · · ·

• Primeiro determinamos c0, tomando x = a na função 5.16.1. Obtemos

f (a) = c0 + c1 (a− a) + c2 (a− a)2 + c3 (a− a)3 + · · ·+ cn (x− a)n + · · ·

donde vemf (a) = c0.

• Determinamos a derivada da função 5.16.1 e na sequência aplicamos em x = a paraobter c1, ou seja,

f ′ (x) = c1 + 2c2 (x− a) + 3c3 (x− a)2 + · · ·+ ncn (x− a)n−1 + · · ·

f ′ (a) = c1 + 2c2 (a− a) + 3c3 (a− a)2 + · · ·+ ncn (a− a)n−1 + · · ·

donde vemf ′ (a) = c1.

• Determinamos a segunda derivada da função 5.16.1 e na sequência aplicamos em x = apara obter c2, isto é,

f ′′ (x) = 2c2 + 3 · 2c3 (x− a) + 4 · 3c4 (x− a)2 + · · ·+ n(n− 1)cn (x− a)n−2 + · · ·

f ′′ (a) = 2c2 + 3 · 2c3 (a− a) + 4 · 3c4 (a− a)2 + · · ·+ n(n− 1)cn (a− a)n−2 + · · ·

donde vem

f ′′ (a) = 2c2 ou c2 =f ′′ (a)

2!.

• Determinamos a terceira derivada da função 5.16.1 e, na sequência f (3) (a) para obterc3. Temos

f (3) (x) = 3·2c3+4·3·2c4 (x− a)+5·4·3c5 (x− a)2+· · ·+n(n−1)(n−2)cn (x− a)n−3+· · ·

f (3) (a) = 3·2c3+4·3·2c4 (a− a)+5·4·3c5 (a− a)2+· · ·+n(n−1)(n−2)cn (a− a)n−3+· · ·

donde vem

f (3) (a) = 3 · 2c3 ou c3 =f (3) (a)

3!.

204

Page 211: Apostila de Integrais 2

• Prosseguindo dessa forma, encontraremos cn =f (n) (a)

n!, de modo que podemos rees-

crever a série como segue

f (x) = f (a)+f ′ (a) (x− a)+f ′′ (a)

2!(x− a)2+

f (3) (a)

3!(x− a)3+· · ·+f

(n) (a)

n!(x− a)n+· · ·

ou seja, encontramos a série de Taylor:

f (x) =∞∑n=0

f (n) (a)

n!(x− a)n .

EXEMPLO 5.16.1 Desenvolver em série de Taylor a função f (x) = sin x.

Solução: Primeiro vamos determinar as derivadas de todas as ordens de f (x) = sin x noponto a. Temos que

f (a) = sin a f ′ (a) = cos a f ′′ (a) = − sin af (3) (a) = − cos a f (4) (a) = sin a f (5) (a) = cos a

A seguir, substituímos na expressão da série de Taylor

f (x) = f (a)+f ′ (a) (x− a)+f ′′ (a)

2!(x− a)2+

f (3) (a)

3!(x− a)3+ · · ·+ f (n) (a)

n!(x− a)n+ · · ·

e obtemos

sin x = sin a+ cos a (x− a)− sin a

2!(x− a)2 − cos a

3!(x− a)3 +

sin a

4!(x− a)4 + · · · .

Esta série pode ser reescrita separando os termos em seno dos termos em cosseno, con-forme segue

sinx =

(sin a− sin a

2!(x− a)2 +

sin a

4!(x− a)4 + · · ·

)+(cos a (x− a)− cos a

3!(x− a)3 + · · ·

),

e escrevendo em forma de somatório vem que

sinx =∞∑n=0

(−1)nsin a

2n!(x− a)2n +

∞∑n=0

(−1)ncos a

(2n+ 1)!(x− a)2n+1 .

5.17 Série de Maclaurin

Colin Maclaurin (1698 - 1746) foi um matemático escocês. Para obter o desenvolvimentode uma função em série de Maclaurin basta tomar a = 0 na série de Taylor. Desse modo, asérie de MacLaurin de uma função f é dada por

f (x) =∞∑n=0

fn (0)

n!xn = f (0) + f ′ (0)x+

f ′′ (0)

2!x2 +

f (3) (0)

3!x3 + · · ·+ f (n) (0)

n!xn + · · · .

EXEMPLO 5.17.1 Desenvolver em série de Maclaurin a função f (x) = sinx.

Solução: No Exemplo 5.16.1 desenvolvemos f (x) = sinx em série de Taylor. Fazendo a = 0nesse desenvolvimento, obtemos

205

Page 212: Apostila de Integrais 2

sinx =

(sin 0− sin 0

2!(x− 0)2 +

sin 0

4!(x− 0)4 + · · ·

)+

(cos 0 (x− 0)− cos 0

3!(x− 0)3 + · · ·

)ou seja,

sinx = x− x3

3!+x5

5!− x7

7!+x9

9!+ · · ·

ou ainda,

sinx =∞∑n=0

(−1)nx2n+1

(2n+ 1)!.

O leitor poderá vericar, sem grandes diculdades, que o intervalo de convergência destasérie é toda a reta real, ou seja, esta série converge para todo valor real de x.

Ainda, esta série pode ser aplicada para determinar o valor de convergência de sériesnuméricas. Por exemplo, substituindo x = π

6na série acima, temos que

π

6−

(π6

)33!

+

(π6

)55!

(π6

)77!

+

(π6

)99!

+ · · · = sinπ

6=

1

2.

EXEMPLO 5.17.2 Desenvolver em série de MacLaurin a função f(x) =∫

sin x

xdx.

Solução: Primeiro dividimos cada termo obtido no Exemplo 5.17.1 por x, encontrando

sinx

x= 1− x2

3!+x4

5!− x6

7!+x8

9!+ · · ·

A seguir, integramos a série termo a termo e obtemos∫sinx

xdx =

∫dx−

∫x2

3!dx+

∫x4

5!dx−

∫x6

7!dx+

∫x8

9!dx+ · · ·

= x− x3

3!3+x5

5!5− 5

x7

7!7+x9

9!9+ · · ·

=∞∑n=0

(−1)n x2n+1

(2n+ 1)! (2n+ 1),

que converge para todo valor real de x.

EXEMPLO 5.17.3 Utilize séries de funções para calcular limx→0

sin x− x

x3.

Solução: A partir da série encontrada no Exemplo 5.17.1, temos que

sinx = x− x3

3!+x5

5!− x7

7!+x9

9!+ · · · (−1)n

x2n+1

(2n+ 1)!+ · · ·

e então

sinx− x = −x3

3!+x5

5!− x7

7!+x9

9!+ · · · (−1)n

x2n+1

(2n+ 1)!+ · · · .

206

Page 213: Apostila de Integrais 2

Dividindo ambos os lados por x3, encontramos

sinx− x

x3= − 1

3!+x2

5!− x4

7!+x6

9!+ · · · (−1)n

x2n−2

(2n+ 1)!+ · · · .

Portanto

limx→0

sin x− x

x3= lim

x→0

(− 1

3!+x2

5!− x4

7!+x6

9!+ · · · (−1)n

x2n−2

(2n+ 1)!+ · · ·

)= −1

6.

EXEMPLO 5.17.4 Desenvolver em série de Maclaurin a função f(x) = sin(2x).

Solução: Anteriormente, vimos que a série de MacLaurin de sin x é

sin x = x− x3

3!+x5

5!− x7

7!+ · · · (−1)n

x2n+1

(2n+ 1)!+ · · ·

trocando x por 2x nesta série, obtemos

sin(2x) = 2x− (2x)3

3!+

(2x)5

5!− (2x)7

7!+ · · · (−1)n

(2x)2n+1

(2n+ 1)!+ · · ·

= 2x− 23x3

3!+

25x5

5!− 27x7

7!+ · · ·+ (−1)n

22n+1x2n+1

2n+ 1+ · · ·

=∞∑n=0

(−1)n22n+1(x)2n+1

(2n+ 1)!.

Uma das principais aplicações das séries de Taylor e de MacLaurin ocorre na integraçãode funções. Newton frequentemente integrava funções expressando-as primeiro como umasérie de potências e depois integrando a série termo a termo.

Por exemplo, a função g(x) = e−x2não pode ser integrada pelas técnicas do Cálculo 1,

pois sua antiderivada não é uma função elementar. No exemplo a seguir usaremos a ideia deNewton para integrar essa função.

EXEMPLO 5.17.5 Expresse∫e−x2

dx como uma série de potências.

Solução: Primeiro encontraremos a série de MacLaurin para g(x) = e−x2. Embora seja

possível usar o método direto, vamos encontrá-la a partir da série de MacLaurin para f(x) =ex. Como f (n)(x) = ex para todo n natural, temos que

f (n)(0) = e0 = 1 ∀n ∈ N∗

e assim, a série de MacLaurin da função exponencial é

ex =∞∑n=0

f (n)(0)

n!xn =

∞∑n=0

xn

n!= 1 + x+

x2

2!+x3

3!+ · · · .

Pode-se mostrar facilmente que esta série converge para todo x real e que seu intervalode convergência é innito. Trocando x por −x2 neste desenvolvimento, obtemos que

e−x2=

∞∑n=0

(−x2)n

n!=

∞∑n=0

(−1)nx2n

n!= 1− x2 +

x4

2!− x6

3!+ · · ·

207

Page 214: Apostila de Integrais 2

que também converge para todo x. Agora podemos integrar esta série termo a termo, deacordo com o Teorema 5.15.1 e obter ∀n ∈ R∫

e−x2

dx = C +∞∑n=0

(−1)nx2n+1

(2n+ 1)n!= C + x− x3

3+

x5

5.2!− x7

7.3!+ · · ·

EXEMPLO 5.17.6 Calcule∫ 1

0

e−x2

dx com uma precisão de três casas decimais.

Solução: Aplicando o Teorema Fundamental do Cálculo à expressão obtida no exemploanterior, temos que∫ 1

0

e−x2

dx = C +∞∑n=0

(−1)nx2n+1

(2n+ 1)n!

∣∣∣∣∣1

0

=∞∑n=0

(−1)n

(2n+ 1)n!.

Expandindo alguns termos desta série numérica, temos que∫ 1

0

e−x2

dx =∞∑n=0

(−1)n

(2n+ 1)n!= 1− 1

3

1

10− 1

42+

1

216− 1

1320+

1

9360+ · · ·

e observamos que a partir do sexto termo desta expansão, todos os demais possuem módulomenor que 1

1320< 0, 001 e assim, ao somarmos os cinco primeiros termos da expansão teremos

uma aproximação com precisão de até 3 casa decimais∫ 1

0

e−x2

dx ≈ 1− 1

3+

1

10− 1

42+

1

216≈ 0, 7475.

EXEMPLO 5.17.7 Utilize desenvolvimento em séries de MacLaurin para calcular

limx→0

arctan(x)− sin x

x3 cos x.

Solução: Começamos com o desenvolvimento em série de potências de f(x) = arctanx.Como

f ′(x) =1

1 + x2= (1 + x2)−1

é mais simples iniciar pelo desenvolvimento de f ′. No Exemplo 5.18.1 obtemos que

(1 + x)−1 = 1− x+ x2 − x3 + x4 + · · ·+ (−1)nxn + · · ·

trocando x por x2, segue que

f ′(x) = (1 + x2)−1 = 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + · · ·

então, integrando termo a termo, temos que

arctanx =

∫1

1 + x2dx = x− x3

3+x5

5− x7

7+ · · ·+ (−1)nx2n+1

2n+ 1+ · · · (I)

(a constante na expansão da função arco tangente é zero).Ainda, sabemos que o desenvolvimento em série para o seno é

sinx = x− x3

3!+x5

5!− x7

7!+ · · ·+ (−1)nx2n+1

(2n+ 1)!+ · · · (II)

208

Page 215: Apostila de Integrais 2

Tomando a diferença entre as equações (I) e (II) obtemos

arctanx− sinx = x3(−1

3+

1

3!

)+ x5

(1

5− 1

5!

)+ · · ·+ x2n+1

((−1)n

2n+ 1+

(−1)n+1

(2n+ 1)!

)+ · · ·

Podemos obter a série de MacLaurin para cosx facilmente, basta derivar termo a termoa série de sinx desenvolvida acima, obtendo

cosx = 1− x2

2!+x4

4!− x6

6!+ · · ·+ (−1)n

x2n

(2n)!+ · · · .

Agora podemos tomar o quociente desejado e simplicar, para obter que

arctan(x)− sinx

x3 cos x=

x3(−1

3+

1

3!

)+ x5

(1

5− 1

5!

)+ · · ·+ x2n+1

((−1)n

2n+ 1+

(−1)n+1

(2n+ 1)!

)+ · · ·

x3(1− x2

2!+x4

4!+ · · ·+ (−1)nx2n

(2n)!+ · · ·

)

=

(−1

3+

1

3!

)+ x2

(1

5− 1

5!

)+ · · ·+ x2n−2

((−1)n

2n+ 1+

(−1)n+1

(2n+ 1)!

)+ · · ·(

1− x2

2!+x4

4!− x6

6!+ · · ·+ (−1)n

x2n

(2n)!+ · · ·

)Finalmente, podemos aplicar o limite em ambos os lados dessa igualdade e encontrar que

limx→0

arctan(x)− sin x

x3 cosx=

(−1

3+

1

3!

)+ 0

1 + 0=

−1

3+

1

6= −1

6.

5.18 Fórmula geral do binômio de Newton

Suponhamos que o interesse é o desenvolvimento do binômio (a+ b)n , para n inteiropositivo. Do desenvolvimento geral do binômino de Newton vem que

(a+ b)n = C0na

n + C1na

n−1b+ C2na

n−2b2 + · · ·+ Ckna

n−kbk + · · ·+ Cnnb

n.

Como

Ckn =

n!

k! (n− k)!=n (n− 1) (n− 2) · · · (n− (k − 1)) (n− k)!

k! (n− k)!=n (n− 1) (n− 2) · · · (n− (k − 1))

k!,

podemos escrever

(a+ b)n = an+nan−1b+n (n− 1)

2!an−2b2+· · ·+n (n− 1) (n− 2) · · · (n− (k − 1))

k!an−kbk+· · ·+bn.

Tomando a = 1 e b = x vem que

(1 + x)n = 1 + nx+n (n− 1)

2!x2 + · · ·+ n (n− 1) (n− 2) · · · (n− (k − 1))

k!xk + · · ·+ xn,

que é um desenvolvimento nito. Porém, se n não for um inteiro positivo ou zero, é con-veniente desenvolver o binômio (1 + x)n em série de Maclaurin. Desse modo teremos odesenvolvimento innito

(1 + x)n = 1 + nx+n (n− 1)

2!x2 +

n (n− 1) (n− 2)

3!x3 + · · ·+

+n (n− 1) (n− 2) · · · (n− k + 1)

k!xk + · · · (5.18.1)

209

Page 216: Apostila de Integrais 2

Esta série, chamada de série binomial, é um caso particular da Série de MacLaurin. Comoo leitor poderá vericar, através do Critério de D'Alembert, a série binomial é absolutamenteconvergente para todo x real tal que |x| < 1. Pode ser provado que esse desenvolvimentoé verdadeiro para todo n. A prova pode ser encontrada nos livros citados na bibliograa.Escrevendo em forma de somatório, temos que

(1 + x)n = 1 +∞∑k=1

n (n− 1) (n− 2) · · · (n− k + 1)

k!xk se |x| < 1.

EXEMPLO 5.18.1 Desenvolver em série de funções a função f (x) =1

1 + x.

Solução: Temos que

f (x) =1

1 + x= (1 + x)−1 .

Portanto, basta substituir n = −1 na fórmula da série binomial. Assim,

1

1 + x= 1 + (−1)x+

−1 (−1− 1)

2!x2 +

−1 (−1− 1) (−1− 2)

3!x3 + · · ·

+−1 (−1− 1) (−1− 2) · · · (−1− k + 1)

k!xk + · · ·

= 1− x+2

2!x2 +

−6

3!x3 + · · ·+ −1 (−1− 1) (−1− 2) · · · (−1− k + 1)

k!xk + · · ·

1

1 + x= 1− x+ x2 − x3 + x4 + · · ·+ (−1)kxk + · · · =

∞∑k=0

(−1)k xk.

EXEMPLO 5.18.2 Expresse como uma série de potências a função f(x) =ln(x+ 1)

x.

Solução: Vamos analisar inicialmente a função ln(x+ 1). A sua derivada é igual a1

x+ 1, e

no exemplo anterior mostramos que

1

x+ 1= 1− x+ x2 − x3 + x4 + · · ·+ (−1)nxn + · · · =

∞∑n=0

(−1)n xn,

portanto, devemos integrar ambos os membros da igualdade, obtendo

ln(x+ 1) =

∫1

1 + xdx =

∞∑n=0

∫(−1)n xndx =

∞∑n=0

(−1)nxn+1

n+ 1.

Como queremos f(x) =ln(x+ 1)

x, devemos dividir todos os membros por x, donde,

ln(x+ 1)

x=

∞∑n=0

(−1)nxn

n+ 1.

EXEMPLO 5.18.3 Desenvolver em série de funções a função f (x) =1√1 + x

.

Solução: Temos que

210

Page 217: Apostila de Integrais 2

f (x) =1√1 + x

= (1 + x)−12 .

Portanto, basta substituir n = −12na fórmula da série binomial. Assim,

1√1 + x

= 1 +

(−1

2

)x+

−12

(−12− 1)

2!x2 +

−12

(−1

2− 1) (

−12− 2)

3!x3 + · · ·

+−1

2

(−1

2− 1) (

−12− 2)· · · (−1

2− k + 1)

k!xk + · · ·

= 1− 1

2x+

−1

2

(−3

2

)2!

x2 +

−1

2

(−3

2

)(−5

2

)3!

x3 + · · ·

+

−1

2

(−3

2

)(−5

2

)· · · (1− 2k

2)

k!xk + · · ·

1√1 + x

= 1− 1

2x+

1 · 3222!

x2 − 1 · 3 · 5233!

x3 + · · ·+ (−1)k1 · 3 · 5 · ... · (2k − 1)

2kk!xk + · · ·

EXEMPLO 5.18.4 Desenvolver em série de funções a função f (x) =1√

1− x2.

Solução: Podemos aproveitar o resultado do Exemplo 5.18.3 substituindo x por (−x2) .Teremos então

1√1 + (−x2)

= 1− 1

2

(−x2

)+

1 · 3222!

(−x2

)2 − 1 · 3 · 5233!

(−x2

)3+ · · ·

+(−1)n1 · 3 · 5 · · · (2n− 1)

2nn!

(−x2

)n+ · · ·

1√1− x2

= 1 +1

2x2 +

1 · 3222!

x4 +1 · 3 · 5233!

x6 + · · ·+ 1 · 3 · 5 · ... · (2n− 1)

2nn!x2n + · · ·

EXEMPLO 5.18.5 Desenvolver em séries de funções a função f (x) = arcsinx.

Solução: Como a derivada da função f (x) = arcsinx é f ′ (x) =1√

1− x2podemos

aproveitar o resultado do Exemplo 5.18.4 e integrá-lo termo a termo, obtendo∫dx√1− x2

=

∫dx+

1

2

∫x2dx+

1 · 3222!

∫x4dx+

1 · 3 · 5233!

∫x6dx+ · · ·

+1 · 3 · 5 · ... · (2n− 1)

2nn!

∫x2ndx+ · · ·

que resulta em

arcsinx = x+1

2 · 3x3 +

1 · 3222!5

x5 +1 · 3 · 5233!7

x7 + · · ·+ 1 · 3 · 5 · ... · (2n− 1)

2nn! (2n+ 1)x2n+1 + · · ·+ C

ou seja

arcsinx = x+∞∑n=1

1 · 3 · 5 · ... · (2n− 1)

2nn! (2n+ 1)x2n+1 +

π

2.

OBSERVAÇÃO 5.18.6 Vale ressaltar que o desenvolvimento obtido em todos os exemplos ante-riores é válido apenas para |x| < 1.

211

Page 218: Apostila de Integrais 2

5.19 Exercícios Gerais

1. Determine os quatro primeiros termos de cada uma das sequências dadas abaixo. Cal-cule também lim

n→∞un, caso exista.

(a) un = n4n+2

(b) un = (−1)n

5−n(c) un = (−1)n

√n

n+1(d) un = 100n

n32+4

(e) un = n+1√n

(f) un = lnnn

(g) un = ln(1n

)(h) un = n2

5n+3

(i) un = cos nπ2

(j) un = arctann (k) un =(1− 2

n

)n(l) un = n2

2n

(m) un = 3ne2n

(n) un = 1 + (−1)n (o) un = n√n (p) un = 7−n3n−1

2. Dados os termos abaixo, determine uma expressão para as sequências.

(a)

13, 29, 427, 881, · · ·

(b)

13, −2

9, 427, −881, · · ·

(c)

12, 34, 56, 78, · · ·

(d)

0, 1

4, 29, 316, · · ·

3. Classique, se possível, as sequências abaixo quanto à sua monotonicidade.

(a) un = n2n−1

(b) un = n− 2n (c) un = ne−n (d) un = 5n

2n2

(e) un = 10n

(2n)!(f) un = nn

n!(g) un = 1

n+lnn(h) un = n!

3n

4. Suponha que un seja uma sequência monótona tal que 1 ≤ un ≤ 5. Esta sequênciadeve convergir? O que mais pode ser dito sobre o seu limite?

5. Suponha que un seja uma sequência monótona tal que un ≤ 5. Esta sequência deveconvergir? O que mais pode ser dito sobre o seu limite?

6. Pode-se obter aproximações de√k utilizando a sequência recursiva un+1 =

12

(un +

kun

),

onde u1 = 12.

(a) Encontre as aproximações u2, u3, u4, u5, u6 para√10.

(b) Mostre que, se L = limn→∞

un, então L =√k.

7. Uma das mais famosas sequências é a sequência de Fibonacci (1710-1250), denidapela recorrência un+1 = un + un−1, onde u1 = u2 = 1.

(a) Determine os dez primeiros termos desta sequência.

(b) Os termos da nova sequência xn = un+1

undão uma aproximação para o igualmente

famoso número de ouro (ou razão áurea), denotado por τ. Determine uma aproximaçãodos cinco primeiros termos dessa nova sequência.

(c) Supondo que τ = limn→∞

xn, mostre que τ = 12(1 +

√5).

8. Encontre o termo geral da sequência de somas parciais de cada uma das séries abaixo.A seguir, determine se a série converge ou diverge, obtendo o valor de sua soma, sepossível.

212

Page 219: Apostila de Integrais 2

(a)∞∑n=1

1

(2n− 1) (2n+ 1)(b)

∞∑n=1

8

(4n− 3) (4n+ 1)

(c)∞∑n=1

2n+ 1

n2 (n+ 1)2(d)

∞∑n=1

ln

(n

n+ 1

)

(e)∞∑n=1

2n−1

5n(f)

∞∑n=1

1√n (n+ 1)

(√n+ 1 +

√n)

(g)∞∑n=1

1

1.2.3.4.5. · · · .n.(n+ 2)(h)

∞∑n=1

3n+ 4

n3 + 3n2 + 2n

9. Analise se as armações abaixo são verdadeiras ou falsas. Justique seus argumen-tos, exibindo contra-exemplos para as armações falsas ou provando as armaçõesverdadeiras.

(a) Toda sequência limitada é convergente.

(b) Toda sequência limitada é monótona.

(c) Toda sequência convergente é necessariamente monótona.

(d) Toda sequência monótona decrescente converge para zero.

(e) Se un for decrescente e un > 0 para todo n ∈ N, então un é convergente.

(f) Se −1 < q < 1, então limn→+∞

qn = 0.

(g) Se a sequência un converge, então a série∞∑n=1

un também converge.

(h) Se∞∑n=1

un converge, então∞∑n=1

√un também converge.

(i) Toda série alternada convergente é condicionalmente convergente.

(j) A série∞∑n=1

(n3 + 1)2

(n4 + 5)(n2 + 1)é uma série numérica convergente.

(k) Desenvolvendo a função g(x) =∫ x

0

t2e−t2dt em série de potências obtém-se g(x) =

∞∑n=0

(−1)nx2n+3

n!(2n+ 3).

(l) A série de potências∞∑n=1

(−1)3nxn é convergente no intervalo (−13, 13) e sua soma é

igual a S =−3x

1 + 3x.

(m) Se a sequência un converge então a série∞∑n=1

(un+1 − un) também converge.

(n) O raio de convergência da série da série∞∑n=0

(−1)n(3x− 5)2n

22n(n!)2é innito.

(o) A série∞∑n=1

22n91−n é convergente e sua soma é igual a36

5.

(p) O critério da integral garante que∞∑n=3

1

n lnn ln(lnn)converge.

213

Page 220: Apostila de Integrais 2

10. Encontre o termo geral da soma da série∞∑n=1

4

4n2 − 1e verique se ela é convergente.

11. Encontre a soma das séries abaixo, se possível.

(a)∞∑n=1

(1

5

)n

(b)∞∑n=1

5

(5n+ 2)(5n+ 7)(c)

∞∑n=1

1

n2 + 6n+ 8(d)

∞∑n=1

−1√n+ 1 +

√n

12. Usando o teste de comparação verique se as séries abaixo são convergentes ou diver-gentes.

(a)∞∑n=1

1

n3n(b)

∞∑n=1

√n

n2 + 1(c)

∞∑n=1

1

nn(d)

∞∑n=1

n2

4n3 + 1

(e)∞∑n=1

1√n2 + 4n

(f)∞∑n=1

|sen(n)|2n

(g)∞∑n=1

n!

(2 + n)!(h)

∞∑n=1

1√n3 + 5

(i)∞∑n=1

1

n√n2 + 5

(j)∞∑n=1

1

n+√n+ 5

(k)∞∑n=1

n

4n3 + n+ 1(l)

∞∑n=1

2n

(2n)!

(m)∞∑n=1

√n+ 1 +

√n

3√n

(n)∞∑n=1

1 + n42n

n5n(o)

∞∑n=1

2 + cosn

n2(p)

∞∑n=1

√n

n+ 4

(q)∞∑n=1

1 + 2n

1 + 3n(r)

∞∑n=1

n+ lnn

n3 + 1

13. Usando o teste de D 'Alambert verique se as séries abaixo são convergentes ou diver-gentes.

(a)∞∑n=1

n+ 1

n22n(b)

∞∑n=1

n!

en(c)

∞∑n=1

1

(n+ 1)2n+1

(d)∞∑n=1

3n√n3 + 1

(e)∞∑n=1

3n

2n(n2 + 2)(f)

∞∑n=1

n!

2n (2 + n)!

(g)∞∑n=1

1

n+ 5(h)

∞∑n=1

n+ 1

n4n(i)

∞∑n=1

n

4n2 + n+ 1

(j)∞∑n=1

3n+ 1

2n(k)

∞∑n=1

3n

n2 + 2(l)

∞∑n=1

n!

(n+ 2)3(m)

∞∑n=1

2n−1

5n(n+ 1)

14. Usando o teste de Cauchy, verique se as séries abaixo são convergentes ou divergentes.

(a)∞∑n=1

(lnn)

nn2

n

(b)∞∑n=1

2n(n+ 1

n2

)n

(c)∞∑n=1

(n+ 1

n22n

)n

(d)∞∑n=1

n4n − n√n10n + 1

15. Usando o teste da integral verique se as séries abaixo são convergentes ou divergentes.

(a)∞∑n=1

ne−n (b)∞∑n=1

lnn

n(c)

∞∑n=2

1

n lnn(d)

∞∑n=1

1

(n+ 1)√

ln (n+ 1)

(e)∞∑n=1

arctann

n2 + 1(f)

∞∑n=1

ne−n2(g)

∞∑n=1

n2e−n (h)∞∑n=1

earctann

n2 + 1

(i)∞∑n=1

1

4n+ 7(j)

∞∑n=1

1

n√n2 + 1

(k)∞∑n=1

1

n(1 + ln2 n)

16. Verique se as séries abaixo são absolutamente convergente, condicionalmente conver-gente ou divergente.

214

Page 221: Apostila de Integrais 2

(a)∞∑n=1

(−1)n−1 2n

n!(b)

∞∑n=1

(−1)n−1 1

(2n− 1)!(c)

∞∑n=1

(−1)n−1 n2

n!

(d)∞∑n=1

(−1)n−1 n

(2

3

)n

(e)∞∑n=1

(−1)n−1 n!

2n+1(f)

∞∑n=1

(−1)n−1 1

n2 + 2n

(g)∞∑n=1

(−1)n−1 3n

n!(h)

∞∑n=1

(−1)n−1 n2 + 1

n3(i)

∞∑n=1

(−1)n−1 nn

n!

(j)∞∑n=1

(−1)n−1 1

n23 + n

(k)∞∑n=1

(−1)n−1 nn2n

(2n− 5)n(l)

∞∑n=1

(−1)n−1n4

en

(m)∞∑n=1

(−1)n−1 n

n2 + 1(n)

∞∑n=1

(−1)n−1 n

n3 + 3(o)

∞∑n=1

(−1)n√2n2 − n

17. Classique as séries numéricas abaixo como absolutamente convergente, condicional-mente convergente ou divergente, justicando sua resposta.

(a)∞∑n=1

(−1)n−1 (23n+4 − n)

enn3n(b)

∞∑n=1

n cos(nπ)

n2 + n+ 1(c)

∞∑n=1

(−1)n√n+

√n

(d)∞∑n=1

(−1)n(n+ 1)!

2.4.6 · · · .(2n)(e)

∞∑n=1

(−1)n 54n+1

n3n(f)

∞∑n=1

(−1)n 73n+1

(lnn)n

(g)∞∑n=1

n sin(nπ) + n

n2 + 5(h)

∞∑n=1

cos(n) + sin(n)

n3 +√n

(i)∞∑n=1

ne2n

n2en − 1

18. Determine o raio e o intervalo de convergência das séries de potências abaixo.

(a)∞∑n=1

xn√n

(b)∞∑n=1

(−1)n−1xn

n3(c)

∞∑n=0

(3x− 2)n

n!

(d)∞∑n=1

(−1)nn4nxn (e)∞∑n=1

(−2)nxn

4√n

(f)∞∑n=2

(−1)nxn

4n lnn

(g)∞∑n=0

n(x+ 2)n

3n+1(h)

∞∑n=0

√n(x− 4)n (i)

∞∑n=1

(−1)n(x+ 2)n

n2n

(j)∞∑n=1

n!(2x− 1)n (k)∞∑n=1

xn

n√n3n

(l)∞∑n=1

(4x− 5)2n+1

n32

(m)∞∑n=0

n(x− 5)n

n2 + 1(n)

∞∑n=0

nn(x+ 2)n

(2n− 5)n(o)

∞∑n=0

n4(x− 1)n

en

(p)∞∑n=0

2n(x+ 1)n

n2 + 1(q)

∞∑n=0

n(x− 1)2n

n3 + 3(r)

∞∑n=1

(−1)n1.3.5.7. · · · .(2n− 1)xn

3.6.9. · · · .3n

19. Seja f(x) =∞∑n=1

xn

n2. Determine os intervalos de convergência para f, f ′ e f”.

20. A partir da soma da série geométrica∞∑n=1

xn, para |x| < 1, encontre as somas das séries

215

Page 222: Apostila de Integrais 2

abaixo.

(a)∞∑n=1

nxn−1 (b)∞∑n=1

nxn (c)∞∑n=1

n

2n(d)

∞∑n=2

n(n− 1)xn

(e)∞∑n=2

n2 − n

2n(f)

∞∑n=1

n2

2n(g)

∞∑n=1

(−1)nxn

n(h)

∞∑n=0

(−1)n

2n(n+ 1)

21. Encontre uma representação em série de potências para as funções abaixo.

(a) f(x) =1

1 + x3(b) f(x) =

1

4 + x3(c) f(x) =

x

9 + 4x2

(d) f(x) =x2

(1− 2x)2(e) f(x) =

x3

(x− 2)2(f) f(x) = ln(5− x) (g) f(x) = x ln(x2 + 1)

22. Expresse a integral indenida como uma série de potências

(a)

∫x

1− x8dx (b)

∫ln(1− x2)

x2dx (c)

∫x− arctanx

x3dx (d)

∫arctanx2dx

23. Utilize a representação em série de potências de f(x) = arctanx para provar a seguinte

expressão para π como soma de uma série numérica: π = 2√3

∞∑n=0

(−1)n

3n(2n+ 1).

24. Mostre que a função f(x) =∞∑n=0

xn

n!é solução da equação diferencial f ′(x) = f(x).

25. Mostre que as funções f1(x) =∞∑n=0

(−1)nx2n

(2n)!e f2(x) =

∞∑n=0

(−1)nx2n+1

(2n+ 1)!são soluções

da equação diferencial f”(x) + f(x) = 0.

26. Encontre a soma das seguintes séries

(a)∞∑n=0

(−1)nπ2n+1

42n+1(2n+ 1)!(b)

∞∑n=0

(−1)nπ2n

62n(2n)!(c)

∞∑n=1

3n

n!(d)

∞∑n=0

3n

5nn!

27. Encontre o raio e o domínio de convergência da série∞∑n=0

2n(x− 2)n

5n(1 + n2).

28. Determine o intervalo de convergência da série∞∑n=1

(3x− 5)n

7nn.

29. Mostre que a série de potências∞∑n=0

(−1)nx2n

32né convergente no intervalo (−3, 3) e que

sua soma é igual a S =9

9 + x2.

30. Determine o intervalo de convergência da série de potências que representa a função

f(x) =4

x2expandida em torno de a = 1.

31. Desenvolva a função f(x) = cosh(x3) em série de MacLaurin, determinando o termogeral de sua expansão e o seu intervalo de convergência.

32. Determine o intervalo e o raio de convergência da série de funções que representa a

função f(x) =ex

2 − 1

x.

216

Page 223: Apostila de Integrais 2

33. Usando séries de Maclaurin, mostre que∫cosxdx = sin x+ k.

34. Desenvolva a função f(x) =∫ x

0

t2 ln(1 + 4t2)dt em séries de MacLaurin e determine o

seu intervalo de convergência.

35. Desenvolver em série de Taylor e Maclaurin as funções:(a) f(x) = sin2 x (b) f(x) = x2 sin 2x (c) f(x) = e3x (d) f(x) = e−x2

(e) f(x) = cos 2x (f) f(x) =sin(x5)

x3(g) f(x) =

cosx− 1

x2(h) f(x) = x3ex

2

36. Utilize desenvolvimento em séries de MacLaurin para calcular os seguintes limites.

(a) limx→0

cos 2x+ 2x2 − 1

x4(b) lim

x→0

sin(x2) + cos(x3)− x2 − 1

x6

(c) limx→0

ln(1 + x2)

1− cosx(d) lim

x→0

ln(1 + x2)− 3 sin(2x2)

x2

(e) limx→0

ln(1 + x3)− ex3+ 1

x6(f) lim

x→0

x2 sin(x2) + ex4 − 1

ln(1 + x4)

(g) limx→0

cos(2x2)− ex4

x sin(x3)(h) lim

x→0

sin(x8) + cos(3x4)− 1

ex8 − 1

37. Utilize séries numéricas e/ou séries de potências para encontrar os valores reais de kque tornam válidas cada uma das igualdades abaixo.

(a)∞∑n=0

enk = 9 (b) limx→0

e−x4 − cos(x2)

x4= k

38. Desenvolver em série de Maclaurin as seguintes funções:

(a) f(x) =1

1− x(b) f(x) =

1√1 + x

(c) f(x) =1

1 + x2

(d) f(x) =1√

1− x2(e) f(x) =

∫sinx

xdx (f) f(x) =

∫e−x2

dx

(g) f(x) =

∫ln(1 + x)

xdx (h) f(x) = ln

(1 + x

1− x

)(i) f(x) = arcsinx

(j) f(x) = arccosx (k) f(x) = arctanx (l) f(x) = 3√1 + x

39. Calcule a integral∫ t

0

13√1 + x4

dx utilizando expansão em série de potências. Determine

o termo geral desta expansão ou faça o seu desenvolvimento com pelo menos 5 termosnão nulos.

217

Page 224: Apostila de Integrais 2

5.20 Respostas

1. .(a) 1

4(b) 0 (c) 0 (d) 0 (e) @ (f) 0 (g) @ (h) @

(i) @ (j) π2

(k) e−2 (l) 0 (m) 0 (n) @ (o) 1 (p) 0

2. (a) un = 2n−1

3n(b) un = (−1)n−12n−1

3n(c) un = 2n−1

2n(d) un = n−1

n2

3. .(a) decrescente (b) decrescente (c) decrescente (d) decrescente(e) decrescente (f) crescente (g) decrescente (h) nao-decrescente

4. A sequência converge, pois é uma sequência monótona limitada. Seu limite L é tal que1 ≤ L ≤ 5.

5. Se a sequência for monótona crescente, será convergente, com limite L ≤ 5. Porém, sea sequência for monótona decrescente nada podemos armar.

6. Dica para o item (b): Note que se L = limn→+∞

un então limn→+∞

un+1 = L. Com isso,

aplica-se limites em ambos lados da relação de recorrência dada e obtém-se que L =12

(L+ k

L

). Agora basta isolar L.

7. Dica para o item (c): Note que se τ = limn→+∞

xn = limn→+∞

un+1

unentão lim

n→+∞

un−1

un=

1

τ.

Com isso, aplica-se limites em ambos lados da relação de recorrência dada e obtém-se

que τ = 1 +1

τ. Agora basta isolar τ.

8. .(a) Sn = n

2n+1. A série converge para 1

2(b) Sn = 8n

4n+1. A série converge para 2

(c) Sn = n(n+2)(n+1)2

. A série converge para 1 (d) Sn = − ln(n+ 1). A série diverge

(e) Sn = 13− 2n

3.5n. A série converge para 1

3(f) Sn = 1− 1√

n+1. A série converge para 1

(g) Sn = 12− 1

(n+2)!. A série converge para 1

2(h) Sn = 5

2− 2

n+1− 1

n+2. Converge para 5

2

9. .(a) F (b) F (c) F (d) F (e) V (f) V (g) F (h) F(i) F (j) F (k) V (l) V (m) V (n) V (o) V (p) F

10. Sn = 2− 2

2n+ 1. A série converge para 2.

11. (a) S =1

4(b) S =

1

7(c) S =

7

24(d) A série diverge

12. Legenda: C (convergente), D (divergente), I (inconclusivo):(a) C (b) C (c) C (d) D (e) D (f) C (g) C (h) C (i) C(j) D (k) C (l) C (m) D (n) D (o) C (p) D (q) C (r) C

13. Legenda: C (convergente), D (divergente), I (inconclusivo):(a) C (b) D (c) C (d) I (e) D (f) C (g) I (h) C (i) I (j) C (k) D (l) D (m) C

218

Page 225: Apostila de Integrais 2

14. Legenda: C (convergente), D (divergente), I (inconclusivo):(a) C (b) C (c) C (d) C

15. Legenda: C (convergente), D (divergente), I (inconclusivo):(a) C (b) D (c) D (d) D (e) C (f) C (g) C (h) C (i) D (j) C (k) C

16. .(a) absolutamente (b) absolutamente (c) absolutamente(d) absolutamente (e) divergente (f) absolutamente(g) absolutamente (h) condicionalmente (i) divergente(j) condicionalmente (k) divergente (l) absolutamente(m) condicionalmente (n) absolutamente (o) condicionalmente

17. .(a) absolutamente (b) condicionalmente (c) condicionalmente(d) absolutamente (e) absolutamente (f) absolutamente(g) divergente (h) absolutamente (i) divergente

18. I é o intervalo de convergência e R é o raio de convergência(a) R = 1, I = [−1, 1) (b) R = 1, I = [−1, 1] (c) R = ∞, I = (−∞,∞)(d) R = 1

4, I = (−1

4, 14) (e) R = 1

2, I = (−1

2, 12] (f) R = 4, I = (−4, 4]

(g) R = 3, I = (−5, 1) (h) R = 1, I = (3, 5) (i) R = 2, I = (−4, 0](j) R = 0, I = 1

2 (k) R = 3, I = [−3, 3] (l) R = 1

4, I = [1, 3

2]

(m) I = [4, 6), R = 1 (n) I = (−4, 0), R = 2 (o) I = (1− e, 1 + e), R = e(p) I = [−3

2,−1

2], R = 1

2(q) I = [0, 2], R = 1 (r) I = (−3

2, 32), R = 3

2

19. [−1, 1], [−1, 1] e (−1, 1), respectivamente.

20. .

(a)1

(1− x)2(b)

x

(1− x)2(c) 2 (d)

2x2

(1− x)3

(e) 4 (f) 6 (g) − ln(1 + x) (h) 2 ln 32

21. .

(a) f(x) =∞∑n=0

(−1)nx3n (b) f(x) =∞∑n=0

(−1)nx3n

4n+1

(c)f(x) =∞∑n=0

(−1)n4nx2n+1

9n+1(d) f(x) =

∞∑n=1

2n−1nxn+1

(e) f(x) =∞∑n=1

nxn+2

2n+1(f) f(x) = −

∞∑n=0

xn+1

(n+ 1)5n+1

(g) f(x) =∞∑n=0

(−1)nx2n+3

n+ 1

22. .

(a)∞∑n=0

x8n+2

8n+ 2+K (b) −

∞∑n=1

x2n−1

n(2n− 1)+K (c)

∞∑n=1

(−1)n+1x2n−1

4n2 − 1+K

(d)∞∑n=0

(−1)nx4n+3

(4n+ 3)(2n+ 1)+K

23. Dica: Mostre que arctanx =∞∑n=0

(−1)nx2n+1

2n+ 1e depois faça x =

√3

3.

219

Page 226: Apostila de Integrais 2

24. Dica: derive termo a termo, desloque o índice do somatório e substitua na equaçãodada.

25. Dica: derive termo a termo, desloque o índice do somatório e substitua na equaçãodada.

26. (a)

√2

2(b)

√3

2(c) e3 − 1 (d) e

35

27. Intervalo de convergência:−1

2≤ x ≤ 9

2e raio de convergência R =

5

2.

28. Intervalo de convergência:−2

3≤ x < 4.

29. Dica: Note que a série dada é geométrica!

30.∞∑n=0

(−1)n(4n+ 4)(x− 1)n, intervalo de convergência: 0 < x < 2.

31. cosh(x3) =∞∑n=0

x6n

(2n)!, que converge para todo x ∈ R

32. Desenvolvimento em séries de MacLaurin : f(x) =∞∑n=1

x2n−1

n!que converge para todo

x ∈ R, ou seja, o raio de convergência é innito.

33. Basta integrar termo a termo.

34. f(x) =∞∑n=0

(−1)n4n+1x2n+5

(n+ 1)(2n+ 5)converge para

−1

2≤ x ≤ 1

2.

35. Desenvolvimento em séries de Maclaurin

(a)∞∑n=0

(−1)n22n+1x2n+2

(2n+ 2)!(b)

∞∑n=0

(−1)n22n+1x2n+3

(2n+ 1)!(c)

∞∑n=0

3nxn

n!

(d)∞∑n=0

(−1)nx2n

n!(e)

∞∑n=0

(−1)n22nx2n

(2n)!(f)

∞∑n=0

(−1)nx10n+2

(2n+ 1)!

(g)∞∑n=1

(−1)nx2n−2

(2n)!(h)

∞∑n=0

x2n+3

n!

36. (a)2

3(b) − 2

3(c) 2 (d) − 5 (e) − 1 (f) 2 (g) − 3 (h) − 7

2

37. (a) k = ln8

9(b) k = −1

2

220

Page 227: Apostila de Integrais 2

38. Desenvolvimento em Séries de MacLaurin

(a)∞∑n=0

xn (b) 1 +∞∑n=1

(−1)n1.3.5. · · · .(2n− 1)xn

2nn!

(c)∞∑n=0

(−1)nx2n (d) 1 +∞∑n=1

1.3.5. · · · .(2n− 1)x2n

2nn!

(e)∞∑n=0

(−1)nx2n+1

(2n+ 1)!(2n+ 1)+ C (f)

∞∑n=0

(−1)nx2n+1

(2n+ 1)!+ C

(g)∞∑n=0

(−1)nxn+1

(n+ 1)2+ C (h)

∞∑n=0

2x2n+1

2n+ 1

(i) x+∞∑n=1

1.3.5. · · · .(2n− 1)x2n+1

(2n+ 1)2nn!(j) − x−

∞∑n=1

1.3.5. · · · .(2n− 1)x2n+1

(2n+ 1)2nn!

(k)∞∑n=0

(−1)nx2n+1

2n+ 1(l) 1 +

1

3x+

∞∑n=2

(−1)n2.5.8. · · · .(3n− 4)xn

3nn!

39.∫ t

0

13√1 + x4

dx = t+∞∑n=1

(−1)n1.4.7.10. · · · .(3n− 2)t4n+1

(4n+ 1).3nn!

221